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Abstract
Objectives To develop and validate a radiomics-based model for predicting radiation-induced temporal lobe injury (RTLI) in
nasopharyngeal carcinoma (NPC) by pretreatment MRI of the temporal lobe.
Methods A total of 216 patients with diagnosed NPC were retrospectively reviewed. Patients were randomly allocated to the
training (n = 136) and the validation cohort (n = 80). Radiomics features were extracted from pretreatment contrast-enhanced T1-
or fat-suppressed T2 weighted MRI. A radiomics signature was generated by the least absolute shrinkage and selection operator
(LASSO) regression algorithm, Pearson correlation analysis, and univariable logistic analysis. Clinical features were selected
with logistic regression analysis. Multivariable logistic regression analysis was conducted to develop three models for RTLI
prediction in the training cohort: namely radiomics signature, clinical variables, and clinical-radiomics parameters. A radiomics
nomogram was used and assessed with respect to calibration, discrimination, reclassification, and clinical application.
Results The radiomics signature, composed of two radiomics features, was significantly associated with RTLI. The proposed
radiomics model demonstrated favorable discrimination in both the training (AUC, 0.89) and the validation cohort (AUC, 0.92),
outperforming the clinical prediction model (p < 0.05). Combining radiomics and clinical features, higher AUCs were achieved
(AUC, 0.93 and 0.95), as well as a better calibration and improved accuracy of the prediction of RTLI. The clinical-radiomics
model showed also excellent performance in predicting RTLI in different clinical-pathologic subgroups.
Conclusion A radiomics model derived from pretreatment MRI of the temporal lobe showed persuasive performance for
predicting radiation-induced temporal lobe injury in nasopharyngeal carcinoma.
Key Points
• Radiomics features from pretreatment MRI are associated with radiation-induced temporal lobe injury in nasopharyngeal
carcinoma.

• The radiomics model shows better predictive performance than a clinical model and was similar to a clinical-radiomics model.
• A clinical-radiomics model shows excellent performance in the prediction of radiation-induced temporal lobe injury in different
clinical-pathologic subgroups.
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Abbreviations
AUC Area under the curve
IMRT Intensity-modulated radiotherapy
NPC Nasopharyngeal carcinoma
ROI Region of interest
RTLI Radiotherapy-induced temporal lobe injury
TL Temporal lobe
VOI Volume of interests

Introduction

Nasopharyngeal carcinoma (NPC) is a very common endemic
neoplasm in southeast and eastern Asia [1]. Radiotherapy is
currently the preferred modality of treatment for non-
metastatic NPC, but the temporal lobes (TL) are inevitably
included in the radiation field [2, 3]. The reported rate of
radiation-induced temporal lobe injury (RTLI) ranges from
4.6 to 8.5% for patients treated with intensity-modulated radi-
ation therapy (IMRT) radiotherapy [4–6]. Patients who devel-
oped RTLI suffer damages in memory, language, and mobility
[7], but nearly half of the patients (45.3%) are asymptomatic for
RTLI on diagnosis [7] and themajority of patients were asymp-
tomatic even at a late stage [8]. The early identification or
individualized prediction of RTLI is an important requirement
for improving the quality of life and prognosis in NPC patients
[9].

Some studies focused on identifying the risk factors lead-
ing to RTLI. Guan [10] developed a model for the prediction
of RTLI in NPC patients including Dmax (the maximum point
dose) of the TL,D1cc (the maximum dose delivered to a 1-cm3

volume), T stage, and neutrophil-to-lymphocyte ratios
(NLRs). Zeng [11] and Huang [12] reported that D1cc and
V20 (absolute volumes of the TL receiving at least 20 Gy) were
predictive of RTLI for NPC. However, the optimal dose/
volume predictors for RTLI still vary in different studies and
the clinical application is limited. The imaging diagnosis of
RTLI mainly depends on MRI currently [13]. However,
existing conventional MRI techniques can only differentiate
RTLI at the irreversible stage [14]. Other advanced imaging
modalities, such as diffusion and perfusion MRI, have been
reported to provide additional information in RTLI diagnosis
[15, 16]. But functional MRI has higher requirements for
equipment and scanning technology. Considering the long
latency period and few cases of RTLI, it is very challenging
to guarantee the accuracy and consistency of the predefined
region of interest (ROI) placements; otherwise, it will intro-
duce great variation in the measuring results and lead to in-
consistent conclusions. Recently, artificial intelligence (AI)
such as radiomics has been widely used in predicting treat-
ment effects such as complications and disease progression
[17]. Radiomics describes the process of extracting large
amounts of image-based features from routine diagnostic

scans. High-dimensional data that quantify tumor shape, im-
age intensity, and texture may reflect the characteristics of the
disease, which can be applied within clinical decision support
[18].

The purpose of this study is to develop and validate a
radiomics-based model for the pretreatment prediction of
RTLI in patients with NPC.

Materials and methods

Patient selection

The institutional review board approved this retrospective
study, and the requirement to obtain informed consent was
waived (institutional ethics approval number 21/278-2949).
We searched the radiology reports for the term radiation-
induced temporal lobe injury on MRI scans obtained between
January 2017 and May 2021. A total of 108 NPC patients of
RTLI were included according to the inclusion and exclusion
criteria (Fig. 1; Supplementary Text). The 108 controls were
randomly selected from patients without RTLI after IMRT
between January 2017 and May 2021 according to the inclu-
sion and exclusion criteria (Fig. 1; Supplementary Text).
Thus, 216 patients were included in this study, which were
randomly allocated to a training set (136 patients) and a vali-
dation set (80 patients).

Baseline clinical-pathologic data, including gender, age,
NLRs, stage (T stage, N stage, and clinical stage), pathologic
type, treatment, Dmax for each TL, and the planning gross
tumor volume included the primary nasopharyngeal tumor
or enlarged retropharyngeal nodes (PGTVNX) were obtained
from the medical records. All patients underwent a standard
treatment regimen that consisted of IMRT and concurrent or
adjuvant chemotherapy with or without induction. IMRT was
performed with a total dose of 70–76 Gy and took 30–33
times to complete. After completion of radiation therapy,
follow-up MRI of the head and neck was performed every
1–3 months during the first 2 years, every 6 months in years
3–5, and annually thereafter [2]. Diagnostic criteria for tem-
poral lobe injury [19] were as follows: (a) white matter le-
sions, defined as areas of finger-like lesions of increased sig-
nal intensity on T2-weighted images; (b) contrast-enhanced
lesions, defined as lesions with or without necrosis on post-
contrast T1-weighted images with heterogeneous signal ab-
normalities on T2-weighted images; (c) cysts, round or oval
well-defined lesions of very high signal intensity on T2-
weighted images with a thin or imperceptible wall.

Image acquisition

MRI examinations were performed by using 3.0-T scanner
(GE Discovery MR 750, General Electric Medical Systems)
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with an 8-channel head and neck phased array coil. Axial fast
spoiled gradient-echo (FSPGR) contrast-enhanced T1-
weighted (CE-T1w) imaging was performed 60 s after intra-
venous bolus injection of gadopentetate dimeglumine
(Magnevist, Bayer, Leverkusen) at a dosage of 0.2 ml/kg of
body weight and 1.5 ml/s using a power injector. The imaging
protocol with parameters used is detailed in Supplementary
Table 1.

Temporal lobe segmentation

Axial fat-suppressed T2-weighted (FS-T2w) and CE-T1w
MR images were loaded into ITK-SNAP software (version
3.6.0, http://www.itksnap.org) for segmentation. The ROI
was manually delineated along the boundaries of the middle
and lower portions of the TL, from the top level of the
cerebral peduncle to the bottom of the TL. Bilateral
temporal lobes were covered in the ROI of all patients.
All segmentations were performed by one radiologist
(D.B., with 5 years of experience in head and neck MRI
diagnosis) and confirmed by another senior radiologist
(D.H.L., with 38 years of experience). Disagreements
were resolved by consensus. To assess for segmentation
variability, a subset of 30 randomly selected patients was
independently delineated by one radiologist (Y.F.Z., with
19 years of experience). The reliability was calculated by

using the Dice similarity coefficient (DSC). According to
the guidelines [20], DSC ≥ 0.75 indicates good agreement.

Radiomics feature extraction

Radiomic features were extracted from the volume of
interests (VOIs) by using the AK software (Analysis
Kit, GE Healthcare). MR images were normalized by
centering to the mean standard deviation, resampled to
a voxel size of 1 × 1 × 1 mm3 using B-Spline interpo-
lation with gray-level discretized by a fixed bin width
of 25 in the histogram. In total, 1316 radiomics features
including 14 shape features, 252 first-order intensity
features, and 1050 texture features were extracted from
each sequence.

Feature selection and signature construction

We devised a three-step procedure for dimensionality
reduction and selection of robust features (Fig. 2).
First, the least absolute shrinkage and selection operator
(LASSO) regression was performed to reduce irrelevant
features in the training set. Pearson correlation analysis
was used to further reduce the redundancy of radiomic
features with one of the paired significantly correlated
features (p < 0.05 and correlation coefficient > 0.5)

Fig. 1 Diagram for inclusion of patients into the study. IMRT intensity-modulated radiotherapy, NPC nasopharyngeal carcinoma, RTLI radiation-
induced temporal lobe injury
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removed from further analysis. Finally, multivariable lo-
gistic analysis was applied to select RTLI-related fea-
tures with p < 0.05. A radiomics signature (Rad-score)
was generated via a linear combination of selected fea-
tures weighted by their respective coefficients. The as-
sociation of clinical variables with RTLI was evaluated
by using logistic regression analysis.

Model development and validation

Logistic regression analysis was conducted to develop
three models for RTLI prediction in the training cohort:
including radiomics signature, clinical variables, and
clinical-radiomics parameters, respectively. A function
on the basis of the variance inflation factor was conducted
to check for the collinearity of variables included in the
regression equations. A variance inflation fact factor
greater than 10 indicates multicollinearity [21]. The pre-
dictive performance of established models was quantified
by the receiver operating characteristic (ROC) curve and
the area under the curve (AUC). AUC estimates were
compared between prediction models by using the
Delong nonparametric approach. Tenfold cross-
validation was performed with iteration of model devel-
opment. The average AUC and average sensitivity, spec-
ificity, and accuracy were provided as performance met-
rics. To provide a more understandable outcome measure,
a nomogram was then constructed. Calibration curves
were plotted via bootstrapping with 1000 resamples to
assess the ca l ibra t ion of the radiomics model ,

accompanied by the Hosmer-Lemeshow goodness-of-fit
test. Decision curve analysis (DCA) was used to calculate
the net benefit from the use of the radiomics model at
different threshold probabilities in the validation dataset.
Patients were classified into high-risk or low-risk groups
according to the clinical-radiomics model, and the thresh-
old was identified by using ROC with the AUC analysis.
The predictive ability of the model in subgroups with
different clinical-pathologic characteristics was assessed
with ROC analysis.

Statistical analysis

Categorical variables were compared by x2 test or Fisher exact
test. Continuous variables were compared by independent
samples t-test or Mann-Whitney U test. Statistical analysis
was performed by using SPSS 26.0 (IBM) and R software
(version 3.4.4, www.r-project.org). A two-sided p value less
than 0.05 was considered to indicate statistical significance.
The packages in R used in this study are described in
Supplementary Table 2.

Results

Patient demographics

A total of 216 patients, including 145 men (mean age, 47.2
years; age range, 10–73 years) and 71 women (mean age,
44.1 years; age range, 9–65 years), were identified

Image Acquisition 
and Segmentation Feature Extraction Feature Selection Model Development Model Validation

Lasso regression

Pearson correlation analysis

Logistic regression analysis

Radiomics score
First order

GLCM

GLDM

GLRLM

GLSZM

NGTDM

Fig. 2 Workflow of the development and testing of a radiomics model. GLCM gray level co-occurrence matrix, GLDM gray level dependence matrix,
GLRLM gray level run length matrix, GLSZM gray level size zone matrix, NGTDM neighboring gray tone difference matrix
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according to the inclusion and exclusion criteria (Fig. 1;
Supplementary Text). Clinical characteristics of the train-
ing (n = 136) and validation (n = 80) sets are summarized in
Table 1. There were no differences in clinical characteris-
tics between the training and validation cohorts. Baseline
clinical characteristics in patients with and without RTLI
are summarized in Supplementary Table 3. 108 patients

included in the present study were diagnosed with RTLI
(bilateral, 23; left, 39; right, 46). The ratio of RTLI was
56.88% (76 of 136) and 24.12% (32 of 80) in the training
and validation cohorts, respectively. The median duration
of follow-up was 33.3 months (interquartile range, 25.8–
41.9 months) until RTLI and 61.0 months (interquartile
range, 53.2–66.7 months) without RTLI.

Table 1 Characteristics of
patients in the training and
validation cohorts

Characteristic Training cohort Validation cohort p value
(n = 156) (n = 60)

Age (y)* 46.01 ± 13.23 (9–73) 46.53 ± 12.20 (19–69) 0.78

Gender

Male 88 57 0.32

Female 48 23

NLRs (mean ± SD) * 3.40 ± 4.54 (0.43–48.63) 3.14 ± 1.80 (0.86–12.29) 0.63

T stage 0.65

T1 6 6

T2 11 4

T3 67 41

T4 52 29

N stage 0.89

N0 18 8

N1 50 29

N2 51 33

N3 17 10

TNM stage 0.93

I 0 2

II 8 2

III 65 37

IV 63 39

Pathology 0.40

Differentiated 50 34

Undifferentiated 86 46

Synchronous chemotherapy 0.91

Yes 101 60

No 35 20

Targeted therapy 0.58

Yes 51 27

No 85 53

Induction chemotherapy 0.82

Yes 29 16

No 107 64

PGTVnx (mean ± SD)(Gy) * 73.52 ± 1.24 (67.72–74.20) 73.72 ± 0.87 (69.96–73.92) 0.19

LDmax (mean ± SD) (Gy) * 68.12 ± 5.90 (54.90–86.07) 68.35 ± 5.63 (52.86–77.99) 0.78

RDmax (mean ± SD) (Gy) * 68.98 ± 5.65 (55.16–86.07) 68.23 ± 5.17 (55.93–78.80) 0.33

Note. — *Data are mean ± standard deviation; data in parentheses are range. p > 0.05 suggests no significant
difference between the subjects in the two cohorts. LDmax maximum dose of the left temporal lobe, NLRs
neutrophil-to-lymphocyte ratios, PGTVNX planning gross tumor volume included the primary nasopharyngeal
tumor or enlarged retropharyngeal nodes, RDmax maximum dose of the right temporal lobe, TNM tumor-node-
metastasis
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Inter-observer reproducibility variability of
segmentation

The intra-reader Dice value was 0.98 ± 0.002 (range 0.978–
0.985) for FS-T2w sequences and 0.98 ± 0.002 (range
0.977–0.985) for CE-T1w sequences between the two radi-
ologists. These results indicated a favorable inter-observer
reproducibility for manual segmentation.

Feature selection and radiomics signature
construction

Among 2632 extracted radiomics features from both FS-
T2w and CE-T1w images, 120 features associated with
RTLI in the LASSO regression algorithm were identified.

The Pearson correlation analysis was then used to select 11
features for subsequent analysis. The 11 radiomics vari-
ables in patients with and without RTLI are summarized
in Supplementary Table 3. The 2 most relevant and stable
features (one ngtdm and one glszm feature) from the train-
ing set were selected. The radiomics signature was con-
structed, with a Rad-score calculated by using the following
formula:

log radiomics scoreð Þ ¼ −15:34þ 31876:46

�T2−W ngtdm strengthþ 16:38

�CET1−W glszm Small Area Emphasis

where ngtdm quantifies the difference between a gray
value and the average gray value of its neighbors within
distance δ, and glszm is the amount of homogeneous con-
nected areas within the volume of a certain size and
intensity.

Prediction model development and validation

The radiomics signature indicated a favorable predic-
tion of RTLI with an AUC of 0.89 (95% confidence
interval [CI]: 0.83–0.94) in the training cohort and
0.92 (95% CI:0.85–0.99) in the validation cohort. In
the training cohort, 2 clinical variables (age, p =
0.01; T stage, p < 0.001) were predictive of RTLI in
multivariable analysis. A clinical prediction model was
built based on the two independent predictors without

Table 2 Risk factors for
radiation-induced temporal lobe
injury of nasopharyngeal carci-
noma in the training cohort

Variable β SE Wald P OR 95%CI

Lower Upper

Age 0.06 0.02 7.22 0.007* 1.07 1.02 1.12

T stage 1.26 0.44 8.39 0.004* 3.53 1.59 8.98

NGTDM 33539.33 6282.78 28.50 < 0.001* Inf Inf Inf

GLSZM 18.46 8.49 4.72 0.03* 1.04e+
08

20.73 5.7e+15

Note.—Data are results of the multivariable regression analysis. CI confidence interval, GLSZM CET1w_wave-
let-HHH_glszm_SmallAreaEmphasis, Inf infinity, NGTDM T2w_lbp-3D-k_ngtdm_Strength, OR odds ratio, SE
standard error. * indicates significant difference

Table 3 Predictive performances of three models in predicting the
radiation-induced temporal lobe injury in the training and validation
cohort

Model AUC 95%CI Sensitivity Specificity

Lower Upper

Radiomic and clinical

Training cohort 0.93 0.88 0.97 0.79 (60/76) 0.98 (59/60)

Validation cohort 0.95 0.90 1.00 0.81 (26/32) 0.96 (46/48)

Radiomics only*

Training cohort 0.89 0.83 0.94 0.75 (57/76) 0.95 (57/60)

Validation cohort 0.92 0.85 0.99 0.66 (21/32) 0.96 (46/48)

Clinical only

Training cohort 0.74 0.65 0.82 0.59 (45/76) 0.87 (52/60)

Validation cohort 0.77 0.66 0.87 0.59 (19/32) 0.71 (34/48)

AUC area under the receiver operating characteristic curve,CI confidence
interval

*Features used for the radiomics-only model are FS/T2w-lbp-3D-k_
n g t dm_S t r e n g t h a n d CET1w - w a v e l e t - HHH_g l s zm_
SmallAreaEmphasis

Features used for the clinical-only model are T stage and age

�Fig. 3 Performances of three models in training cohort and validation
cohort. a, b Radiomics model, including two radiomics features- FS/
T2w-lbp-3D-k_ngtdm_Strength and CET1w- wavelet-HHH_glszm_
SmallAreaEmphasis. c, d Clinical model, including two clinical
variables- T stage and age. e, f Clinical-radiomics radiomics, integrated
two clinical variables and two radiomics features. ROC receiver operating
characteristic curve
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the addition of a radiomics signature. With the use of
multivariable logistic regression analysis, independent
predictors were identified for the clinical-radiomics
model (Table 2). The variance inflation factors of the
four potential predictors ranged from 1.039 to 1.081,
indicating no multicollinearity. The AUCs of the
clinical-radiomics model for predicting RTLI in the
training and validation cohorts were 0.93 (95% CI:
0.88–0.97) and 0.95 (95% CI: 0.90–1.00), respectively.
The AUC value of the clinical-radiomics model was
higher than that of the radiomics model, but the differ-
ence was not statistically significant (p = 0.09) in the
validation cohort, while the radiomics model was sig-
nificantly better than the clinical model in the predic-
tion of RTLI (p = 0.02) (Table 3 and Fig. 3).

A nomogram integrating Rad-Score and two clinical fea-
tures was constructed (Fig. 4a). The calibration curve of the
clinical-radiomics nomogram demonstrated good agreement
between predicted and observed RTLI in both the training

and validation cohorts (Fig. 4b, c). No significant difference
was found in the Hosmer–Lemeshow test (p = 0.08), suggest-
ing no departure from the good fit. The DCA showed that the
radiomics signature and the clinical-radiomics model provide
a better net benefit to predict RTLI than the clinical model
across the majority of the range of reasonable threshold prob-
abilities (Fig. 5).

The optimum cutoff of the clinical-radiomics model was
generated by the ROC analysis with the AUC equals 0.732
from the training cohort. The average AUC of the clinical-
radiomics model from 10-fold cross-validation was 0.93
(sensitivity, 97%; specificity, 70%; and accuracy, 83%)
with a threshold probability of 0.732. Accordingly, patients
were classified into a high-risk group (Rad-score ≥ 0.732)
and a low-risk group (Rad-score < 0.732). When assessing
the distribution of risk value and RTLI status, patients with
lower risk values generally had a lower probability of RTLI
than higher risk values (Supplementary Fig. 1). When the
patients were stratified based on clinical-pathologic factors,

Fig. 4 Radiomics nomogram developed with receiver operating
characteristic curves and calibration curves. a A radiomics nomogram
was constructed in the training cohort, with radiomics score, T stage
and age incorporated. Calibration curves of the radiomics nomogram in

the (b) training and (c) validation cohorts. CET1-SAE CET1w_wavelet-
HHH_glszm_SmallAreaEmphasis, T2-Strength T2w_lbp-3D-k_ngtdm_
Strength
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an excellent predictive performance of the clinical-
radiomics model was found in all subgroups (AUC =
0.88–0.97) (Table 4 and Fig. 6).

Discussion

In this study, we developed and validated a radiomics mod-
el to evaluate the prediction of nasopharyngeal carcinoma
(NPC) patients at risk of radiation-induced temporal lobe
injury (RTLI) by radiomics features which are extracted
from pretreatment MRI of the temporal lobe. The radiomics
model demonstrated excellent predictive performance with
the validation set (AUC, 0.92; sensitivity, 66%; specificity,
96%). The clinical-radiomics model showed excellent pre-
dictive performance of RTLI in patients within different
clinical-pathologic subgroups, thereby may facilitate pre-
treatment discrimination of NPC patients at high risk for
RTLI.

The RTLI-related radiomics features with the maxi-
mum significance in the present study were “lbp-3D-
k_ngtdm_St reng th” and “wavele t -HHH_glszm_
SmallAreaEmphasis,” which were extracted from FS-
T2w and CE-T1w images respectively. The precise
mechanism that leads to RTLI and the association with
TL heterogeneity remains unknown and is rarely

investigated currently. SmallAreaEmphasis (SAE) mea-
sures the distribution of small size zones, with a greater
value indicative of smaller size zones and more fine tex-
tures [22]. Strength is a measure of the primitives in an
image, and its value is high when the primitives are eas-
ily defined and visible [23]. High values of SAE and
strength in our study, increasing the radiomic score, were
found to be associated with patients more prone to de-
velop RTLI. SAE with a greater value indicates the mi-
nor difference between the gray-level values, and the
higher value of strength is associated with an image with
a slow change in intensity, indicating less heterogeneity
of image textures [22–24]. This corresponded to the
abundance of cells in the VOI of TL, with the cells ar-
ranged tightly and regularly. Furthermore, abundant
blood supply and high oxygen demand of the corre-
sponding TL, which means more sensitivity to radiother-
apy [25, 26], thus more prone to develop RTLI [27].
Thus, our study demonstrated that this radiomics model
could predict RTLI more accurately with an AUC of
0.89 in the training cohort and 0.92 in the validation
cohort.

Our study focuses on the pretreatment MR images of
NPC patients, enables early identification of RTLI, and
provides the earliest prevention or protective personalized
clinical treatment. Unlike the previous study that only
included T2w sequence [28], CET1-w images were also
included in our study. Some studies reported that the his-
tological heterogeneity and structural changes associated
with RTLI may be related to contrast enhancement [19,
29, 30]. Our result that the radiomics features finally se-
lected were derived from both FS-T2w and CE-T1w im-
ages was consistent with it. Although the most frequent
component of radiation-induced injury identified in some
studies was white matter lesion, there were still some
patients with extensive damage [31]. Therefore, the TL
VOI we delineated not only included white matter, and
this segmentation of the whole TL was more convenient
and practical.

T stage and age were also found to be significant indicators
of RTLI risk in the clinical model, which were consistent with
previous studies [10, 28]. In clinical treatment, physicians
have more interests in the clinical applications of AI models
or comparison with clinical impact factors [32]. The clinical-
radiomics model in our study successfully identified high-risk
patients with RTLI, for whom earlier preventive treatment was
recommended. The ability of radiomics features to help pre-
dict RTLI when the patients were stratified based on clinical-
pathologic factors was evaluated and excellent predictive per-
formances of the clinical-radiomics model were found in all
subgroups.

Fig. 5 Decision curve analysis for each model in the validation dataset.
The y-axis measures the net benefit, which is calculated by summing the
benefits (true-positive findings) and subtracting the harms (false-positive
findings), weighting the latter by a factor related to the relative harm of
undetected radiation-induced temporal lobe injury (RTLI) compared with
the harm of unnecessary treatment
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Our study had several limitations. Firstly, this study
was retrospective with possible selection bias. The in-
cluded patients without RTLI after IMRT were ran-
domly selected. Although the preferred design should
include all patients to ensure that no bias is introduced
for all relevant risk factors and outcomes [33], the low
incidence of RTLI in clinical and the long follow-up
time needed for RTLI outcomes in NPC may make the
research hard to implement. Second, we did not per-
form the external validation with independent data sets
for generalization. The DCA and subgroup validation
of different clinical factors used in this study, which
enables the evaluation of clinical relevance in a tradi-
tional decision-analytic approach, justified that the
identified radiomics signature and radiomics nomogram
hold great potential for clinical application in RTLI
outcome estimation. Third, the ROI of the TL was
drawn manually, which is a time-consuming task and
requires automated segmentation techniques in the near

future. Finally, the dosimetric parameters included in
this study were limited and not independent predictors
of RTLI in the training set. In general, the feasibility
of radiomics and clinical and dosimetric parameters to
predict RTLI should be explored by future studies, es-
pecially prospective studies, with larger sample sizes at
multicenter institutions.

In summary, we developed and validate a machine
learning approach for predicting radiation-induced tempo-
ral lobe injury (RTLI) in patients with nasopharyngeal
carcinoma (NPC) by pretreatment temporal lobe MRI.
The identified radiomics signature has the potential to be
used as a biomarker for risk stratification in RTLI. The
radiomics nomogram described here, which well demon-
strated the incremental value of the radiomics signature to
other clinical-pathologic factors for accurate prediction of
RTLI, further studies are required to explore the general-
ized utility of our model and apply our results to clinical
application.

Table 4 Diagnostic performance
of clinical-radiomics model with-
in different clinical-pathologic
subgroups

Feature type and group No. of patients Diagnostic performance* 95%CI

Lower Upper

Gender

Male 145 0.92 0.87 0.97

Female 71 0.97 0.93 1.00

Age

< 40 56 0.95 0.89 1.00

≥ 40 160 0.93 0.88 0.97

TNM stage

I–III 135 0.89 0.82 0.96

IV 81 0.96 0.93 1.00

Pathology

Differentiated 84 0.94 0.89 0.99

Undifferentiated 132 0.93 0.88 0.98

Synchronous chemotherapy

Yes 161 0.94 0.91 0.98

No 55 0.91 0.83 0.99

Targeted therapy

Yes 78 0.88 0.80 0.96

No 138 0.96 0.92 0.99

LDmax

< 68 101 0.93 0.87 0.98

≥ 68 115 0.94 0.89 0.98

RDmax

< 68 88 0.91 0.84 0.99

≥ 68 128 0.95 0.91 0.98

Note.—* Data are numbers of AUC. CI confidence interval, LDmax maximum dose of the left temporal lobe,
RDmax maximum dose of the right temporal lobe, TNM tumor-node-metastasis
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Fig. 6 The performances of clinical-radiomics model within different
clinical-pathologic subgroups. ROC analysis with the AUC to evaluate the
clinical-radiomics model as an independent biomarker in the following
clinical-pathologic factors respectively: a, b gender (male or female); c, d
age (< 40 or ≥ 40); e, f TNM stage (I–III or IV); g, h pathologic type

(differentiated non-keratinizing, or undifferentiated non-keratinizing); i, j
synchronous chemotherapy (untreated or treated); k, l targeted therapy (un-
treated or treated);m, nDmax of left temporal lobe (< 68Gy or ≥ 68Gy); o, p
Dmax of right temporal lobe (< 68 Gy or ≥ 68 Gy)
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Statistics and biometry One of the authors has significant statistical
expertise.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• retrospective
• diagnostic or prognostic study
• performed at one institution
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