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Abstract

Objective To develop novel deep learning network (DLN) with the incorporation of the automatic segmentation network (ASN)

for morphological analysis and determined the performance for diagnosis breast cancer in automated breast ultrasound (ABUS).

Methods A total of 769 breast tumors were enrolled in this study and were randomly divided into training set and test set at 600 vs.

169. The novel DLNs (Resent v2, ResNet50 v2, ResNet101 v2) added a new ASN to the traditional ResNet networks and extracted

morphological information of breast tumors. The accuracy, sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), area under the receiver operating characteristic (ROC) curve (AUC), and average precision (AP) were

calculated. The diagnostic performances of novel DLNs were compared with those of two radiologists with different experience.

Results The ResNet34 v2 model had higher specificity (76.81%) and PPV (82.22%) than the other two, the ResNet50 v2 model

had higher accuracy (78.11%) and NPV (72.86%), and the ResNet101 v2 model had higher sensitivity (85.00%). According to

the AUCs and APs, the novel ResNet101 v2 model produced the best result (AUC 0.85 and AP 0.90) compared with the

remaining five DLNs. Compared with the novice radiologist, the novel DLNs performed better. The F1 score was increased

from 0.77 to 0.78, 0.81, and 0.82 by three novel DLNs. However, their diagnostic performance was worse than that of the

experienced radiologist.

Conclusions The novel DLNs performed better than traditional DLNs and may be helpful for novice radiologists to improve their

diagnostic performance of breast cancer in ABUS.

Key Points

* A novel automatic segmentation network to extract morphological information was successfully developed and implemented
with ResNet deep learning networks.

* The novel deep learning networks in our research performed better than the traditional deep learning networks in the diagnosis
of breast cancer using ABUS images.

e The novel deep learning networks in our research may be useful for novice radiologists to improve diagnostic performance.

Keywords Ultrasonography - Deep learning - Diagnosis - Breast neoplasms

Abbreviations AP Average precision

3D Three dimensional ASN Automatic segmentation network

ABUS  Automated breast ultrasound AUC  Areaunder the ROC curve

ABVS  Automated breast volume scanner CAD  Computer-aided detection

Al Artificial intelligence CI Confidence interval
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CNN  Convolutional neural network
DL Deep learning

DLN Deep learning network
HHUS Handheld ultrasound

ML Machine learning

NPV Negative predictive value

PPV Positive predictive value

PRC Precision-recall curves

ROC Receiver operating characteristic
Introduction

Breast cancer has the highest incidence and mortality rate of
malignant tumors in women. Early diagnosis and treatment of
this particular cancer is helpful in decreasing the mortality
rates [1, 2]. Higher breast density is more common among
Asian women, which is associated with a relatively higher risk
of being diagnosed with breast cancer than among those with
lower breast densities [3—5].

Automated breast ultrasound (ABUS), as a new ultraso-
nography technology, has been proven to overcome the short-
comings of handheld ultrasound (HHUS) and plays a pivotal
role in the screening and staging of breast cancer [6, 7].
Supplemental ABUS in women with mammographically
dense breasts can help radiologists detect early-stage breast
cancers [8, 9]. ABUS can reconstruct three-dimensional
(3D) images of the breast lesion volume, including coro-
nal, axial, and sagittal views, in which the coronal view
has been shown to improve early detection in dense
breasts and diagnostic accuracy [10, 11]. However, for
certain types of malignant tumors, ABUS with at least 3
volume images may lead to mistakes in diagnosis [12]. In
recent years, artificial intelligence (AI) schemes have
been expected to facilitate breast screening by ABUS
[13, 14].

Deep learning (DL) is a subset of machine learning
(ML) and Al that extracts a complex hierarchy of features
from images by its self-learning ability [15]. Deep learn-
ing networks (DLNs) have a wide range of assistance in
image diagnosis and prediction because of their advan-
tages, such as being fast, accurate, and reproducible
[16-18]. The typical representative of DLNs is
convolutional neural network (CNN) which has been the
most popular method for pattern recognition and comput-
er vision applications in image analysis. The outstanding
performance of CNN has been shown to increase with
depth for some tasks and has been applied to ABUS im-
aging analysis in recent years [19-21]. The interpretation
time of ABUS screening for dense breast tissue was de-
creased compared with that of radiologists [22, 23]. Some
studies have used CNN for breast cancer detection and
diagnosis by ABUS [24, 25]. However, the networks they
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used were traditional or simple, which did not consider
the characteristics of ABUS itself, so that it might be
difficult to extract rich and effective image features. To
further explore the performance of DLN, we developed a
novel DLN and compared its diagnostic performance with
that of radiologists on breast cancer by ABUS.

Materials and methods
Patients

This study was approved by the Institutional Review
Board of our hospital. Patients with breast lesions be-
tween November 2018 and January 2020 were retrospec-
tively reviewed in this study. Indications of ABUS were
routine screening, or patients with or without symptomatic
breast lesions that did not have ulceration or protrusion
that significantly affects the image quality. All patients
were subjected to clinical routine conventional ABUS in
combination with HHUS examination if there were breast
lesions in ABUS or HHUS. All the patients underwent
more than one and a half years of follow-up, or eventually
underwent biopsy or surgical treatment. Complete patho-
logical information was acquired after surgery. Clinical
information of the patients and the ABUS features of the
breast lesions were recorded. The inclusion criteria were
as follows: (1) ABUS images with breast lesions; (2) the
lesions considered benign were followed up in our hospi-
tal for more than one and a half years; (3) lesions did not
undergo biopsy or any treatment prior to the ABUS ex-
amination; (4) the images were clear for image mark; and
(5) complete data and clinical information. The exclusion
criteria for the patients were as follows: (1) patients with
pathological results neither benign nor malignant; (2) pa-
tients with no surgery and no follow-up within 2 years;
(3) without clear pathological confirmation; (4) ABUS
features of the breast lesions cannot be clearly seen with
being affected by the shadow behind the nipple or with
low-quality image; and (5) incomplete data and clinical
information.

ABUS examination

The Invenia™ Automated Breast Ultrasound System (Invenia
ABUS, Automated Breast Ultrasound System, GE
Healthcare) with an automated 6—14-MHz linear broadband
transducer (covering volumes of 15.4 x 17.0 x 5.0 cm) was
used in the study. Image acquisition was performed by two
experienced technologists. The patients were placed similar to
those with conventional US. Thus, anteroposterior, medial,
and lateral orientation items of the volume data were obtained,
and if required, superior and inferior orientations were also
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obtained. After acquisition, all of the images were sent to the
image reading workstation.

Datasets

A total of 769 breast lesions with 769 3D images from 743
patients (range 27-79 years) were enrolled in this study.
Seg3D2 software (Seg3D 2-2.4.4), a free volume segmenta-
tion and processing tool, was used by three radiologists with
more than 5 years of work experience to determine the bound-
ary and shape of the lesions and to manually mark all of the
lesions. The manually marked breast lesion volumes were
used for the following two purposes: first, to help in network
learning. The process of network learning is to simulate a
doctor’s manual mark and to help in learning to extract the
right shape information. Second, it is to test the accuracy of
different models.

The training set and test set were selected by a random
sampling method at 600 vs. 169. The training set was further
randomly divided into a new training set and a validation set
for model establishment at a ratio of 5:1. Each pair of optimal
traditional and novel DLNs was tested with the test set. A
flowchart describing the research process is shown in Fig. 1.

Development of the DLN

All of the marked lesions were divided into a training set and
test set, cut into a suitable size according to the size of the
lesions, and finally input into the network at a uniform size.
In general, CNNs consist of convolutional layers, pooling
layers, and fully connected layers. The network obtained the
high-level features of the input image through a multilayer
convolution operation, and these features represent some im-
portant semantic information of the image. Subsequently, the
fully connected layer analyzes the semantic information and
completes the diagnosis. To further increase the classification
accuracy, we trained an automatic separate segmentation net-
work, according to manually mark results, to automatically
extract the shape information of the lesion, and then fused
the shape information of the lesion with the original data so
that the network could use the shape information to improve
its performance. The self-established automatic segmentation
network (ASN) is shown in supplementary Fig. 2. Then, we
used Dice loss for training. Dice loss was used to measure the
difference between the 3D shape predicted by the ASN and
that of the manually marked mass. The smaller the Dice loss,
the more accurate the shape predicted by the network. After
the training was completed, shape extraction was performed

Fig. 1 The flowchart describing ABUS image data collection of patients with
the research process. “Yes” breast lesions in our hospital from November n‘lxcluded lesions (n=297) N\
means the patient needs surgery 2018 to January 2020 (n=1066) (1) with pathological results neither
or biopsy. “No” means the patient benign nor malignant (n=54);
does not need surgery or biopsy. Surgery or biopsy (diagnosed by doctors) ;ig‘g;h no follow-up within 2 years
“n” represents the number of No Yes . | (3) without clear pathological
ABUS 3D images. ABUS = ” | confirmation (n=72);
automated breast ultrasound A4 v (4) ABUS features of the breast lesions
benign lesions 'benigu lesions can not be c!early seen affectedA by the
(n=108) (n=207) sha.dov}' behind the nipple or with low
qulity images (n=98);
| | (5) incomplete data and clinical
Qﬂbmmtion (n=29): j
Y
benign lesions | malignant I
(n=315) lesions (n=454)
]
Y
traming set
(n=600)
—e e
—
Iteration ResNet network
;| established
training set g
(n=500) and -_,:
validation set -5 vy
fLe0) Q Iteration : = - ;
+[ResNet v2 network test set novice and experienced ]
'L bl oo I ‘ (n=169) ’ ‘ radilologists in ABUS
—

comparison
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on the test set data through parameter migration. In Fig. 3, we
list one benign case and one malignant case, the ABUS 3D
images of which are processed by the segmentation network,
and the visualized images of the lesions are demonstrated. The
3D volume images of the benign and malignant lesions after
segmentation are shown in supplementary Fig. 3.

ResNet network, as a well-known CNN architecture, was
used to implement backbone due to its strength in differenti-
ating different classes of objects [26]. In fact, the depth of
ResNet can be any layer, such as 18, 34, 50, 101, and 150
layers depending on the number of superimposed times of the
residual module and the increase in depth does not always lead
to better results. Considering the above reason and training
time, we selected 34-, 50-, and 101-layer models as represen-
tatives of shallow, middle, and deep networks to explore the
impact between depth and network performance. The newly
built ASNs were merged in the traditional ResNet to create
corresponding new ResNet v2 networks—namely, ResNet34
and ResNet34 v2, ResNet50 and ResNet50 v2, and
ResNet101 and ResNet101 v2. For ResNet v2, the input chan-
nel was adjusted to 64 channels and the output category was
adjusted to 2, indicating the probability of benign and malig-
nant lesions.

Then, we conducted training, validation, and testing both
before and after the improvement network to verify the per-
formance of our algorithm by comparing the performance of
each pair of networks. The logic diagram of the ResNet net-
work is shown in Fig. 2.

Image analysis

Radiologist 1 (novice radiologist) with 1 year of work ex-
perience in ABUS diagnosis and radiologist 2 (experienced
radiologist) with 9 years of work experience in ultrasound
diagnosis and 5 years of experience in ABUS were in-
volved in the diagnosis. The diagnostic result of each radi-
ologist for each lesion was dichotomous (malignant or be-
nign). Radiologists 1 and 2 were not the ones who manually
marked the tumors. Only the primary ABUS image data,
age, corresponding case number, and date of examination
were visible to the radiologists to ensure the objectivity of
the diagnosis. Image analysis in ABUS was essentially
based on the evaluation of same image features than for
HHUS including shape (oval, round, or irregular), margin
(circumscribed, indistinct, microlobulated, angular, or
spiculated), orientation (parallel or not parallel), echo pat-
tern (hypoechoic, hyperechoic, isoechoic, anechoic, com-
plex cystic and solid, or heterogeneous), posterior
echogenicity (no posterior features, enhancement,
shadowing, or combined pattern), calcification (presence
or absence), and associated features (architectural distor-
tion, ductal changes, skin changes, or edema) in Breast
Imaging-Reporting and Data System (BI-RADS) lexicon
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[27]. Hyperechoic halo (presence or absence) and spicula-
tion or retraction phenomenon (presence or absence) in the
coronal view were added, the presence of which may be
suggestive of malignancy [28]. Features of all of the lesions
were analyzed by radiologist 1 and 2. Then, radiologists
made BI-RADS category based on the 3D image features.
BI-RADS 2-3 categories were classified as benign, and BI-
RADS 4-5 categories were classified as malignant. Breast
density was also visually classified by radiologists [27, 29].

Statistical analysis

SPSS 24.0 software was used for statistical analysis. The ac-
curacy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) results of the
six models were also calculated. Since it is impossible to com-
pare the quality of the model based on the two contradictory
values (precision vs. sensitivity), F1 scores were calculated as
an indicator that integrated precision and sensitivity
(Supplementary Table 1 and Supplementary Fig. 1 show the
calculation method). The higher the F1 score, the better the
comprehensive diagnostic performance of the model. Average
precision (AP) represents the accuracy of the model for the
positive sample. Receiver operating characteristic (ROC)
curves were drawn. By calling the function in Scikit-Learn,
the AP, precision-recall curves (PRC), and areas under the
ROC curve (AUCs) with 95% confidence intervals (Cls) were
calculated. p < 0.05 was considered to indicate a statistically
significant difference.

Results
Case inclusion and grouping

Among the 769 breast lesions, there were 454 (59.03%) ma-
lignant lesions and 315 (40.96%) benign lesions. The maxi-
mum diameter was 0.4—8.0 cm. The training set contained 600
lesions that were further divided into training set and valida-
tion set. The training set included 500 cases with 295 malig-
nant lesions and 205 benign lesions. The validation set includ-
ed 100 cases with 59 malignant lesions and 41 benign lesions.
The test set included 169 cases, in which malignant and be-
nign lesions were 100 vs. 69. The characteristics of cases in
each group are shown in Supplementary Table 2.

Performance of DLN

We conducted a pairwise comparison study using the above
six models to observe the diagnostic performance for benign
and malignant lesions. The diagnostic results of the confusion
matrices for the six models and radiologists according to the
test set are shown in Table 1. According to the results in
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Fig. 2 Structural diagram of the transfer learning model for ABUS 3D
images. The top subfigure shows the original ResNet model, which
receives natural images as input and produces prediction categories
from 1000 categories. The middle subfigure is the control group model.
Compared with the original ResNet network structure, the input and
output of this model are adjusted to suit the current task. The bottom

Table 2, the ResNet34 v2 model had higher specificity
(76.81%) and PPV (82.22%) than the other two, and the
ResNet50 v2 model had higher accuracy (78.11%) and NPV
(72.86%), and the ResNet101 v2 model had higher sensitivity
(85.00%). Of these values, only the specificity and PPV of the
ResNet34 v2 and the NPV of the ResNet50 v2 showed sig-
nificant increases compared with traditional ResNet models
(p <0.05).

According to the specificity and sensitivity, ROC curves
were drawn, and AUCs were calculated. The AUCs (range
0.83-0.85) and the APs (range 0.88—0.90) are shown in
Fig. 4. AP represents the accuracy of the model for the posi-
tive sample. The larger the AP is, the higher the comprehen-
sive accuracy and recall result of the model for malignant
lesions. According to the AUCs and APs, the ResNet101 v2
model produced the best results. However, it was difficult to
make one kind of network perform best for all of the indica-
tors. For accuracy, ResNet50 v2 was the highest (78.11%).
For sensitivity, ResNet34 was the best (87.00%). For specific-
ity, ResNet34 v2 performed best (76.81%). ResNet101 v2 had
the highest F1 score (0.82).

Furthermore, we compared the diagnostic performance
ofradiologist 1 and radiologist 2 in Supplementary Table 3.
The diagnostic sensitivity, specificity, PPV, and NPV of
radiologist 2 were significantly higher than those of

1 classification network input v

classification network classification label

output

% —> Cross entropy loss 4_8
label 2

predict 2

—> | classification
network

22422464

subfigure is the proposed model, which extracts shape information by
establishing an auxiliary task. This model integrates shape information
and ABUS 3D images as ResNet network input, which pays more
attention to tumor shape and makes the prediction result more accurate.
ABUS = automated breast ultrasound

radiologist 1 (p < 0.05). Although there was no significant
difference between radiologist 1 and radiologist 2 for accu-
racy, it was still higher in radiologist 2 than in radiologist 1.
Then, we compared the three novel networks with radiolo-
gist 1 and radiologist 2. Comparing with radiologist 1, sig-
nificant increases were found in accuracy and specificity
(compared to ResNet34 v2), in PPV (compared to
ResNet34 v2 and ResNet50 v2), and in NPV (compared
to ResNet50 v2 and ResNet101 v2). ResNet34 v2 obtained
significant increases with respect to radiologist 1 in accu-
racy, specificity, and PPV, ResNet50 v2 in PPV and NPV,
and ResNet101 v2 in NPV (p < 0.05) (Table 3). The re-
maining results did not show significant differences. In ad-
dition, the F1 score increased from 0.77 to 0.78, 0.81, and
0.82. Comparing with radiologist 2, significantly lower
values were found in accuracy (compared to ResNet34
v2), sensitivity (compared to ResNet34 v2 and ResNet50
v2), and NPV (compared to ResNet34 v2, ResNet50 v2,
and ResNetl01 v2). Although the remaining results did
not show significant differences, the specificity was in-
creased from 71.01 to 76.81% and 73.91% by ResNet34
v2 and ResNet50 v2. The PPVs of ResNet34 v2 and
ResNet50 v2 were 82.22% and 81.82%, which were higher
than that of radiologist 2 (81.65%). In general, the three
novel models obtained significantly lower values of NPV

@ Springer
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Axial view

Coronal view

Fig. 3 ABUS image and feature map visualization of breast tumor
segmentation on breast lesions. A ABUS detected a hypoechoic lesion
(arrows) in the upper quadrant of the right breast. The coronal view shows
the proper nipple position (white point). B Feature map visualization of

the breast tumor segmentation of the benign lesion. C ABUS detected a

Fig. 4 Performance of the DLNs
in identifying breast cancer on the
test set. A Receiver operating
characteristic (ROC) curves of the
DLNs. B Precision-recall curves
(PRC) of the DLNs. DLNs = deep
learning networks
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hypoechoic lesion (arrows) in the upper quadrant of the left breast. The
coronal view shows the proper nipple position (white point). D Feature
map visualization of the breast tumor segmentation on the malignant
lesion. ABUS = automated breast ultrasound
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Table 1 Confusion matrices for the six DLNs and the pathology according to test set
Pathology ~ ResNet 34 ResNet 34 v2 ResNet 50 ResNet 50 v2 ResNet 101 ResNet101 v2 R1 R2

M B M B M B M B M B M B M B M B
Malignant 87 13 74 26 76 24 81 19 85 15 85 18 79 21 89 11
Benign 32 37 16 53 18 51 18 51 28 41 23 46 26 43 20 49

DLNs deep learning networks, M malignant, B benign, R/ novice radiologist, R2 experienced radiologist

than radiologist 2 and ResNet34 v2 obtained lower values
of accuracy and sensitivity (Table 3).

Discussion

We successfully developed the novel DLNs and implemented
incorporating the ASN to traditional network for breast cancer
diagnosis based on ABUS. As reported in some studies, image
segmentation is of great importance for computer-assisted
breast cancer diagnosis [30—33]. Manual segmentation is
time-consuming, and due to different experience, volume seg-
mentation variations can have standard deviations up to 60%
between observers [34, 35]. To improve the diagnostic perfor-
mance and reduce the need for human intervention, the de-
mand for automatic tumor segmentation is increasing [36, 37].
Tumor classification and segmentation are two important
tasks for computer-aided detection (CAD) using ABUS 3D
images. Y. Zhou [38] collected a clinical dataset of 170 ABUS
3D volumes from 107 patients and indicated that the proposed
multitask framework could improve tumor segmentation and
classification over single-task learning counterparts. In our
study, we sought to develop a novel DLN that added a self-
established accurate ASN to extract shape information by

establishing an auxiliary task. This model integrated shape
information and ABUS 3D images as ResNet network input,
which paid more attention to tumor shape. As a result, the
input contained richer information, so the diagnosis was more
accurate than the traditional DLN.

The network uses pretraining parameters of ResNet on
ImageNet, an image database organized according to the
WordNet hierarchy, as initial weights and performs fine-tune
on this basis. In our experiment, the model was used as a
control group to verify the improvement effect of our method.
By changing the backbone, different classification networks
were obtained. The accuracies of the novel DLNS in the diag-
nosis of breast cancer were improved compared with those of
traditional DLNs, and the novel DLNs performed well in the
test set. The higher specificity and PPV of the ResNet34 v2
network for ABUS 3D images might help radiologists avoid
unnecessary recalls of benign lesions (p < 0.05). The AUCs of
the novel networks were improved to 0.83, 0.84, and 0.85.
Furthermore, the APs were improved to 0.88, 0.89, and 0.90.

In many studies of breast cancer diagnosis, the accuracy of
ML in ABUS is improved compared with using ABUS alone.
van Zelst J.C.M. [14] established dedicated CAD software for
ABUS to improve the AUC of readers in detecting more
breast cancers. Without CAD, the AUC of the readers was

Table 2  Performance of the novel DLNs and the corresponding traditional DLNs according to test set

Index ResNet34 ResNet34 v2 p ResNet50 ResNet50 v2 P ResNet101 ResNetlOl v2  p

Accuracy  73.37 (124/16)  75.15(127/169) < 0.001  75.15(127/169) 78.11 (132/169) 0.3359 74.56 (126/169) 77.51 (131/169) 0.3841
[66.04-79.87] [67.93-81.46] [67.93-81.46] [71.11-84.09] [67.30-80.93]  [70.47-83.57]

Sensitivity 87.00 (87/100)  74.00 (74/100) 0.0124 76.00 (76/100)  81.00 (81/100)  0.1967 85.00 (85/100)  85.00 (85/100)  1.0000
[78.80-92.89] [64.27-82.26] [66.43-83.98] [71.93-88.16] [76.47-91.35]  [76.47-91.35]

Specificity 53.62 (37/69) 76.81 (53/69) 0.0025 73.91 (51/69) 73.91 (51/69) 1.00  59.42 (41/69) 66.67 (46/69) 0.2513
[41.20-65.72] [65.09-86.13] [61.94-83.75] [61.94-83.75] [46.92-71.09]  [54.29-77.56]

PPV 73.11 (87/119)  82.22 (74/90) 0.0064 80.85 (76/94) 81.82 (81/99) 0.6685 7522 (85/113)  78.70 (85/108)  0.1625
[64.21-80.82] [72.74-89.48] [71.44-88.24] [72.80-88.85] [66.22-82.86]  [69.78-86.00]

NPV 74.00(37/50) 67.08(53/79) 0.0104 68.00(51/75) 72.86(51/70) 0.001  73.21(41/56) [  71.88 (46/64) 0.2661
[59.66-85.37] [55.60-77.25] [56.22-78.31] [60.90-82.80] 59.70-84.17] [59.24-82.40]

F1 score 0.79 0.78 - 0.78 0.81 - 0.80 0.82 -

AUC 0.79 0.83 - 0.84 0.84 - 0.82 0.85 -

AP 0.82 0.88 - 0.88 0.89 - 0.87 0.90 -

DLNs deep learning networks, PPV positive predictive value, NPV negative predictive value, AUC area under the receiver operating characteristic (ROC)
curve, AP average precision
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Table 3 Performance of the three novel DLNs and radiologists according to test set

Index Radiologist 1 Radiologist 2 p ResNet34 v2 ResNet50 v2 ResNet101 v2

Value P; P> Value PI P2 Value P; P>

Accuracy  72.19 (122/169) 81.66 (138/169) 0.3458  75.15 0.0191 0.0038  78.11 0.3428 0.0863 77.51 0.5900 0.8575
[65.43,78.94] [75.82,87.49]

Sensitivity 79.00 (79/100) 89.00 (89/100) 0.0016  74.00 0.2253 0.0011  81.00 0.6171 0.0455 85.00 0.0578 0.2482
[71.02,86.98] [82.87,95.13]

Specificity 62.32 (43/69) 71.01 (49/69) 0.0339  76.81 0.0412 03938 7391 0.1025 0.6374 66.67 0.5127 0.4913
[50.88,73.75] [60.31,81.72]

PPV 75.24 (79/105) 81.65 (89/109) 0.0020  82.22 0.0058 0.884 81.82 0.0064 0.9459 78.70 0.1268 0.2471
[65.86,0.834] [74.38,88.92]

NPV 67.19 (43/64) 81.67 (49/60) <0.0001 67.08 0.9656 <0.001 72.86 0.0104 <0.0001 71.88 0.0001 0.0001
[55.68,78.69] [71.88,91.46]

Fl score  0.77 0.85 - 078 - - 081 - - 082 - -

DLNs deep learning networks; Radiologist 1 novice radiologist, Radiologist 2 experienced radiologist, PPV positive predictive value, NPV negative
predictive value, p represents comparison between radiologist 1 and radiologist 2, P; represents ResNet34 v2, ResNet50 v2, and ResNetl01 v2
compared with radiologist 1, respectively; P, represents ResNet34 v2, ResNet50 v2, and ResNet101 v2 compared with radiologist 2, respectively

0.77 and improved with CAD to 0.84 (p = 0.001). The sensi-
tivity of all readers improved by using CAD (range 5.2—
10.6%), but specificity decreased for some readers (range
1.4-5.7%). Wang F. [39] used a deep CNN combined with
ABUS in the classification of breast nodules and achieved a
sensitivity of 87.0%, a specificity of 88.0%, and an accuracy
0f 87.5%. Xu X. [40] assessed the performance of radiologists
in the interpretation of automated breast volume scanner
(ABVS) images with the aid of a CAD system. AUCs with
and without CAD were 0.833 and 0.829 for radiologists with
4 years of ABVS experience, 0.757 and 0.696 for radiologists
with 5 years of experience, and 0.759 and 0.718 for radiolo-
gists with 1 year of experience. All of the AUCs were in-
creased with the CAD system. In our study, higher accuracy,
sensitivity, specificity, PPV, NPV, and F1 scores were shown
in different novel DLNs than a novice radiologist. Therefore,
the performance of the novel DLN based on ABUS 3D im-
ages may help in improving the diagnostic performance of a
novice radiologist.

However, in our study, the novel DLNs were worse than
an experienced radiologist in diagnostic performance. The
reason for this may be that the training set and test set had
small data, and the features of benign and malignant lesions
learned by the network may be insufficient, resulting in
unsatisfactory results. Experienced radiologists have stud-
ied tens of thousands of cases, and their knowledge of the
number and types of malignant nodules has been enriched.
Therefore, the diagnostic performance of experienced radi-
ologists was better. Even so, its use may help to reduce time
consumption and improve their reading speed as reported in
some studies [13, 22, 23, 40].

There are several limitations in this study. First, this was a
retrospective study with data from one center, so that the sam-
ple size of this study was small in both the training and test

@ Springer

sets. This may make the diagnosis result of our novel DLNs
not very good compared with that of an experienced radiolo-
gist. Second, this study lacked external tests. Therefore, there
is still no proof that our results can be reproduced in an exter-
nal cohort. Third, the comparison between novel DLNs and
radiologists was made with only one novice radiologist and
one experienced radiologist. In the future, we should conduct
comparative studies with more radiologists with different ex-
periences, accumulate a larger sample size, and add external
test sets to validate our results and determine the value of our
DLNS.

Conclusion

We developed a new segmentation network to obtain morpho-
logical information of breast lesions. Based on the traditional
classification network, we added the new segmentation net-
work to the traditional network to form novel DLNs. The
novel DLNs performed better than the traditional ones in the
diagnosis of breast cancer by ABUS in terms of AUC and AP
values. Additionally, the novel DLNs may be helpful for nov-
ice radiologists to improve their diagnostic performance.
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