
Radiomics can differentiate high-grade glioma from brain metastasis:
a systematic review and meta-analysis

Yuanzhen Li1 & Yujie Liu1
& Yingying Liang2

& Ruili Wei1,2 & Wanli Zhang1,2
& Wang Yao1,2

& Shiwei Luo1,2
&

Xinrui Pang1,2
& Ye Wang1,2

& Xinqing Jiang2
& Shengsheng Lai3 & Ruimeng Yang2

Received: 10 December 2021 /Revised: 5 April 2022 /Accepted: 18 April 2022 /Published online: 19 May 2022
# The Author(s), under exclusive licence to European Society of Radiology 2022

Abstract
Objective (1) To evaluate the diagnostic performance of radiomics in differentiating high-grade glioma from brain metastasis and
how to improve the model. (2) To assess the methodological quality of radiomics studies and explore ways of embracing the
clinical application of radiomics.
Methods Studies using radiomics to differentiate high-grade glioma from brain metastasis published by 26 July 2021 were
systematically reviewed.Methodological quality and risk of bias were assessed using the Radiomics Quality Score (RQS) system
and Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool, respectively. Pooled sensitivity and specificity of
the radiomics model were also calculated.
Results Seventeen studies combining 1,717 patients were included in the systematic review, of which 10 studies without data
leakage suspicion were employed for the quantitative statistical analysis. The average RQS was 5.13 (14.25% of total), with
substantial or almost perfect inter-rater agreements. The inclusion of clinical features in the radiomics model was only reported in
one study, as was the case for publicly available algorithm code. The pooled sensitivity and specificity were 84% (95% CI, 80–
88%) and 84% (95% CI, 81–87%), respectively. The performances of feature extraction from the volume of interest (VOI) or
(semi) automatic segmentation in the radiomics models were superior to those of protocols employing region of interest (ROI) or
manual segmentation.
Conclusion Radiomics can accurately differentiate high-grade glioma from brain metastasis. The adoption of standardized
workflow to avoid potential data leakage as well as the integration of clinical features and radiomics are advised to consider in
future studies.
Key Points
• The pooled sensitivity and specificity of radiomics for differentiating high-grade gliomas from brain metastasis were 84% and
84%, respectively.

• Avoiding potential data leakage by adopting an intensive and standardized workflow is essential to improve the quality and
generalizability of the radiomics model.

• The application of radiomics in combination with clinical features in differentiating high-grade gliomas from brain metastasis
needs further validation.
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Abbreviations
AI Artificial intelligence
AUC Area under the curve
cML Conventional machine learning
CT Computed tomography
DL Deep learning
DTI Diffusion tensor imaging
DWI Diffusion-weighted imaging
ICC Interclass correlation coefficient
MRI Magnetic resonance imaging
PRISMA-DTA Preferred Reporting Items for

Systematic Reviews and
Meta-analysis for Diagnostic
Test Accuracy

QUADAS-2 Quality Assessment of Diagnostic
Accuracy Studies-2

ROI Region of interest
RQS Radiomics Quality Score
SWI Susceptibility-weighted imaging
VOI Volume of interest

Introduction

High-grade glioma (World Health Organization (WHO) grade
III and IV) and brain metastasis are common malignant brain
tumors in adults [1]. Accurate noninvasive differentiation of
the two malignancies is crucial for the clinical management
and treatment options for patients [2, 3]. Combining clinical
history, CT/MRI can improve the diagnostic accuracy of pri-
mary and metastatic tumors. However, given the similarity in
radiological appearances for necrotic centers, irregular en-
hancing margins, and peritumoral edema, high-grade glioma,
and brain metastasis cannot be accurately differentiated [4].

Radiomics is an emerging method that utilizes the intensi-
ty, shape, and texture of medical images invisible to the naked
eyes to recognize tumors [5]. It follows some standard steps:
(1) image acquisition and segmentation, (2) feature extraction
and selection, and (3) modeling and validation [6]. However,
the quality, applicability, and diagnostic performance of the
method are influenced by methodological modifications at
each step such as the type of feature [7] and the placement
of the region of interest (ROI) [8] influences the performance
of radiomics. At present, there is no consensus on the most
accurate or appropriate radiomics model for differentiating
high-grade glioma from brain metastasis.

In the present study, we systematically analyzed existing
data based on trial radiomics models used in differentiating
high-grade glioma from brain metastasis. We aimed to opti-
mize the diagnostic performance and clinical applicability of
the radiomics methods. The pooled diagnostic performance of
radiomics was analyzed using a quantitative statistical meta-
analysis.

Materials and methods

This systematic review was performed according to the
Preferred Reporting Items for Systematic Reviews and
Meta-analysis for Diagnostic Test Accuracy (PRISMA-
DTA) guidelines [9]. Our protocol is available at
PROSPERO (CRD42021269218). Literature search, data
extraction, and quality assessment were performed inde-
pendently by two reviewers (Y. Li and Y. Liu).

Literature search

Relevant articles were systematically searched through
PubMed, EMBASE, and Cochran Library. Only original
English articles published by up to 26 July 2021 were
considered. To avoid erroneous omissions, all articles
on differentiation of high-grade glioma from brain me-
tastasis using MR imaging were retrieved. Selection of
those on the use of radiomics was then performed man-
ually. The search terms for the relevant articles included
((glioblastoma OR glioma) AND (brain metastases OR
brain metastasis OR metastatic brain tumor)) AND
(magnetic resonance OR magnetic resonance imaging).

Literature selection

Inclusion criteria

To be included, the articles must have fulfilled the following:
(1) population: patients with high-grade gliomas or brain me-
tastasis; (2) index test: quantitative analysis of MR images
using radiomics method; (3) outcomes: differentiation of gli-
oma from brain metastasis based on adequate data sufficient to
reconstruct the 2 × 2 sensitivity and specificity tables; (4)
original articles.

Exclusion criteria

Reviews, guidelines, conference proceedings or case reports/
series, articles including low-grade gliomas, papers reporting
fewer than 10 patients, and those with overlapping patient
populations were excluded from the qualitative systematic
review. For articles with overlapping patient cohorts, both
were included only if the methodological difference was
significant.

For the further quantitative statistical analyses, studies with
suspected data leakage (i.e., without explicitly mentioning the
use of independent validation/testing, or using the entire
dataset in feature selection) were excluded to avoid the poten-
tial overestimation.
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Data extraction and quality assessment

Following data were extracted from the included studies. (1)
Patient characteristics: number of overall cases and patients
with glioma or brain metastasis, WHO grade of glioma, mean
age, age range, sex ratio of the study participants, and nature
of the tumor (primary or metastasis); (2) Study characteristics:
authors, institution, duration of patient recruitment, study de-
sign (prospective or retrospective), method of patients’ re-
cruitment (consecutive or non-consecutive), reference stan-
dard, interval between MRI and the reference standard; (3)
MRI characteristics: magnetic field strength, vendor, scanner
model, and sequence; (4) Radiomics protocols: MRI se-
quence, ROI/VOI placement, segmentation, feature selection,
and artificial intelligence (AI) classifier (if available); and (5)
Outcomes: true positive, false positive, false negative, and true
negative. If these parameters were not provided, the sensitivity
and specificity data from the original article were used for
calculations. For articles with multiple sets of experiments
(i.e., multiple comparisons), all of the presented groups were
included.

The risk of bias and concerns about the applicability of the
included studies were assessed using the Quality Assessment
of Diagnostic Accuracy Studies-2 (QUADAS-2) tool [10].
The tool has four domains: “patient selection,” “index test,”
“reference standard,” and “flow and timing” each with sub-
sections. Disagreements were arbitrated by a third reviewer
(R. Wei).

The methodological quality of the radiomics of the includ-
ed studies was assessed using the Radiomics Quality Score
(RQS) system [6] under the following parameters: image ac-
quisition and segmentation, features extraction and selection,
modeling, model validation, and data sharing. The total scores
ranging from − 8 to 36 were a product of 16 dimensions
(Table 3). In the domains of feature selection and validation,
we further assessed when the feature selection was applied in
the modeling process, as well as how the data sets were allo-
cated for modeling to identify possible data leakage. Since
RQS is a quantitative tool for several ordinal questions, the
inter-rater agreement for single items of the RQS was calcu-
lated using the Fleiss kappa statistic for ordinal variables
[11]. The Kappa result is suggested by Cohen to be
interpreted as follows: values ≤ 0 as indicating no
agreement and 0.01–0.20 as none to slight, 0.21–0.40
as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial,
and 0.81–1.00 as almost perfect agreement. Inter-rater
agreement for the pooled RQS was assessed using the
interclass correlation coefficient (ICC).

Statistical analysis

Inter-rater agreement of RQS was calculated using the
“IRR” package in R version 4.1.1. Meta-analysis was

performed using the Meta-DiSc 1.4 and “MIDAS” mod-
ules in Stata 16 software. Most of the included articles
used machine learning classifiers that reported results
for multiple cohorts, such as training, testing, and vali-
dation set; however, we only employed the generaliz-
able data from the validation/testing set. Pooled sensi-
tivity and specificity for homogeneous data were deter-
mined using a fixed-effect model. Furthermore, the di-
agnostic performance of different radiomics protocols
was compared according to the following rules: (1)
T1WI, T2WI, and T1CE only vs diffusion MRI; (2)
inclusion vs. exclusion of the peritumoral; (3) feature
extraction from ROI vs. VOI; (4) segmentation method
(manual vs. (semi) automatic); (5) presence vs. absence
of AI classifier. Due to the possible risk of data leak-
age, pooled sensitivity/specificity of excluded studies
with diffusion MRI [7, 8, 12–14] or without AI classi-
fiers [7, 8, 12, 15, 16] is presented here only for refer-
ence purposes.

The heterogeneity of the included studies was based on the
Cochrane Q-test (p value ≤ 0.05) and I2 statistic (> 50%) [17].
Spearman coefficient > 0.6 was considered to indicate a con-
siderable threshold effect [18]. Publication bias was analyzed
using a funnel plot.

Results

Literature search

The detailed literature search and selection process is
shown in Fig. 1. The initial search identified 1,456 arti-
cles, of which 390 were duplicates. After screening
through titles and abstracts of the remaining 1,066, an
additional 1,045 articles were removed. After reading
through the remaining 21 full texts, five more articles
were removed for the following reasons: (1) two studies
contained data insufficient to generate the 2 × 2 tables
[19, 20]; (2) in one study, there was no comparison be-
tween glioma and metastasis [21]; (3) one study reported
overlapping cohort [22]; (4) one study included low-grade
glioma [23]. In one article [24], a deep learning model
(DL) was independently validated. Considering its differ-
ence from conventional machine learning (cML), this ar-
ticle was regarded as two distinct studies (named Bae
(cML) and Bae (DL)). For qualitative systematic reviews,
17 studies with a combined total of 1,717 patients were
included [4, 7, 8, 12–16, 24–31]. Seven of them were
suspected of possible data leakage and were therefore ex-
c l ud ed f r om quan t i t a t i v e s t a t i s t i c a l a n a l y s i s
(Supplementary Table S1) [7, 8, 12–16]. Ultimately, the
results of quantitative statistics were determined by the
remaining 10 studies only [4, 24–31].
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Characteristics of the included studies

The characteristics of the included studies are shown in
Table 1. The radiomics protocols are shown in Table 2 while
their proportions are presented in Fig. 2C–G. Eight studies
only investigated T1WI, T2WI, or T1CE images [4, 15,
24–26, 28, 29], five examined diffusion MRI [7, 8, 12–14],
and four combined multiple MRI techniques [16, 27, 30, 31].
In addition, 10 studies only investigated the tumor area [4, 8,
13, 14, 16, 25, 26, 28, 30, 31], two only investigated the peri-
tumor area [12, 15], whereas five studies investigated both [7,
24, 27, 29]. Semi and automatic segmentation was applied in
seven studies [4, 7, 13–15, 24, 27], whereas manual segmen-
tation of images was reported in 10 studies [8, 12, 16, 25, 26,
28–31]. Feature selection was performed in nine studies [4, 8,
13, 15, 24–28] to reduce the risk of over-fitting [6]. AI classi-
fication was reported in 12 studies [4, 13, 14, 24–31]. The
detai ls of the radiomics protocols are shown in
Supplementary Table S2.

Quality assessment

QUADAS-2

For the patient selection domain, all studies used a case-
control design and the exclusion criteria in two studies
[4, 7] were unclear. In the domain of index test, the
thresholds of the test indexes were not pre-specified in
11 studies [7, 8, 12–16, 26, 27, 30, 31]. Regarding the
reference standards, two studies were unclear [7, 27],
whereas the time intervals between MRI and the stan-
dard reference were not reported in 14 studies.
However, there was no concern regarding applicability
considered in the QUADAS-2 tool except for two stud-
ies that did not report the reference standards. The most
common risk factors for bias factors identified in the
included studies are summarized in Fig. 3. The initial
flow of assessments of the two reviewers is presented in
supplementary Table S3.

Fig. 1 A flowchart showing the
selection process for included
studies
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RQS

The RQS results of the included studies were as follows: mean
± standard deviation −5.13 ± 5.82, median −4.25, and the total
scores ranged from −3 to 15 (0–42%). The average rating and
inter-rater agreement test results for each item are shown in
Table 3, whereas Table S4 presents the individual and sum-
marized scores for each study. In most studies, multiple seg-
mentation, feature selection, discrimination statistics, and bi-
ological correlation were performed. The potential clinical
utility was also explored. In contrast, no studies

Table 2 Radiomics protocols which yielded the highest AUC in each
study. For studies that did not provide results of feature selection (marked
with *), all extracted features are presented in the table instead of the

portion actually used in the model. Studies marked in boldface are
included in the quantitative statistical analysis

Study ID Image acquisition and segmentation Feature extraction and selection Modeling

Investigated
sequence(s)

ROI/VOI Segmentation Amount of features
(selected /extracted)

Selected or extracted features Classifier

Artzi 2019* T1CE ROI: tumoral Automatic 15/760 Clinical, location, first-order, GLCM,
GLRLM, wavelet, morphological

SVM

Bae 2020
(cML)*

T2WI, T1CE ROI: tumoral and
peritumoral

Semiautomatic 97/265 Shape, first-order, GLCM, GLRLM,
GLSZM, NGTDM

AdaBoost

Bae 2020
(DL)*

T2WI, T1CE ROI: tumoral and
peritumoral

Semiautomatic NA NA Deep Learning
(DNN)

Liu 2021* T1WI,
T2WI,
T1CE

VOI: tumoral Manual 259/2106 Shape, first-order, GLCM, GLDM,
GLRLM, GLSZM, NGTDM,
wavelet, LoG, deep learning-based

RF

Ortiz-Ramón
2020*

T1CE ROI: tumoral Manual 82/88 First-order, GLCM, GLRLM,
GLSZM, NGTDM, local binary
patterns

MLP

Priya 2021* T1WI,
T2WI,
T1CE,
FLAIR,
DWI

VOI: tumoral and
peritumoral

Semiautomatic NA/1070 Shape, first-order, GLCM, GLDM,
GLRLM, GLSZM, NGTDM

LASSO

Qian 2019 T1CE ROI: tumoral Manual 24/1303 Shape, texture, square, square root,
logarithm, exponential, LoG,
wavelet

SVM

Shin 2021* T2WI, T1CE VOI: tumoral and
peritumoral

Manual NA NA Deep Learning
(ResNet-50)

Swinburne
2019*

DSC, DCE,
DWI

VOI: tumoral Manual NA/NA NA MLP

Tateishi 2020 T2WI, TICE,
DWI

ROI: tumoral Manual 12/12 First-order, GLCM SVM

Csutak 2020 T2WI ROI: peritumoral Semiautomatic 10/hundreds First-order, GLRLM, wavelet NA
Petrujkić 2019 T2WI,

T1CE,
SWI

ROI: tumoral Manual NA/24 GLCM NA

Skogen 2019 DTI ROI: peritumoral Manual 1/30 First-order NA
Vamvakas

2018
DTI VOI: tumoral and

peritumoral
Semiautomatic 5/32 3D curvature NA

Yang 2014 DTI VOI: tumoral Automatic 5/61 Shape NNW
Yang 2016 DTI VOI: tumoral Automatic NA/6 Shape SVM
Zhang 2019 DWI ROI: tumoral Manual 2/11 GLCM NA

AUC area under curve, cML conventional machine learning, DCE dynamic contrast enhanced, DL deep Learning, DNN deep neural networks, DSC
dynamic susceptibility contrast,DTI diffusion tensor imaging,DWI diffusion-weighted imaging,FLAIR fluid-attenuated inversion recovery,GLCM gray
level co-occurrence matrix, GLDM gray level dependence matrix, GLRLM gray level run length matrix, GLSZM gray level size zone matrix, LASSO
Least Absolute Shrinkage and SelectionOperator, LoGLaplacian of Gaussian,MLPmulti-layer perceptron,NA not available,NGTDM neighboring gray
tone difference matrix, NNW neural networks, RF random forest, ROI region of interest, SVM support vector machine, SWI susceptibility weighted
imaging, T1CE T1 contrast enhancement, T1WI T1 weighted image, T2WI T2 weighted image, VOI volume of interest

�Fig. 2 Visual summary of the studies.A, Proportion of validation/testing.
B, Proportion of potential sources of data leakage. C, Proportion of
machine-learning methods used. D, Proportion of MRI modalities used.
E, Proportion of segmentation methods. F, Proportion of ROI and VOI.
G, Proportion of investigated areas.H, Diagnostic performance of differ-
ent radiomics strategies, the sensitivities/specificities marked with * were
regarded as studies with suspected data leakage. AI: artificial intelligence,
DNN: deep neural networks, LASSO: Least Absolute Shrinkage and
Selection Operator, MLP: multi-layer perceptron, NNW: neural net-
works, RF: random forest, ROI: region of interest, SVM: support vector
machine, T1CE: T1 contrast enhancement, T1WI: T1 weighted image,
T2WI: T2 weighted image, VOI: volume of interest
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explored the stability of radiomics features under differ-
ent scanners or at different time points. Also, calibration

statistics and evaluation of the cost-effectiveness of the
protocols were not performed in any of the studies.
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Modeling of clinical features of patients was only per-
formed in a single study [4]. MRI protocol was provid-
ed in most of the studies. The segmentation method was
provided in four studies [4, 13, 14, 27]. The GitHub
code was only available in one study [25].

The proportions of validation/testing and potential sources
of data leakage are shown in Fig. 2A and B. Six studies used
independent validation/testing sets: two used internal sets [4,
28] and four used external sets [24, 25, 29] and reported that
only independent training set data were used before
validation/testing to avoid potential data leakage. Six studies
employed cross-validation [13, 14, 26, 27, 30, 31]: three de-
clared that feature selection was only performed in each fold
of cross-validation [26, 27, 30], two used the entire dataset for
feature selection [13, 14], and one did not conduct selection.

Five studies reported no validation/testing [7, 8, 12, 15, 16].
Studies that did not perform validation/testing [7, 8, 12, 15,
16], as well as those that used the entire dataset in feature
selection [13, 14] were excluded from quantitative statistics
because of suspected data leakage. The detailed criteria for
determining whether studies are with data leakage suspicion
are shown in Supplementary Table S1.

Substantial or almost perfect inter-rater agreement was
achieved for all individual items of the RQS. The ICC for
the total RQS was 0.98 (95% CI 0.93–0.99).

Heterogeneity and diagnostic accuracy

Based on the Cochran’s Q tests (Q = 13.81 for sensitivity and
Q = 3.10 for specificity, both p > 0.05) and I2 statistics (I2 =

Fig. 3 Causes of risk of bias
classified and colored according
to the dimensions of the
QUADAS-2 tool. The length of
the bars represents the frequency
with which one cause of the risk
of bias was identified in the in-
cluded studies

Table 3 Ratings of individual
RQS items of the included studies
and Fleiss’s kappa values for the
two raters

RQS scoring item Average (range) Fleiss’s Kappa

Image protocol 0.59 (0–2) 0.73

Multiple segmentations 0.59 (0–1) 0.73

Phantom study on all scanners 0.00 (0–1) 1.00

Imaging at multiple time points 0.00 (0–1) 1.00

Feature reduction or adjustment for multiple testing 0.88 (− 3–3) 0.86

Multivariable analysis with non-radiomics features 0.06 (0–1) 1.00

Detect and discuss biological correlates 0.66 (0–1) 0.86

Cut-off analyses 0.00 (0–1) 1.00

Discrimination statistics 1.72 (0–2) 0.85

Calibration statistics 0.00 (0–2) 1.00

Prospective study registered in a trial database 0.00 (0–7) 1.00

Validation − 2.53 (− 5–5) 0.87

Comparison to ‘gold standard’ 0.31 (0–2) 0.76

Potential clinical utility 1.31 (0–2) 0.86

Cost-effectiveness analysis 0.00 (0–1) 1.00

Open science and data 1.41 (0–4) 0.87

RQS radiomics quality score
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34.84% for sensitivity and I2 = 0.00% for specificity), the
studies were homogenous. Spearman correlation coefficient
was 0.097 (p = 0.789), indicating lack of threshold effect.
The pooled sensitivity and specificity of the radiomics based
on the 10 studies was 84% (95% CI, 80–88%) and 84% (95%
CI, 81–87%) (Fig. 4), respectively. Deeks’ funnel plot re-
vealed a low likelihood of publication bias (p = 0.08; Fig. 5).

As shown in Table 4 and Fig. 2H, the higher sensitivity and
specificity can be attributed to (1) use of DWI or DTI [7, 8,
12–14], (2) application of (semi) automatic segmentation [4,
24, 27], and (3) features extracted from VOI [25, 27, 29, 30].
However, including the peritumoral area [24, 27, 29] in-
creased the sensitivity of the model but not the specificity.
Applying the AI classifier [4, 24–31] improved the specificity
but slightly decreased the sensitivity.

Discussion

In the present study, we assessed the diagnostic performance
of radiomics in differentiating high-grade gliomas from brain
metastasis by systematically reviewing existing studies. To
the best of our knowledge, there are only three systematic

reviews on this topic that merely evaluated the diagnostic
accuracy of manual evaluation of diffusion or perfusion
MRI [32–34]. We found that the pooled sensitivity and spec-
ificity of the radiomics models were 84% (95% CI, 80–88%)
and 84% (95% CI, 81–87%), respectively. In particular, the
diagnostic performance of radiomics in analyzing DWI or
DTI [7, 8, 12–14] (a pooled sensitivity and specificity of
89% and 90%) was much superior to that of a manual review
of DWI or DTI (a pooled sensitivity and specificity of 80%
and 81%, respectively) evaluated in another meta-analysis
[32].

Radiomics has been used for almost a decade and despite
its significant advantages, its clinical application suffers from
numerous limitations [35, 36]. Based on the findings of this
study, radiomics has the unique advantage of quantitatively
combining clinical information and medical imaging.
However, the underutilization of this hinders its clinical appli-
cation. The USA National Institute of Health (NIH) describes
radiomics features as a type of “markers” or “characteristics”
that are objectively measured and evaluated to reflect the state
of a biological or pathogenic process or pharmacologic re-
sponses to a therapeutic intervention [37]. Nevertheless, clin-
ical data such as age, sex, and exposure to ionizing radiation

Fig. 4 Coupled Forest plots of pooled sensitivity and specificity
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are factors closely associated with the pathogenic process of
glioma and thus should not be ignored in a diagnostic model
[38]. An included study found that clinical features had a high
weight in their radiomics model [4]. Halligan et al proposed
that clinical imaging biomarkers should be incorporated into a
multivariate model to evaluate their additive contribution to
the overall outcome [38]. Similarly, one study revealed that
clinical features were superior to radiomics in accurately
predicting the invasiveness of lung adenocarcinoma (78.4%

vs 73.0%). However, the combination of the two was
outperformed either technique alone (83.8%). For instance,
age is a risk factor for the development of high-grade glioma,
but the contribution of age to the development of brain metas-
tasis is not uniform [39, 40]. Age or other numerical clinical
data can be readily quantified by radiomics models (i.e., age as
a variable in an algorithm or function). However, radiologists
can only provide qualitative diagnoses based on a broad “age
group.” Therefore, future radiomics analyses should

Fig. 5 Deeks’ funnel plot. The p-
value of 0.08 suggests that the
likelihood of publication bias is
low

Table 4 Diagnostic performance
of studies grouped by radiomics
protocols. The sensitivities/
specificities of the groups that
only investigated diffusion MRI
or did not use AI classifiers were
regarded as studies with
suspected data leakage

Protocol Number of studies Pooled diagnostic performance

Sensitivity (95% CI) Specificity (95% CI)

MRI sequence

Only T1WI/T2WI/T1CE 7 0.83 (0.80–0.86) 0.84 (0.80–0.87)

Only Diffusion MRI 5 0.89 (0.83–0.93) 0.90 (0.83–0.95)

Segmentation

Manual 6 0.85 (0.82–0.88) 0.83 (0.78–0.87)

(Semi)Automatic 4 0.86 (0.82–0.90) 0.88 (0.83–0.92)

Region/volume of interest

ROI 6 0.84 (0.81–0.87) 0.85 (0.82–0.88)

VOI 4 0.90 (0.86–0.93) 0.87 (0.82–0.91)

Investigated area

Only tumoral 6 0.79 (0.75–0.84) 0.85 (0.80–0.88)

Including peritumoral 4 0.87 (0.83–0.90) 0.85 (0.80–0.89)

AI classifier

Without AI classifier 5 0.87 (0.79–0.92) 0.78 (0.69–0.85)

With AI classifier 10 0.86 (0.83–0.88) 0.85 (0.82–0.88)

AI artificial intelligence, CI confidence interval, ROI region of interest, T1CE T1 contrast enhancement, T1WI T1
weighted image, T2WI T2 weighted image, VOI volume of interest
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incorporate clinical features to build more reliable models or
add radiomics features to existing diagnostic models to verify
their true diagnostic capabilities.

The lack of standardized quality control and reporting
throughout the entire workflow limits the application of
radiomics. For instance, at each step of a radiomics study, it
is essential to keep validation/testing data completely indepen-
dent or invisible before validation/testing for a generalizable
predictive model [41]. Studies using the entire dataset for both
model training and evaluation without any validation/testing
[7, 8, 12, 15, 16] were with potential biases because they were
unable to demonstrate the replicability of the model on un-
known data. Two studies [13, 14] used the entire dataset for
feature selection before cross-validation, rather than within
each fold of the cross-validation. Under such circumstances,
the features included in the model are determined by the entire
data set (including those used for validation/testing), resulting
in an overestimation of the diagnostic performance [41]. In
addition, non-standard and incomplete reports, such as the
absence of specifically selected features, made it impossible
to validate the resultant model. Detailed and accurate
reporting is necessary for the application and reproduction of
a method. In light of this, we recommend the development of
guidelines or checklists for this approach, such as checklists
for artificial intelligence in medical imaging (CLAIM) [42] or
rules for predictive modeling of individual differences in neu-
roimaging [41].

The diagnostic performance of the radiomics model varied
with the strategies employed. For instance, the model perform-
ed better when using diffusion MRI. It provides functional in-
formation on the invasion of white matter [43, 44] which can be
revealed by radiomics. Second, features from the peritumoral
area can be heterogeneous because peritumoral edema of me-
tastases is considered “pure vasogenic”, which is due to paren-
chymal compression, whereas the edema of high-grade glioma
is caused by infiltration of malignant cells [45, 46]. Therefore,
peritumoral area features provide more comprehensive infor-
mation for the radiomics model. Third, even though the inclu-
sion of multiple slices of the tumor, for instance, VOI generates
large data, it increases the risk of over-fitting, implying the need
for a robust feature selection algorithm. Fourth, automatic seg-
mentation techniques can segregate the tumors based on MRI-
derived biomarkers, which may facilitate the building of the
radiomics model [47]. Finally, although the AI classifier did
not show prominent diagnostic performance in our evaluation,
it is undeniably a future research direction and development
trend. Most of the included studies employed machine learning
or deep learning in feature selection [24–26, 28] or classifica-
tion [4, 13, 14, 24–31] but the best performing AI classifiers in
each study were different. To date, there is no universal classi-
fier because the performance of a classifier can be affected by
the characteristics of the sample [48]. Identifying a uniform and

robust classifier for specific medical problems has always been
challenging [49].

Regarding limitations, first, given that all the studies
included in the meta-analysis were retrospective in design,
they suffered inherent selection bias and data loss.
Therefore, prospective multicenter trials are needed to
validate our findings. Second, there was no heterogeneity
among the included studies, which generated insignifi-
cances in the comparison of different radiomics protocols.
Third, given the small sample size, the effects of the var-
ious combinations of different parameters captured at each
step of radiomics were not explored. Fourth, different
radiomics feature was not considered one of the variables
in our comparison due to their heterogeneousness. Fifth,
the diagnostic performances of radiomics investigating
diffusion MRI or without AI classifier were obtained from
studies with possible data leakage, relatively lacking reli-
ability and generalizability.

Conclusively, our meta-analysis demonstrated the po-
tential of radiomics in differentiating high-grade gliomas
from brain metastasis. How to improve the performance
of a radiomics model was also explored. However, more
studies are needed to further improve the application
and reliability of radiomics.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08828-x.

Funding This study was funded by (1) the National Natural Science
Foundation of China (81971574), (2) the Natural Science Foundation of
Guangdong Province in China (2021A1515011350), (3) the Science and
Technology Program of Guangzhou in China (202002030268,
201904010422, 202102010025, 202102010031), (4) the GuangDong
Basic and Applied Basic Research Foundation (2021A1515220060),
(5) the Special Fund for the Construction of High-level Key Clinical
Specialty (Medical Imaging) in Guangzhou, (6) Guangzhou Key
Laboratory of Molecular Imaging and Clinical Translational Medicine.

Declarations

Guarantor The scientific guarantor of this publication is Dr. Ruimeng
Yang and Shengsheng Lai.

Conflict of interest The authors of this manuscript declare no relation-
ships with any companies, whose products or services may be related to
the subject matter of the article.

Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was not required for this
study because the article type is a systematic review and meta-analysis.

Ethical approval Ethical approval was not required for this study be-
cause the article type is a systematic review and meta-analysis.

European Radiology (2022) 32:8039–8051 8049

https://doi.org/10.1007/s00330-022-08828-x


Methodology
• retrospective
• systemic review and meta-analysis
• performed at one institution

References

1. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World
Health Organization Classification of Tumors of the Central
Nervous System: a summary. Acta Neuropathol 131:803–820

2. Giese A, Westphal M (2001) Treatment of malignant glioma: a
problem beyond the margins of resection. J Cancer Res Clin
Oncol 127:217–225

3. Pruitt AA (2017) Epidemiology, treatment, and complications of
central nervous systemmetastases. Continuum (MinneapMinn) 23:
1580–1600

4. Artzi M, Bressler I, Ben Bashat D (2019) Differentiation between
glioblastoma, brain metastasis and subtypes using radiomics anal-
ysis. J Magn Reson Imaging 50:519–528

5. KuoMD, Jamshidi N (2014) Behind the numbers:decoding molec-
ular phenotypes with radiogenomics–guiding principles and tech-
nical considerations. Radiology 270:320–325

6. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the
bridge between medical imaging and personalized medicine. Nat
Rev Clin Oncol 14:749–762

7. Vamvakas A, Tsougos I, Arikidis N et al (2018) Exploiting mor-
phology and texture of 3D tumor models in DTI for differentiating
glioblastoma multiforme from solitary metastasis. Biomed Signal
Process Control 43:159–173

8. Zhang G, Chen X, Zhang S et al (2019) Discrimination between
solitary brain metastasis and glioblastoma multiforme by using
ADC-based texture analysis: a comparison of two different ROI
placements. Acad Radiol 26:1466–1472

9. McInnes MDF, Moher D, Thombs BD et al (2018) Preferred
Reporting Items for a Systematic Review and Meta-analysis of
diagnostic test accuracy studies: the PRISMA-DTA statement.
JAMA 319:388–396

10. Whiting PF, Rutjes AW,WestwoodME et al (2011) QUADAS-2: a
revised tool for the quality assessment of diagnostic accuracy stud-
ies. Ann Intern Med 155:529–536

11. Marasini D, Quatto P, Ripamonti E (2016) Assessing the inter-rater
agreement for ordinal data through weighted indexes. Stat Methods
Med Res 25:2611–2633

12. Skogen K, Schulz A, Helseth E, Ganeshan B, Dormagen JB, Server
A (2019) Texture analysis on diffusion tensor imaging: discriminat-
ing glioblastoma from single brain metastasis. Acta Radiol 60:356–
366

13. Yang G, Jones TL, Barrick TR, Howe FA (2014) Discrimination
between glioblastoma multiforme and solitary metastasis using
morphological features derived from the p:q tensor decomposition
of diffusion tensor imaging. NMR Biomed 27:1103–1111

14. Yang G, Jones TL, Howe FA, Barrick TR (2016) Morphometric
model for discrimination between glioblastomamultiforme and sol-
itary metastasis using three-dimensional shape analysis. Magn
Reson Med 75:2505–2516

15. Csutak C, Stefan PA, Lenghel LM et al (2020) Differentiating high-
grade gliomas from brainmetastases at magnetic resonance: the role
of texture analysis of the peritumoral zone. Brain Sci 10:638

16. Petrujkic K, Milosevic N, Rajkovic N et al (2019) Computational
quantitative MR image features - a potential useful tool in differen-
tiating glioblastoma from solitary brain metastasis. Eur J Radiol
119:108634

17. Higgins JPT, Thomas J, Chandler J et al (2021) Cochrane
Handbook for Systematic Reviews of Interventions, Version 6.2.

Available via https://training.cochrane.org/handbook/current/
chapter-10#section-10-10-2. Accessed 17 October 2021

18. Deville WL, Buntinx F, Bouter LM et al (2002) Conducting sys-
tematic reviews of diagnostic studies: didactic guidelines. BMC
Med Res Methodol 2:9

19. Blanchet L, Krooshof PW, Postma GJ et al (2011) Discrimination
between metastasis and glioblastoma multiforme based on mor-
phometric analysis of MR images. AJNR Am J Neuroradiol 32:
67–73

20. Fang K, Wang Z, Li Z et al (2021) Convolutional neural network
for accelerating the computation of the extended Tofts model in
dynamic contrast-enhanced magnetic resonance imaging. J Magn
Reson Imaging 53:1898–1910

21. Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK (2013)
Segmentation, feature extraction, and multiclass brain tumor classi-
fication. J Digit Imaging 26:1141–1150

22. Bathla G, Priya S, Liu Y et al (2021) Radiomics-based differentia-
tion between glioblastoma and primary central nervous system lym-
phoma: a comparison of diagnostic performance across different
MRI sequences and machine learning techniques. Eur Radiol 31:
8703–8713

23. Sartoretti E, Sartoretti T, Wyss M et al (2021) Amide proton trans-
fer weighted (APTw) imaging based radiomics allows for the dif-
ferentiation of gliomas from metastases. Sci Rep 11:5506

24. Bae S, An C, Ahn SS et al (2020) Robust performance of deep
learning for distinguishing glioblastoma from single brain metasta-
sis using radiomic features: model development and validation. Sci
Rep 10:12110

25. Liu Z, Jiang Z, Meng L et al (2021) Handcrafted and deep learning-
based radiomic models can distinguish GBM from brain metastasis.
J Oncol 2021:5518717

26. Ortiz-Ramon R, Ruiz-Espana S, Molla-Olmos E, Moratal D (2020)
Glioblastomas and brain metastases differentiation following an
MRI texture analysis-based radiomics approach. Phys Med 76:
44–54

27. Priya S, Liu Y, Ward C et al (2021) Machine learning based differ-
entiation of glioblastoma from brain metastasis using MRI derived
radiomics. Sci Rep 11:10478

28. Qian Z, Li Y, Wang Y et al (2019) Differentiation of glioblastoma
from solitary brain metastases using radiomic machine-learning
classifiers. Cancer Lett 451:128–135

29. Shin I, Kim H, Ahn SS et al (2021) Development and validation of
a deep learning-based model to distinguish glioblastoma from sol-
itary brain metastasis using conventional MR images. AJNR Am J
Neuroradiol 42:838–844

30. Swinburne NC, Schefflein J, Sakai Y et al (2019) Machine learning
for semi-automated classification of glioblastoma, brain metastasis
and central nervous system lymphoma using magnetic resonance
advanced imaging. Ann Transl Med 7:232

31. Tateishi M, Nakaura T, Kitajima M et al (2020) An initial experi-
ence of machine learning based on multi-sequence texture parame-
ters in magnetic resonance imaging to differentiate glioblastoma
from brain metastases. J Neurol Sci 410:116514

32. Jiang R, Du FZ, He C, Gu M, Ke ZW, Li JH (2014) The value of
diffusion tensor imaging in differentiating high-grade gliomas from
brain metastases: a systematic review and meta-analysis. PLoS One
9:e112550

33. Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ (2018) Perfusion
MRI as a diagnostic biomarker for differentiating glioma from brain
metastasis: a systematic review and meta-analysis. Eur Radiol 28:
3819–3831

34. Suh CH, Kim HS, Jung SC, Kim SJ (2018) Diffusion-weighted
imaging and diffusion tensor imaging for differentiating high-
grade glioma from solitary brain metastasis: a systematic review
and meta-analysis. AJNR Am J Neuroradiol 39:1208–1214

8050 European Radiology (2022) 32:8039–8051

https://training.cochrane.org/handbook/current/chapter-10#section-10-10-2
https://training.cochrane.org/handbook/current/chapter-10#section-10-10-2


35. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics:
extracting more information from medical images using advanced
feature analysis. Eur J Cancer 48:441–446

36. Pinto Dos Santos D, Dietzel M, Baessler B (2021) A decade of
radiomics research: are images really data or just patterns in the
noise? Eur Radiol 31:1–4

37. Biomarkers Definitions Working G (2001) Biomarkers and surro-
gate endpoints: preferred definitions and conceptual framework.
Clin Pharmacol Ther 69:89–95

38. Halligan S, Menu Y, Mallett S (2021) Why did European
Radiology reject my radiomic biomarker paper? How to correctly
evaluate imaging biomarkers in a clinical setting. Eur Radiol 31:
9361–9368

39. Cagney DN, Martin AM, Catalano PJ et al (2017) Incidence and
prognosis of patients with brain metastases at diagnosis of systemic
malignancy: a population-based study. Neuro Oncol 19:1511–1521

40. Ostrom QT, Gittleman H, Stetson L, Virk S, Barnholtz-Sloan JS
(2018) Epidemiology of Intracranial Gliomas. ProgNeurol Surg 30:
1–11

41. Scheinost D, Noble S, Horien C et al (2019) Ten simple rules for
predictive modeling of individual differences in neuroimaging.
Neuroimage 193:35–45

42. Mongan J, Moy L, Kahn CE Jr (2020) Checklist for Artificial
Intelligence in Medical Imaging (CLAIM): a guide for authors
and reviewers. Radiol Artif Intell 2:e200029

43. Lee SK (2012) Diffusion tensor and perfusion imaging of brain
tumors in high-field MR imaging. Neuroimaging Clin N Am 22:
123–134, ix

44. Wang W, Steward CE, Desmond PM (2009) Diffusion tensor im-
aging in glioblastoma multiforme and brain metastases: the role of
p, q, L, and fractional anisotropy. AJNRAm J Neuroradiol 30:203–
208

45. Caravan I, Ciortea CA, Contis A, Lebovici A (2018) Diagnostic
value of apparent diffusion coefficient in differentiating between
high-grade gliomas and brain metastases. Acta Radiol 59:599–605

46. Lee EJ, terBrugge K, Mikulis D et al (2011) Diagnostic value of
peritumoral minimum apparent diffusion coefficient for differenti-
ation of glioblastoma multiforme from solitary metastatic lesions.
AJR Am J Roentgenol 196:71–76

47. Jones TL, Byrnes TJ, Yang G, Howe FA, Bell BA, Barrick TR
(2015) Brain tumor classification using the diffusion tensor image
segmentation (D-SEG) technique. Neuro Oncol 17:466–476

48. Briand B, Ducharme GR, Parache V,Mercat-Rommens C (2009) A
similarity measure to assess the stability of classification trees.
Comput Stat Data Anal 53:1208–1217

49. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts H (2015)
Machine learning methods for quantitative radiomic biomarkers.
Sci Rep 5:13087

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

European Radiology (2022) 32:8039–8051 8051


	Radiomics can differentiate high-grade glioma from brain metastasis: �a systematic review and meta-analysis
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Literature search
	Literature selection
	Inclusion criteria
	Exclusion criteria

	Data extraction and quality assessment
	Statistical analysis

	Results
	Literature search
	Characteristics of the included studies
	Quality assessment
	QUADAS-2
	RQS

	Heterogeneity and diagnostic accuracy

	Discussion
	References


