
Deep learning–based atherosclerotic coronary plaque segmentation
on coronary CT angiography

Natasa Jávorszky1 & Bálint Homonnay2 & Gary Gerstenblith3
& David Bluemke4

& Péter Kiss5 & Mihály Török6 &

David Celentano7
& Hong Lai8,9 & Shenghan Lai3,7,8,9 & Márton Kolossváry1,10

Received: 17 January 2022 /Revised: 31 March 2022 /Accepted: 3 April 2022 /Published online: 7 May 2022
# The Author(s), under exclusive licence to European Society of Radiology 2022

Abstract
Objectives Volumetric evaluation of coronary artery disease (CAD) allows better prediction of cardiac events. However, CAD
segmentation is labor intensive. Our objective was to create an open-source deep learning (DL) model to segment coronary
plaques on coronary CT angiography (CCTA).
Methods Three hundred eight individuals’ 894 CCTA scans with 3035 manually segmented plaques by an expert reader
(considered as ground truth) were used to train (186/308, 60%), validate (tune, 61/308, 20%), and test (61/308, 20%) a 3D U-
net model. We also evaluated the model on an external test set of 50 individuals with vulnerable plaques acquired at a different
site. Furthermore, we applied transfer learning on 77 individuals’ data and re-evaluated the model’s performance using intra-class
correlation coefficient (ICC).
Results On the test set, DL outperformed the currently used minimum cost approach method to quantify total: ICC: 0.88 [CI:
0.85–0.91] vs. 0.63 [CI: 0.42–0.76], noncalcified: 0.84 [CI: 0.80–0.88] vs. 0.45 [CI: 0.26–0.59], calcified: 0.99 [CI: 0.98–0.99]
vs. 0.96 [CI: 0.94–0.97], and low attenuation noncalcified: 0.25 [CI: 0.13–0.37] vs. −0.01 [CI: −0.13 to 0.11] plaque volumes. On
the external dataset, substantial improvement was observed in DL model performance after transfer learning, total: 0.62 [CI:
0.01–0.84] vs. 0.94 [CI: 0.87–0.97], noncalcified: 0.54 [CI: −0.04 to 0.80] vs. 0.93 [CI: 0.86–0.96], calcified: 0.91 [CI:0.85–
0.95] vs. 0.95 [CI: 0.91–0.97], and low attenuation noncalcified 0.48 [CI: 0.18–0.69] vs. 0.86 [CI: 0.76–0.92].
Conclusions Our open-source DL algorithm achieved excellent agreement with expert CAD segmentations. However, transfer
learning may be required to achieve accurate segmentations in the case of different plaque characteristics or machinery.
Key Points
•Deep learning 3D U-net model for coronary segmentation achieves comparable results with expert readers’ volumetric plaque
quantification.

• Transfer learning may be needed to achieve similar results for other scanner and plaque characteristics.
• The developed deep learning algorithm is open-source and may be implemented in any CT analysis software.
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Abbreviations
CAD Coronary artery disease
CCTA Coronary CT angiography
CI Confidence intervals
DL Deep learning
HU Hounsfield unit
ICC Intra-class correlation coefficient
MACE Major adverse cardiac events
MCA Minimum cost approach
MPR Multiplanar reconstruction

Introduction

Coronary artery disease (CAD) is responsible for the majority
of avoidable deaths among elderly individuals, and the prev-
alence of CAD is still increasing [1, 2]. Therefore, more accu-
rate estimates of diseases burden are needed to identify indi-
viduals at risk of later major adverse cardiac events (MACE).
Coronary computed tomography angiography (CCTA) is an
effective noninvasive tool to visualize and quantify CAD.
Recent societal guidelines have endorsed CCTA as the prima-
ry tool to assess CAD in symptomatic patients [3, 4].
However, despite the isovolumetric image acquisition proper-
ties of CCTA allowing for volumetric quantification of CAD,
in clinical practice, visual assessment is used to describe the
composition and quantity of CAD [5, 6]. This is mostly due to
the time-consuming and labor-intensive nature of quantitative
plaque assessment as it requires trained and experienced
readers to do the segmentations [7].

Volumetric plaque assessment, especially with regard to
compositional measurements, has the potential to improve
MACE prediction and overall clinical outcomes [8–10].
Furthermore, these segmentations can also be used for
radiomics and machine learning research, which have shown
promising results and may shape future evaluation of CAD
[11, 12]. However, without robust and accurate automated
segmentation algorithms, widespread adaption of volumetric
analysis in clinical practice is not possible. Previously, various
gradient-based methods like the variants of model-guided
minimum cost approach (MCA) have been used to delineate
vessel inner and outer contours [13]. However, these tech-
niques provide moderate accuracy, as the segmentation of
the outer vessel wall is challenging as Hounsfield unit (HU)
differences between noncalcified plaque components and
perivascular fat tissue are modest [14]. Recently, deep learn-
ing (DL) algorithms have been used to automate the segmen-
tation of medical images [15]. Several promising results in the
area of cardiovascular imaging show that the U-net DL archi-
tecture is especially well suited to accurately define given
organs or abnormalities on radiological images [16, 17].
However, there is no information on whether DL may

outperform previously used techniques to delineate coronary
atherosclerotic lesions.

Therefore, our aim was to develop and evaluate the perfor-
mance of an open-source DL model for the segmentation of
CAD on CCTA. Furthermore, we wished to assess the perfor-
mance of the model on an external test set containing larger
vulnerable plaques imaged using different machinery, and to
assess whether transfer learning may increase the accuracy of
the model.

Materials and methods

Study design, participants, and scanning parameters
of the internal dataset

Between May 2004 and August 2015, 1,429 individuals with-
out cardiovascular symptoms were prospectively enrolled in
an epidemiological observational study investigating the ef-
fects of human immunodeficiency virus infection and associ-
ated factors on CAD in the USA [18, 19]. Previously, random-
ly selected 308 study participants’ 894 CCTAs were manually
segmented to infer the effects of human immunodeficiency
virus, cocaine use, and cardiovascular risk factors on CAD
[12, 20, 21]. The resulting dataset is referred to as the internal
dataset. In the present investigation, we use the manual seg-
mentation masks to train and validate an automatic DL algo-
rithm for the segmentation of coronary atherosclerotic
plaques.

Inclusion, exclusion criteria, and patient characteristics
have been published previously [12, 18–20]. The
Institutional Review Board approved the study protocol, and
all study participants provided written informed consent. All
procedures were in accordance with HIPAA, local and federal
regulations, and the Declaration of Helsinki.

Detailed imaging parameters have been published [12,
18–20] and are available in the supplemental material.

Study design, participants, and scanning parameters
of the external validation dataset

We identified 127 vulnerable plaques of 127 consecutive in-
dividuals who underwent CCTA between August 1st and
December 31st of 2017 at a European tertiary cardiac center.
This dataset was previously used to assess how image quality
and segmentation affect volumetric and radiomic parameters
of coronary plaques [14, 22]. The resulting dataset is referred
to as the external dataset and is used to validate our results.
Detailed inclusion, exclusion criteria, and scanning parame-
ters have been published previously [14, 22, 23] and are de-
tailed in the supplementary material.
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Segmentation and volumetric quantification of CAD

Coronary plaque was defined as any discernible structure that
could be assigned to the coronary artery wall and could be
identified in at least 2 independent planes resulting in at least a
10% reduction in lumen caliber [24]. All segmentations were
done using a dedicated software (QAngioCT software
v3.1.3.13; Medis Medical Imaging Systems), which deter-
mined the inner and outer vessel contours [13]. Plaque vol-
umes resulting from these automatic segmentations are re-
ferred to as MCA plaque volumes. The MCA segmentations
were then manually corrected if needed by a level-3 certified
specialist in cardiac CT imaging (M.K. with 7 years of expe-
rience) for both the external and internal datasets. Plaque vol-
umes resulting from manual segmentations are referred to as
manual plaque volumes.

We stratified total plaque volume based on HU values to
noncalcified plaque volume: −100 to 350 HU, calcified plaque
volume: ≥ 351 HU, and low attenuation noncalcified plaque
volume: −100 to 30 HU [25].

DL architecture

Detailed methodology can be found in the supplementary ma-
terial. In brief, after the determination of the coronary center-
lines, a dedicated software tool (QAngioCT software
v3.1.3.13; Medis Medical Imaging Systems) generated the
straight multiplanar reconstruction (MPR) images which were
used as inputs to the DL models. The images were then con-
verted to patches of 24 × 32 × 32 voxels with a stride of 12
pixels along the long axis. We implemented an attention U-net
DL model for the segmentation task [26]. U-net models have
previously been proven to be suitable for automatic cardiac/
coronary segmentation [27, 28].

The DL network was implemented in Python, using Keras
(v2.3.1) with TensorFlow (v2.1.0) backend. Hyperopt
(v0.2.5) package was used to optimize hyperparameters of
the network during training. All codes developed, including
the fitted models, are available at https://github.com/
balinthomonnay/coronary_cta_prediciton.

DL training and testing design

In the internal dataset, the individuals were randomly divided
into three separate groups. Sixty percent of the study partici-
pants was the training set, 20% was the validation set (tuning
set), and the remaining 20% was used for testing the algo-
rithm. If an individual had multiple CCTA datasets, then for
training and validation all available data was used, while for
testing a single CCTA scan was selected randomly.

The external dataset contained 127 coronary plaques from
127 individuals’ 127 CT scans. The data was split into training
(50% of the plaques: 64/127), validation (tuning set, 10% of

the plaques: 13/127), and test set (40% of the plaques: 50/
127). The external dataset contained fewer plaques than the
internal; therefore, a different split percentage was used on the
external dataset in order to have enough plaques for transfer
learning.

Statistical analysis

Data are represented as medians and interquartile ranges
(IQR) or frequencies and percentages as appropriate.
Kruskal-Wallis one-way ANOVA with Dunn’s nonparamet-
ric all-pairs comparison test with Holm’s p value
correction was used for multiple comparisons. In the case of
categorical variables, we used the chi-square test, with
pairwise comparisons corrected using Holm’s p value correc-
tion for multiple comparisons. To compare the resulting
plaque volumes, we first compared them using the Friedman
rank sum test with Durbin’s (Conover-Iman) all-pairs compar-
ison test with Holm’s p value correction for multiple compar-
isons. Then, we quantified the accuracy of the segmentations
using the intra-class correlation coefficient (ICC, two-way
random, single measures, absolute agreement) with 95% con-
fidence intervals (CI). To assess potential biases between the
resulting plaque volumes for the different segmentations, we
conducted Bland-Altman analyses between the different seg-
mentations. All statistical calculations were performed in the
R environment (v4.0.0) [29]. Methodologies and results are
reported in accordance with the Reporting Diagnostic
Accuracy Studies (STARD) guidelines [30].

Results

Participant population — internal dataset

Altogether, 308 individuals’ (age at first CCTA: 49.1±6.9
years, 69.2% males) 894 CCTA scans (average time between
scans: 3.6±2.7 years) contained a total of 3035 coronary
plaques. The individuals were split into training (60%, 186/
308 of individuals’ 532 scans, 1693 plaques), validation
(tuning) (20%, 61/308 participants’ 177 CCTA scans, 625
plaques), and testing (20%, 61/308 of individuals’ 185 scans).
In the case of the testing dataset, for individuals with multiple
scans, we randomly selected one single case resulting in 61
scans of 61 individuals with 219 plaques.

Plaque volumes distributions — internal dataset

Based on manual segmentation, the median total plaque vol-
umes were 27.8 mm3 (IQR: 12.6–56.4 mm3; range: 0.2–
588.3 mm3). Noncalcified, calcified, and low attenuation
noncalcified plaque volumes were 22.9 mm3 (IQR: 10.0–
45.8 mm3; range: 0.2–583.3 mm3), 0.4 mm3 (IQR: 0.0–
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8.5 mm3; range: 0.0–363.8 mm3), and 0.1 mm3 (IQR: 0.0–
0.8 mm3; range: 0.0–79.0 mm3) respectively. The only signif-
icant difference between the three groups regarding plaque
volumes was in calcified plaque volumes. Distribution of
plaque volumes in the three groups can be found in
Supplementary Table 1.

Training of the DL model

The DL model was trained on the 1693 plaques of the 532
CCTA scans from 186 individuals in the training dataset. The
optimal hyperparameters are reported in the supplementary
material. The model architecture is shown in Fig. 1. All codes
developed, including the fitted models, are available at https://
github.com/balinthomonnay/coronary_cta_prediciton.

Results on the internal test set: statistical
comparisons and ICC analysis

The median total plaque volume was 25.9 mm3 (IQR: 12.1–
56.5 mm3) in the test set based on manual segmentations. The
MCA algorithm resulted in significantly lower plaque vol-
umes (11.4 mm3 [IQR: 0.0–33.0 mm3]) as compared to the
manual segmentations (p < 0.0001), while the DL model
achieved comparable plaque volumes which were not statisti-
cally different from the manual segmentation (24.4 mm3

[IQR: 10.5–57.1 mm3], p = 0.74). Similar results were ob-
served for noncalcified and calcified plaque volumes, where
the MCA algorithm resulted in significantly different values,
while the DL-based method provided comparable results. In
the case of low attenuation noncalcified plaque volume, all
three segmentations were statistically different (manual: 0.1
mm3 [IQR: 0.0–1.0 mm3]; MCA: 0.0 mm3 [0.0–0.0 mm3];

DL: 0.0 mm3 [IQR: 0.0–0.5 mm3]; p < 0.0001 for omnibus
test, respectively, pairwise tests: manual vs. MCA: p < 0.0001,
Manual vs. DL: p = 0.03, MCA vs. DL-based: p < 0.0001).
Results are presented in Table 1.

The DL-based segmentation method achieved excellent
ICC values (ICC = 0.88 [CI: 0.85–0.91]) for total plaque vol-
umes, higher than the MCA method (ICC = 0.63 [CI: 0.42–
0.76]). Similar results were true for noncalcified (ICC: 0.84
[CI: 0.80–0.88] vs. 0.45 [CI: 0.26–0.59] respectively) and
calcified plaque volumes (ICC: 0.99 [CI: 0.98–0.99] vs. 0.96
[CI: 0.94–0.97] respectively). In the case of low attenuation
noncalcified plaque volumes, the DL-based algorithm
outperformed the MCA method; however, both algorithms
had poor accuracies (ICC: 0.25 [CI: 0.13–0.37] vs. −0.01
[CI: −0.13 to 0.11] respectively). Scatter plots of the plaque
volumes are presented in Fig. 2.

Results on the internal test set: Bland-Altman analysis

The DL-based segmentation algorithm produced near 0 bias
for total, noncalcified, and calcified plaque volumes (mean
difference: −0.7 mm3, −0.9 mm3, and 0.2 mm3, respectively),
while the MCA method had higher bias (mean difference:
−18.7 mm3, −17.1 mm3, and −1.6 mm3, respectively).
Furthermore, the DL model had smaller variance regarding
total, noncalcified, and calcified plaque volumes (95% limits
of agreement: −48.5 to 47.0 mm3, −47.2 to 45.4 mm3, and
−5.1 to 5.4 mm3, respectively) as compared to theMCAmeth-
od (95% limits of agreement: −86.9 to 49.5 mm3, −84.3 to
50.1 mm3, and −9.4 to 6.2 mm3, respectively). In the case of
low attenuation noncalcified plaque volume, both algorithms
had relative high bias and variance as compared to the abso-
lute values themselves (mean difference: −1.1 mm3 vs.

Fig. 1 Block diagram of the 3D U-net model architecture for coronary
plaque segmentation. In each box, the numbers denote the various
convolutional filter sizes [24 × 32 × 32, 12 × 16 × 16, 6 × 8 × 8], and
the number of channels [1, 64, 128]. The input layer is 24 × 32 × 32
voxels in size. All of the convolutions were identically padded. Each of

the 3 outputs is in the same dimensions as the input layer, representing the
inner mask, outer mask, and the plaque. The inner mask consists of all
voxels surrounded by the inner arterial luminal wall; the outer mask
represents all voxels encompassed by the whole vessel; and the plaque
is defined as a subtraction of the inner and outer masks
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−1.8 mm3, 95% limits of agreement: −12.1 to 9.8 mm3 vs.
−13.6 to 10.1 mm3, respectively). Bland-Altman plots are pre-
sented in Fig. 3.

Results on the external test set prior to transfer
learning

All plaque volumes were higher in the external test (plaque
n = 50) set as compared to the test set of the initial cohort
(plaque n = 219, total plaque volume: 163.0 mm3 (IQR:
105.1–243.9 mm3; range: 50.8–610.8 mm3), noncalcified
plaque volume: 146.6 mm3 (IQR: 91.2–215.4 mm3; range:
32.8–596.6 mm3), calcified plaque volume: 14.5 mm3 (IQR:
3.6–28.0 mm3; range: 0.2–151.5 mm3), and low attenuation
noncalcified plaque volume: 30.1 mm3 (IQR: 12.1–57.9 mm3;
range: 1.1–193.1 mm3, respectively, p < 0.0001 for all).

Prior to transfer learning, the MCA and DL segmentation
algorithms only provided comparable results to the ground truth
in the case of calcified plaque volumes, while for total and
noncalcified plaque volumes the two methods produced similar
values. In the case of low attenuation noncalcified plaque vol-
ume, the DLmodel provided significantly better results than the
MCA method; however, this was still significantly different
than the ground truth values. Detailed results are presented in
the supplementary material, Table 2, and Figs. 4, 5.

Results on the external test set after transfer learning

After transfer learning the fitted model using 64 plaques for
training and 13 for validation (tuning), we observed a substan-
tial improvement in the predicted volumes on the external test
set (n = 50) (Table 2). This resulted in excellent ICC values for

Table 1 Plaque volumes of the internal test set (n = 219) based on manual, MCA, and DL segmentations

Plaque volumes Manual MCA DL F-
ANOVA p

Manual vs.
MCA p

Manual vs.
DL p

MCA vs.
DL p

Total plaque volume (mm3) 25.9 [12.1–56.5] 11.4 [0.0–33.0] 24.4 [10.5–57.2] < 0.0001 < 0.0001 0.74 < 0.0001

Noncalcified plaque volume
(mm3)

20.8 [10.1–48.7] 11.0 [0.0–29.0] 20.5 [9.1–51.4] < 0.0001 < 0.0001 0.79 < 0.0001

Calcified plaque volume
(mm3)

0.1 [0.0–5.1] 0.0 [0.0–2.2] 0.0 [0.0–5.1] < 0.0001 < 0.0001 0.67 < 0.0001

Low attenuation noncalcified
plaque volume (mm3)

0.1 [0.0–1.0] 0.0 [0.0–0.0] 0.0 [0.0–0.5] < 0.0001 < 0.0001 0.03 < 0.0001

Data are presented as medians and interquartile ranges. Groups were compared using Friedman rank sum test with Durbin’s (Conover-Iman) all-pairs
comparison test with Holm’s p value correction for multiple comparisons

Abbreviations: DL, deep learning; F-ANOVA, Friedman rank sum test; MCA, minimum cost approach

Fig. 2 Scatter plots and ICC values of the plaque volumes from the
internal test set. For each plaque component, the deep learning
algorithm provided superior ICC values as compared to the
conventional MCA method. However, in the case of low attenuation

noncalcified plaque volume, both algorithms provided poor agreement.
DL, deep learning; ICC, intra-class correlation coefficient; MCA, mini-
mum cost approach
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all plaque components, total plaque volume: ICC = 0.94 [CI:
0.87–0.97], noncalcified plaque volume: ICC = 0.93 [CI:
0.86–0.96], calcified plaque volume: ICC = 0.95 [CI: 0.91–
0.97], and low attenuation noncalcified plaque volume:
ICC = 0.86 [CI: 0.76–0.92] (Fig. 4). Furthermore, there was
a substantial improvement resulting in lower biases and vari-
ance (Bland-Altman analysis results are presented in Fig. 5).

Dice coefficients for both internal and external datasets are
provided in Supplementary Table 2. Also, a representative
example showing plaque cross-sections where the DL algo-
rithm correctly identified the plaque while the MCA did not,
and an example where both failed, is presented in Fig. 6.

Discussion

We developed an open-source DL algorithm for the segmen-
tation of coronary plaques on CCTA which resulted in excel-
lent agreement with manual segmentations. Our open-source
DL algorithm outperformed the conventionally available
MCA algorithm. However, agreement with manually mea-
sured low attenuation noncalcified plaque volumes was mod-
erate. To further validate the model, we obtained an external
dataset, which consisted of significantly larger vulnerable
plaques scanned using different machinery. Initially, our mod-
el had better accuracies than a conventionalMCAmethod, but

Fig. 3 Bland-Altman plots between the manual MCA and the DL-based segmentations of the internal test set. The DL-based segmentation resulted in
lower bias and variance compared to the MCA algorithm. DL, deep learning; 95% LOA, 95% limit of agreement; MCA, minimum cost approach

Table 2 Plaque volumes of the external test set (n = 50) based on manual, MCA, and DL segmentations prior and post transfer learning

Plaque volumes Manual MCA DL F-
ANOVA
p

Manual vs.
MCA p

Manual vs.
DL p

MCA vs.
DL p

Prior to transfer learning
Total plaque volume (mm3) 163.0 [105.1–243.9] 94.27 [63.8–144.5] 83.44 [55.6–143.2] < 0.0001 < 0.0001 < 0.0001 0.64
Noncalcified plaque
volume (mm3)

146.6 [91.2–215.4] 77.8 [55.8–111.1] 62.5 [42.9–110.5] < 0.0001 < 0.0001 < 0.0001 0.15

Calcified plaque volume (mm3) 14.5 [3.6–28.0] 12.5 [4.1–24.9] 12.1 [2.3–30.1] 0.94 1.00 1.00 1.00
Low attenuation noncalcified
plaque volume (mm3)

30.1 [12.1–57.9] 2.5 [1.3–4.5] 13.6 [5.1–29.3] < 0.0001 < 0.0001 < 0.0001 < 0.0001

Post transfer learning
Total plaque volume (mm3) 163.0 [105.1–243.9] 94.27 [63.8–144.5] 170.3 [118.7–245.8] < 0.0001 < 0.0001 < 0.0001 < 0.0001
Noncalcified plaque
volume (mm3)

146.6 [91.2–215.4] 77.8 [55.8–111.1] 145.0 [86.8–228.4] < 0.0001 < 0.0001 < 0.0001 < 0.0001

Calcified plaque volume (mm3) 14.5 [3.6–28.0] 12.5 [4.1–24.9] 12.9 [5.2–32.4] 0.01 1.00 0.02 0.02
Low attenuation noncalcified
plaque volume (mm3)

30.1 [12.1–57.9] 2.5 [1.3–4.5] 24.0 [8.9–61.2] < 0.0001 < 0.0001 0.48 < 0.0001

Data are presented as medians and interquartile ranges. Groups were compared using Friedman rank sum test with Durbin’s (Conover-Iman) all-pairs
comparison test with Holm’s p value correction for multiple comparisons

Abbreviations: DL, deep learning; F-ANOVA, Friedman rank sum test; MCA, minimum cost approach
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agreement was moderate. After transfer learning our model
using images from the same machinery, we observed signifi-
cantly better results with excellent agreement as compared to
manual measurements. To facilitate the implementation of
volumetric plaque quantification in daily clinical practice,
we have made our fitted models publicly available at https://
github.com/balinthomonnay/coronary_cta_prediciton.

Quantitative plaque assessment beyond the evaluation of
coronary artery stenosis severity has proven to have incremen-
tal value in the evaluation of CAD [8, 9, 31–33]. However,
contouring a single vessel can take up to 30min, which greatly
limits its application in the daily clinical routine [34].
Nevertheless, if we wish to utilize the additional information
present in plaque volumes, we need a fast, robust method for
the delineation of atherosclerotic lesions.

Several machine learning–based approaches focus on cor-
onary calcium scoring or stenosis severity classification. By
employing a recurrent convolutional neutral network (which
is the combination of a 3D convolutional neutral network and
a recurrent neutral network), Zreik et al have demonstrated the
feasibility of automatic plaque characterization (no plaque,
noncalcified, mixed, calcified) and qualitative stenosis assess-
ment by achieving an accuracy of 0.77 and 0.80, respectively

[35]. Liu et al used a vessel-focused 3D convolutional net-
work to label coronary plaques as calcified, mixed, and
noncalcified with a dice score of 0.83, 0.68, and 0.73, respec-
tively [36]. However, there is limited data on automated
plaque volume assessment using DL methods.

Our results show that despite the subtle differences in ath-
erosclerotic and perivascular tissue attenuation and the small
size of the coronary lesions, DL is able to provide accurate
estimates of plaque volumes. Total, noncalcified, and calcified
plaque volumes of the DL model resulted in comparable re-
sults with manual segmentation, unlike the MCA algorithm,
which provided significantly different values on the internal
test set. Also, the limits of agreements had smaller ranges for
DL segmentations as compared to the MCA algorithm, but
they were still substantial considering the average volumes
of the plaques. Furthermore, both for DL and MCA, the ICC
values for low attenuation noncalcified plaque volumes were
poor. Differentiating between low attenuation noncalcified
plaques and its surrounding epicardial fat tissue might be the
most challenging for both human readers and automatic algo-
rithms. The number of plaques with low attenuation
noncalcified volumes was lower in our training set, whereas
in the external test set they were artificially overrepresented.

Fig. 4 Scatter plots and ICC values of the plaque volumes from the
external test set. Prior to transfer learning, both the DL and the MCA
segmentations showed moderate agreement with the manual
segmentations. However, after applying transfer learning to the DL

model, it showed excellent ICC values for all plaque components. DL,
deep learning; ICC, intra-class correlation coefficient; MCA, minimum
cost approach
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These circumstances may explain the initial poor performance
of quantifying low attenuation noncalcified plaques, which
significantly improved after transfer learning. Nevertheless,
the reproducibility of this plaque component has been shown
to be poor among experts, therefore questioning whether this
specific plaque component can actually be accurately mea-
sured [14].

When testing the generalizability of our model on an exter-
nal dataset of vulnerable plaques showing significantly larger
plaque volumes imaged on different machinery, we found that
our model did not generalize well. The DL model
outperformed the MCA model, but the ICC values were only
moderate. However, after applying transfer learning, we found
that the DL model again achieved excellent accuracies for all
plaque compositions. These results indicate that creating DL
segmentation models which generalizes well to all situations
is difficult. Nevertheless, our results indicate that if there is an
available model trained on sufficient amount of data, then fine

tuning it to new data is easy even with limited data, and the
results significantly outperform the general model. However,
both the internal and external test set results highlight that in
some cases manual editing of the contours may be needed as
there are cases when the DL automatic segmentation is
insufficient.

Our study has some limitations. The inputs of the 3D U-net
were single plaques, not whole coronary arteries; hence, man-
ual marking of the plaques is necessary. Furthermore, the pro-
posed DL model only enables volumetric plaque quantifica-
tion, and it was not trained for stenosis assessment. Also,
despite our external validation set, the datasets only contain
images from two companies; therefore, generalizability to oth-
er scanners may be different. A further limitation is that all
datasets were manually segmented by the same level-3 certi-
fied specialist in cardiac CT imaging. However, the lack of
inter-reader variability also allows more accurate comparisons
between the algorithms as the observed differences are not the

Fig. 5 Bland-Altman plots of the external test set. Agreements are shown
between the ground truthmanual segmentation and theMCA and the DL-
based model before and after applying transfer learning. Except for the
calcified plaque volume, there is a substantial bias for all plaque type
subcomponents, in both theMCA segmentation and the DL segmentation

before transfer learning. After transfer learning, the DL model’s perfor-
mance substantially improved, resulting in low bias and variance. DL,
deep learning; 95% LOA, 95% limit of agreement; MCA, minimum cost
approach
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result of possible differences in manual segmentations. Also,
both the internal and external datasets had a low prevalence of
calcified plaques. However, we focused on noncalcified
plaques as currently available algorithms yield a high accura-
cy on segmenting calcified lesions, unlike noncalcified ones.
Furthermore, in several cases, repeated CCTA scans of the
same patient were used to train the model, potentially limiting
the accuracy of the model.

In conclusion, our DL model achieved comparable results
to manual segmentations and significantly outperformed cur-
rently used MCA methods for volumetric plaque quantifica-
tion. On an external test set consisting of larger vulnerable
plaques imaged on different hardware, we showed that ap-
plying our model only resulted in moderate accuracy.
However, transfer learning on a small dataset was able to
fine-tune the model to later have excellent accuracy. We
have made our fitted models publicly available to the com-
munity to facilitate the implementation of volumetric plaque
quantification in daily clinical practice. We encourage the
scientific community to provide transfer learned models on
other machinery and software providers to implement these
models into their CAD analysis software, so that we may all
increase the quality of care and help reduce the burden of
coronary atherosclerosis.
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