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Abstract
Objectives Coronary computed tomography angiography (CCTA) has rapidly developed in the coronary artery disease (CAD)
field. However, manual coronary artery tree segmentation and reconstruction are time-consuming and tedious. Deep learning
algorithms have been successfully developed for medical image analysis to process extensive data. Thus, we aimed to develop a
deep learning tool for automatic coronary artery reconstruction and an automated CAD diagnosis model based on a large, single-
centre retrospective CCTA cohort.
Methods Automatic CAD diagnosis consists of two subtasks. One is a segmentation task, which aims to extract the region of
interest (ROI) from original images with U-Net. The second task is an identification task, which we implemented using 3DNet.
The coronary artery tree images and clinical parameters were input into 3DNet, and the CAD diagnosis result was output.
Results We built a coronary artery segmentation model based on CCTA images with the corresponding labelling. The segmen-
tation model had a mean Dice value of 0.771 ± 0.021. Based on this model, we built an automated diagnosis model (classification
model) for CAD. The average accuracy and area under the receiver operating characteristic curve (AUC) were 0.750 ± 0.056 and
0.737, respectively.
Conclusion Herein, using a deep learning algorithm, we realized the rapid classification and diagnosis of CAD from CCTA
images in two steps. Our deep learning model can automatically segment the coronary artery quickly and accurately and can
deliver a diagnosis of ≥ 50% coronary artery stenosis. Artificial intelligence methods such as deep learning have the potential to
elevate the efficiency in CCTA image analysis considerably.
Key Points
• The deep learning model rapidly achieved a high Dice value (0.771 ± 0.0210) in the autosegmentation of coronary arteries
using CCTA images.

• Based on the segmentation model, we built a CAD autoclassifier with the 3DNet algorithm, which achieved a good diagnostic
performance (AUC) of 0.737.

• The deep neural network could be used in the image postprocessing of coronary computed tomography angiography to achieve
a quick and accurate diagnosis of CAD.
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Abbreviations
AUC Area under the curve
BP Backpropagation
CAD Coronary artery disease
CAD-RADS Coronary Artery Disease Reporting

and Data System
CCTA Coronary computed tomography

angiography
DSC Dice similarity coefficient
PPV Positive predictive value
ROI Region of interest
SCCT Society of Cardiovascular Computed

Tomography
SD Standard deviation
TPVF True positive volume fraction

Introduction

Coronary artery disease (CAD) is one of the leading causes of
myocardial ischemia and has become a global healthcare con-
cern in recent years [1]. Risk assessments in the CAD popu-
lation play a pivotal role in the early identification of high-risk
patients as well as the optimization of treatment options, in-
cluding medication, coronary intervention, and surgery, to
improve patient prognosis. In contemporary practice, invasive
imaging procedures, such as invasive coronary angiography,
are commonly used to assess the severity of coronary stenosis
[2]. However, coronary computed tomography angiography
(CCTA) has been rapidly developed in the 20 years since its
emergence and has changed the diagnostic landscape [3, 4].
This technology allows physicians to obtain high-quality cor-
onary anatomy images in a short period with high diagnostic
accuracy. Considering its excellent specificity in CAD diag-
nosis, CCTA has become the first-line recommendation in
terms of screening (class I, level B) and risk stratification
(class I, level B) for suspected CAD patients [5].

CCTA images are volume collections of computed tomog-
raphy measurements, where the contrast agent in the coronary
artery makes the lumen visible. With segmentation of the cor-
onary artery wall and lumen, anatomical and morphological
information of plaques, especially the severity of stenosis, can
be obtained. However, image postprocessing is usually per-
formed in a radiology workstation, and the segmentation and
reconstruction of the coronary artery tree are time-consuming
and tedious.

Recently, deep learning algorithms have been successfully
developed for medical image analysis to process extensive
data, segment or detect regions of interest (ROIs), and auto-
matically classify diseases without human interference with
high precision [6, 7]. Most research in this area has been
limited to coronary artery tree segmentation [8, 9]. For exam-
ple, Huang et al obtained a Dice value of 0.71–0.78 in

coronary segmentation using deep learning in a CCTA train-
ing set of 18 samples [10]. However, previous work aimed at
evaluating the practicability of the proposed method has been
limited by the scale of the testing set. Moreover, few studies
have shown the diagnostic accuracy of deep convolutional
neural networks for the detection of stenosis of the coronary
artery tree. Predicting the outcome of a patient is meaningful
and challenging. Therefore, more efforts should be made to
construct a large-scale dataset, develop deep learning models
to automatically segment the coronary artery tree, and analyze
the relationships between CAD and CCTA images with clin-
ical indices.

In this study, we aimed to develop a deep learning tool for
automatic coronary artery reconstruction and a CAD-
automated diagnosis model based on a large, single-centre
retrospective CCTA cohort and to evaluate the performance
of this artificial intelligence-assisted tool.

Methods

Study population

The data source of this study was an image cohort in West
China Hospital. This single-centre study enrolled patients with
suspected CAD who underwent CCTA examination from
January 2012 to August 2012. The exclusion criteria were as
follows: (1) age < 18 years old; (2) end-stage renal disease; (3)
severe liver disease requiring artificial liver plasmapheresis;
and (4) malignancies. This study protocol was approved by
the ethics committee and institutional review boards and con-
ducted in accordance with the Declaration of Helsinki.

Data collection

Thin-slice (0.6 mm) computed tomography angiography
(CTA) images of all patients were obtained using a second-
generation dual-source computed tomography system
(SOMATOM Definition CT, Siemens Medical Solutions).

The scanning protocol was as follows: 50~70 mL of con-
trast agent followed by 50 mL of normal saline was injected
through the median cubital vein with the dual head injector at
a flow rate of 5.0 mL/s. The aortic root was set as the ROI. The
following method of bolus tracking was used: when the atten-
uation exceeded 100 HU, scanning was automatically trig-
gered after a delay of 5 s.

The scanning parameters were as follows: collimator of 2 ×
128 × 0.6 mm, slice thickness of 0.6 mm, gantry rotation of
0.28ms, tube voltage of 80~120 kV (adjusted by CARE kV to
reduce radiation exposure), and tube current of 290~560 mAs/
R (adjusted by CAREDose 4D technology to reduce radiation
exposure). The pitch was 0.17~0.24 (adjusted according to
patient heart rate during scanning).
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All the image data were analyzed by one cardiologist and
one radiologist independently and anonymously. The stenosis
severity of the coronary artery was assessed following the
Society of Cardiovascular Computed Tomography (SCCT)
grading scale. We used the Coronary Artery Disease
Reporting and Data System (CAD-RADS) score to describe
the standardized report and perform the risk assessment. The
demographic data, medical history, laboratory examination,
and vital signs at admission were obtained for each patient
from the hospital information system. From January 2012 to
August 2012, 443 patients with a total of 1327 vessels were
included in the study.

Model development

Automatic CAD diagnosis consists of two subtasks. One is
a segmentation task, which aims to extract the ROI from
original images. In this study, the coronary artery tree was
first cropped from all CCTA images. The other task is an
identification task, in which cases of the coronary artery
tree image and corresponding clinical parameters are clas-
sified into normal and abnormal, where abnormal cases
denote the stenosis ≥ 50% group. CCTA coronary artery
labelling intended for segmentation task training was con-
ducted by two experienced cardiovascular physicians with
5 years of experience in cardiac image postprocessing and
analysis. The labelled data were inspected three times and
confirmed to contain the following coronary artery struc-
tures: (1) left and right coronary artery ostia; (2) ostia of the
left main coronary and anterior descending arteries, as well
as the circumflex artery. The segments with vessel diame-
ters less than 1.5 mm were excluded

In the first stage, we implemented our model using U-
Net for the segmentation task [11]. This convolutional
neural network included two parts. In part one, complex
features were extracted from each CCTA image. In part
two, the neural network was used to decode the feature
representation with a sole focus on the coronary artery
tree. The original CCTA images were the input of U-
Net, and the coronary artery tree was the output. We fur-
ther applied continuous frame postprocessing procedures
to generate consecutive slices for a 3D coronary artery
tree.

In the second stage, we implemented our model using
3DNet for the identification task. CAD was defined as ste-
nosis of three main branches: the left anterior descending
branch, the left circumflex branch, and the right and left
main coronary arteries (50% or above). This network in-
cluded three parts. In part one, the neural network was used
to extract image features from the full coronary artery tree
image. In part two, we extracted text features from clinical
parameters. In part three, we used this network to combine
all features for the final feature representation. The final

classification was calculated using the weighted softmax
layer. The coronary artery tree images and clinical param-
eters were the input of 3DNet, and the CAD diagnosis result
was the output (Fig. 1).

The coronary artery segmentation model was based on the
data of 243 patients, and the data of the remaining 200 patients
were used to establish a classification model of stenosis ≥ 50%.
The training process of the proposed deep convolutional neural
networks mainly consisted of two phases: data preprocessing
and network learning. In the preprocessing phase, the pixel
values for each CCTA slice were normalized between 0 and
1. In the first stage, the image remained at 512 * 512, and the
input of the second model was resized from 512 * 512 to 128 *
128 for fewer network parameters. The backpropagation (BP)
algorithm was used for network learning [12]. Considering the
small-sample independent dataset would fail to illustrate the
effectiveness of themodel, we used the average 5-fold validation
to evaluate the accuracy of the coronary artery tree segmentation
and CAD classification with all cases weighted equally. In
cross-validation, part of the data is employed as the training
set, and the other part is used as the testing set. Multiple rounds
of testing are performed, and the average performance is taken
as the final result. This approach can avoid the limitations and
particularity of fixed datasets. All models were implemented
using the PyTorch deep learning framework [13].

Statistical analysis

Continuous variables are expressed as the mean ± standard
deviation (SD), and categorical variables are reported as
counts and percentages. Patients’ baseline characteristics
were compared between the stenosis ≥ 50% group and the
stenosis < 50% group. The differences between groups
were evaluated by t-tests and chi-square tests for continu-
ous and categorical variables, respectively. In the segmen-
tation task, we used several quantitative metrics to evalu-
ate the coronary artery tree segmentation performance in-
cluding the Dice similarity coefficient (DSC), true positive
volume fraction (TPVF), and positive predictive value
(PPV) [14, 15]. The Dice coefficient (Dice), also called
the overlap index, is the most commonly used metric to
compare automatic AI results and ground truth (GT) data

from doctors (dice ¼ 2 GT∩AIð Þ
GTþAI ). Higher scores indicate

greater volumetric overlap between automatic segmenta-
tion and manual annotation. In the identification task, we
calculated several indices to evaluate the CAD diagnostic
accuracy, including accuracy, recall, precision, F1 score,
and area under the curve (AUC), where the stenosis ≥ 50%
group was defined as the true sample. The F1 score is
defined as the harmonic mean of the model’s precision
and recall. Higher scores indicate a better prediction of
CAD diagnosis [16].
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Fig. 1 Main architecture for
automatic CAD diagnosis. a First
stage for auto-segmentation of the
coronary artery tree. b Second
stage for automatic CAD diagno-
sis. The blue arrow represents the
convolution operation, and the
green arrow represents the
upsampling convolution, and the
yellow arrow means fully con-
nected computation. The cube
denotes the learned feature maps,
and the number next to the cube
denotes the corresponding num-
ber (channel) of feature maps. The
final two outputs for the network
denote the stenosis ≥ 50% group
or not

Table 1 Clinical characteristics
of the study population Characteristics Total Segmentation cohort Classification cohort

No. of patients n = 443 n = 243 n = 200

Age 65.84 ± 11.21 64.45 ± 11.44 66.99 ± 10.91

Gender, man, n (%) 261 (58.92) 130 (53.50) 131 (65.50)

Medical history

Pre-hypertension, n (%) 247 (55.76) 97 (48.50) 150 (61.73)

Pre-diabetes mellitus, n (%) 138 (31.15) 84 (34.57) 54 (27.00)

Smoke history, n (%) 160 (36.12) 79 (32.51) 81 (40.50)

CAD family history, n (%) 21 (4.74) 14 (5.76) 7 (3.50)

At admission

SBP, mm Hg 133.37 ± 20.65 133.56 ± 18.97 133.15 ± 22.57

DBP, mm Hg 76.54 ± 20.65 76.03 ± 10.50 77.17 ± 13.72

Laboratory values

Serum creatinine, μmol/L 88.50 ± 48.16 89.01 ± 55.33 87.89 ± 40.54

Blood glucose, mmol/L 6.19 ± 2.36 6.09 ± 2.22 6.31 ± 2.51

LDL-C, mmol/L 2.57 ± 1.25s 2.55 ± 0.97 2.58 ± 1.53

CAD assessments

≥ 50% stenosis (patients’ level), n (%) 164 (37.02) 64 (26.34) 100 (50.00)

CAD-RADS, n (%)

0 171 (38.60) 110 (45.27) 61 (30.50)

1 39 (8.80) 23 (9.47) 16 (8.00)

2 67 (15.12) 45 (18.52) 22 (11.00)

3 77 (17.38) 36 (14.81) 41 (20.50)

4 76 (17.16) 25 (10.29) 51 (25.50)

5 13 (2.93) 4 (1.65) 9 (4.50)

CAD coronary artery disease, LDL-C low-density lipoprotein-cholesterol, SBP systolic blood pressure, DBP
diastolic blood pressure, CAD-RADS Coronary Artery Disease Reporting and Data System
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Results

From January 2012 to August 2012, 443 patients with a total
of 1327 vessels were included in the study. The average age of
the patients was 65.84 ± 11.21 years, 261 (58.92%) of the
patients were male, and 164 (37.02%) patients had coronary
artery stenosis ≥ 50%. The baseline characteristics of the two
groups are shown in Table 1. Fivefold cross-validation was
performed in both groups, and statistical analysis revealed no
significant differences in baseline characteristics between the
two groups (Supplement 1).

We built a coronary artery segmentation model based on
CCTA images with the corresponding labelling. The met-
rics used to quantify automatic segmentation performance
are listed in Table 2. The segmentation model achieved a

Table 2 The performance of automatic segmentation and classification
models based on deep learning

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Segmentation model

Dice 0.769 0.790 0.794 0.754 0.748 0.771 ± 0.021

TPVF 0.752 0.792 0.822 0.752 0.714 0.766 ± 0.041

PPV 0.826 0.816 0.794 0.802 0.838 0.815 ± 0.018

Classification model

Accuracy 0.825 0.751 0.675 0.775 0.725 0.750 ± 0.056

Recall 0.902 0.951 0.954 0.703 0.802 0.860 ± 0.108

Precision 0.783 0.679 0.613 0.824 0.696 0.719 ± 0.084

F1 score 0.837 0.792 0.745 0.757 0.744 0.775 ± 0.040

TPVF true-positive volume fraction, PPV positive predictive value

Fig. 2 Illustration of segmentation border of 3 cases. (a1–a3) Manual delineation by professional doctors (red contours). (b1–b3) Auto-segmentation
using DCNNs (green contours). (c1–c3) The overlapping of two contours in 3D space
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mean Dice value of 0.771 ± 0.021, a TPVF value of 0.766 ±
0.041, and a PPV of 0.815 ± 0.018. These results suggested
that the model can be used to automatically segment coro-
nary arteries with high accuracy. The segmentation border
for automated prediction and manual labelling is illustrated
in Fig. 2. The model trained with the neural network can
effectively segment the three coronary arteries and their
major branches.

Based on the segmentation model, we built an automated
diagnosis model (classification model) for CAD according to
the stenosis of the three main coronary arteries and the left
main coronary artery (equal to or greater than 50% or less than
50%). Regarding the classification metrics of the model, the
performance metrics average accuracy, recall, precision, and
F1 score were 0.750 ± 0.056, 0.860 ± 0.108, 0.719 ± 0.084,
and 0.775 ± 0.040, respectively. The receiver operating char-
acteristic (ROC) curves for automated CAD diagnosis are
shown in Fig. 3, and the average AUC for the five subsets
was 0.737 (Fig. 3). This result implies that the classification
model can rapidly achieve an accurate diagnosis of CAD
based on CCTA images.

We also compared the processing speed between the
deep learning approach and the manual approach on the
same personal platform (i7-9700K, GTX1650, 16 G
RAM). The image postprocessing procedure of manual seg-
mentation includes the selection of individual threshold
islands and the level tracing of blood vessels. The physician
manually segments the coronary artery and removes irrele-
vant cardiac tissue and the pulmonary vascular tree. After
training, segmentation of a coronary tree through deep
learning was completed in 6.73 s on average. The average
time required for a physician to manually trace a coronary
tree using 3D slicer (version 4.11) was 45 min. For the
diagnosis of coronary heart disease (stenosis ≥ 50%), the
deep learning method did not require additional processing,
while the manual approach required an additional 5 min to
establish a diagnosis.

Discussion

In this study, utilizing deep learning, we achieved the rapid
classification and diagnosis of CAD based on CCTA images
through 2 steps. First, we achieved rapid autosegmentation of
coronary arteries using CCTA images and secured a high Dice
value. Second, based on the segmentation model, we built an
autoclassifier of CAD. The results suggested that CCTA im-
age analysis using deep learning can accurately reconstruct the
coronary tree and diagnose CAD and do so in less time than
required by human experts.

Coronary artery segmentation and extraction represent cru-
cial steps in the postprocessing of CCTA images. The tradi-
tional method of manual segmentation and reconstruction is
very tedious and time-consuming. Previous studies have sug-
gested that deep learning can automatically extract the coro-
nary lumen or coronary central line [17]. Ring et al used the
I2I-3D method to explore the autodetection of the coronary
artery wall, lumen, and plaque [8]. In our study, a total of 243
patients were included to build a coronary artery segmentation
model. To the best of our knowledge, this sample size is larger
than that of previous studies. U-Net is a typical segmentation
model that uses a deep learning algorithm, and we added a
postprocessing procedure based on the outcome of the net-
work [18]. Therefore, the accuracy of this segmentation model
is higher than that of previous research, with a Dice value of
0.771 ± 0.021, a TPVF of 0.766 ± 0.041, and a PPV of 0.815 ±
0.018. These results indicate that the segmentation model
based on deep learning was able to accurately identify and
extract coronary arteries and has fair robustness to possible
graphical errors or noise in the input data.

It is generally believed that patients with stenosis ≥ 50% in
major branches, as confirmed by invasive angiography, can be
diagnosed with CAD [19]. With a high negative predictive
value, CCTA can serve as an effective tool for the initial
screening of CAD. In the past, evaluating stenosis required
radiologists to perform multiplanar reconstruction of CCTA

Fig. 3 ROC curves of the final CAD identification result. a Illustration of area under the ROC curves on the total 200 cases. bDistribution of AUC scores
for each sub-group
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images and measure the diameter of coronary lesions, which
was a time-consuming work and expertise-dependent process.
A few studies have used machine learning or deep learning to
evaluate plaque or stenosis in the coronary artery. Using the
3D CNN and combining radiomics parameters extracted from
CCTA, Denzinger et al were able to accurately predict the
degree of coronary artery stenosis [20]. In addition, Moon
et al were able to automate keyframe extraction and stenosis
assessment in invasive coronary angiography through a deep
learning algorithm [21]. In this study, to prevent potential
subjective bias during labelling and overfitting, we did not
perform coronary artery segmentation and stenosis recogni-
tion in the same group of patients. We built a classification
model in another cohort of 200 patients without segmentation
labelling. Using the radiology workstation report as the label,
we achieved the autoclassification of CAD patients based on a
deep learning algorithm. With the U-Net architecture having
performed well on coronary artery tree segmentation in the
first stage, this architecture was expected to also be able to
learn to classify the CAD diagnosis result from the CTA im-
ages by combining clinical information. Since U-Net is an
encoder-decoder network architecture based on a single image
slice, according to the contrary coronary artery tree in 3D
form, we developed the 2D filter into 3D convolution in the
encoder part for feature extraction [11, 22]. Compared to the
number in 2D operation, fewer filters (4, 8, 16, 32, and 64 in
each layer) were needed to reduce the parameters in 3DNet
because 3D convolutional filters produce more parameters
than 2D operation [23]. To overcome overfitting in the classi-
fication task, few convolutional filters were used in the feature
extraction for the coronary artery tree. Furthermore, a fully
connected layer with 1024 neurons was deployed to upsample
the clinical information. Sparse high-dimensional representa-
tion is more conducive to feature learning. In addition, the
classification model utilizing 3D U-Net used only part of the
CCTA data, including the coronary tree [24]. The accuracy of
the classification model was 0.750 ± 0.056, and the AUC was
0.737, suggesting that the autodetection of ≥ 50% stenosis
based on the coronary segmentation model through deep
learning has acceptable accuracy.

In recent years, the use of machine learning and deep learn-
ing methods has driven rapid advancements in CCTA image
analysis, but some unresolved issues remain. Previous studies
have shown that classic classifiers or neural network algo-
rithms can effectively detect coronary artery calcification in
CCTA, but their performance in detecting low-density or
mixed plaque is less satisfactory. In addition, the coronary
artery occupies a small area in the whole CCTA image and
presents considerable variability, posing a more significant
challenge for artificial intelligence to learn the coronary artery
and its lesions than other kinds of diseases [25]. Recently,
several artificial intelligence platforms have been proposed
in an attempt to overcome these challenges, but there remains

significant room for improvement in terms of sample size or
comprehensive reporting [26]. Lee et al suggested that the
transformer network, combined with an appropriate penalty,
performs well in coronary artery segmentation, achieving a
Dice value of 0.768–0.787[27]. In addition, the results of a
multicentre study suggested that commercial software based
on VGG19 and 3DU-NET can accurately estimate the degree
of coronary artery stenosis through CCTA, with only a 2.3%
mean difference from experts in prediction at the patient level
[28]. This study focused on the important task of coronary
artery segmentation and CAD classification in image analysis
and clinical practice and on the deployment of a deep learning
algorithm, and it achieved promising results. However, further
research is warranted to examine the anatomical, morpholog-
ical, and functional analysis of coronary artery lesions using
an artificial intelligence-based approach.

Limitations

Due to the inherent design of retrospective studies, we could
include only patients who had received CCTA examinations
in the past, and we were unable to compare the deep learning
method with traditional image analysis prospectively.
However, by building the CAD classification model using
an isolated cohort and comparing it with traditional reports,
we obtained conclusive and convincing results. In addition, as
metal stents in CCTA can significantly impact deep learning
training, we excluded patients with prior stent implantation.
However, since CCTA was indicated for CAD screening in
the majority of patients, the number of patients with metal
stent implantation was not large (12 patients). Moreover, due
to the limitations of the study design, the materials used to
verify ≥ 50% stenosis in this study were radiology workstation
reports rather than invasive coronary angiography findings.
However, these reports were issued by a radiologist with more
than 10 years of experience in chest imaging and contain
quantitative measurements of the degree and location of ste-
nosis; therefore, the measurements have high accuracy, and
the reports serve as valuable references. Last, the classification
of coronary artery stenosis in this study was dichotomic.
Limited by the sample size, this work did not perform
multiclassification, such as CAD-RADS classification, for
prediction. We need further investigation to develop artificial
intelligence models which could utilize more anatomical and
morphological information on coronary lesions.

Conclusion

In this study, using a deep learning algorithm, we realized the
rapid classification and diagnosis of CAD based on CCTA
images in two steps. Our deep learning model can automati-
cally segment the coronary artery quickly and accurately and
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can deliver a diagnosis of ≥ 50% coronary artery stenosis. We
constructed a large-scale dataset and evaluated the perfor-
mance of our methods based on cross-validation. Although
this type of artificial intelligence cannot replace manual oper-
ation in CCTA image analysis, it may considerably increase
the efficiency of CCTA image analysis. In future studies, we
intend to refine the utility of our submodel in the clinical
context and improve the accuracy and thoroughness of CAD
assessment with more clinical input and algorithm
optimization.
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