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Abstract
Objectives Chronic obstructive pulmonary disease (COPD) is underdiagnosed globally. The present study aimed to develop
weakly supervised deep learning (DL)models that utilize computed tomography (CT) image data for the automated detection and
staging of spirometry-defined COPD.
Methods A large, highly heterogeneous dataset was established, consisting of 1393 participants retrospectively recruited from
outpatient, inpatient, and physical examination center settings of four large public hospitals in China. All participants underwent
both inspiratory chest CT scans and pulmonary function tests. CT images, spirometry data, demographic information, and clinical
information of each participant were collected. An attention-based multi-instance learning (MIL) model for COPD detection was
trained using CT scans from 837 participants. External validation of the COPD detection was performed with 620 low-dose CT
(LDCT) scans acquired from the National Lung Screening Trial (NLST) cohort. Amulti-channel 3D residual networkwas further
developed to categorize GOLD stages among confirmed COPD patients.
Results The attention-based MIL model used for COPD detection achieved an area under the receiver operating characteristic
curve (AUC) of 0.934 (95% CI: 0.903, 0.961) on the internal test set and 0.866 (95% CI: 0.805, 0.928) on the LDCT subset
acquired from the NLST. The multi-channel 3D residual network was able to correctly grade 76.4% of COPD patients in the test
set (423/553) using the GOLD scale.
Conclusions The proposed chest CT-DL approach can automatically identify spirometry-defined COPD and categorize patients
according to the GOLD scale. As such, this approach may be an effective case-finding tool for COPD diagnosis and staging.
Key Points
• Chronic obstructive pulmonary disease is underdiagnosed globally, particularly in developing countries.
• The proposed chest computed tomography (CT)–based deep learning (DL) approaches could accurately identify spirometry-
defined COPD and categorize patients according to the GOLD scale.

• The chest CT-DL approach may be an alternative case-finding tool for COPD identification and evaluation.
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Abbreviations
%LAA-950 The percentage of lung volume less

than or equal to −950 Hounsfield units
95% CI 95% confidence interval
AI Artificial intelligence
AUC Area under the receiver operating

characteristic curve
BMI Body mass index
COPD Chronic obstructive pulmonary disease
CT Computed tomography
DL Deep learning
FEV1 Forced expiratory volume in 1 second
FVC Forced vital capacity
IQR Interquartile range
LDCT Low-dose computed tomography
MIL Multi-instance learning
NA Not applicable
NLST National Lung Screening Trial
NPV Negative predictive value
PPV Positive predictive value
SD Standard deviation
Yrs Years

Introduction

Chronic obstructive pulmonary disease (COPD) is a world-
wide public health challenge, due to its high prevalence and
long-term effects on related disabilities and mortality [1, 2].
The accurate diagnosis of COPD is crucial for the timely ini-
tiation of appropriate therapeutic intervention to improve the
patient’s quality of life and reduce the risk of future exacerba-
tion [3]. Previous studies have reported that an estimate of
over 40% of COPD patients remain undiagnosed, particularly
in developing countries [4, 5]. According to Wang et al [6],
only 12% of individuals with chronic airflow limitations had a
previous spirometry-defined COPD diagnosis during the re-
cent screening of 57,779 participants in China. Furthermore,
prior studies have reported that COPD can either be
misdiagnosed or missed entirely when using spirometry alone
[4, 5, 7]. Therefore, alternative strategies are urgently needed
to provide accurate detection and evaluation of COPD for
optimal clinical decision-making.

With the growing use of computed tomography (CT) for
screening of lung cancer, there is an opportunity to use these
scans to identify patients with COPD, with subsequent confir-
mation by spirometry. In the past few years, growing evidence
has shown that CT-derived qualitative and quantitative imag-
ing analyses have potential in COPD diagnosis and stratifica-
tion [8, 9]. Typical CT features, such as lung parenchyma,

airways, pulmonary vasculature, and the chest wall, provide
valuable insights into evaluating lung function, categorizing
disease severity, and predicting outcomes for patients with
COPD [10–12]. Thus, CT-based imaging can lead to improve-
ments in COPD detection and evaluation [13, 14]. However,
objective CT analysis requires prior knowledge of the anatom-
ical and physiological implications of diseases likely to be
associated with certain clinical outcomes. In addition, the con-
ventional manual inspection of CT images is often time-
consuming and subjective, which limits its use for large-
scale COPD screening.

Recent advances in deep learning (DL)–based artificial in-
telligence (AI) have enabled the direct interpretation of med-
ical images without relying on specific radiographic features
of interest [15, 16]. Sophisticated and subtle image patterns (at
distinct spatial scales) have been learned by trained models
and used to discriminate diseases without any human guid-
ance [17]. As a result, the advantages of a DL strategy for
improving the accuracy and efficiency of human COPD de-
tection, and for bolstering human knowledge of COPD sub-
types, have in principle been established [18–21]. For exam-
ple, Gonzàlez et al [22], using the large cohort COPD genetic
epidemiology study (COPDGene), trained a 2D convolutional
neural network (CNN) for automated COPD detection in
smokers, achieving a c-statistic of 85.6%. Using the same
cohort, Hatt et al [23] developed CT-based CNN classifiers
for COPD assessment. These classification models were also
shown to be predictive in the National Lung Screening Trial
(NLST) cohort. Recently, Tang and colleagues [24] proposed
a novel residual network in the detection of COPD among
smokers screened for lung cancer using low-dose CT
(LDCT) and achieved an area under the receiver operating
characteristic curve (AUC) of more than 88%. It is worth
mentioning that these DL models reported in most previous
studies were trained using open public datasets that were pri-
marily composed of current or former smokers. Thus, it re-
mains largely unknown whether this approach could be ap-
plied to a heterogeneous dataset that extracted from diverse
clinical scenarios, especially among the Chinese population.

In the present study, we recruited 1393 participants from
outpatient, inpatient, and physical examination center settings
of four large hospitals in China. The dataset were highly het-
erogeneous which we thought could mimic the screening sce-
nario to a great extent. We developed an attention-based
multi-instance learning (MIL) model for COPD detection
and a multi-channel 3D residual network for the Global
Initiative for Chronic Obstructive Lung Disease (GOLD)
stage classification among spirometry-confirmed COPD pa-
tients. External validation of the COPD detection model was
performed with an LDCT subset acquired from the NLST
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cohort, which comprised 620 patients with current or previous
smoking history.

Materials and methods

Data collection

CT image data were retrospectively collected from 1441 par-
ticipants from outpatient, inpatient, and physical examination
center settings of four large public hospitals across China,
namely, the Affiliated Hospital of Qingdao University,
Changsha First Hospital, People’s Liberation Army Joint
Logistic Support Force 920th Hospital, and Shandong
Provincial Hospital. The inclusion criteria were (1) partici-
pants underwent single inspiratory breath-hold CT scans in
the supine position; (2) at least one-time pulmonary function
test; and (3) aged 18 years and older and with no history of
thoracic surgery. All images were uploaded by principal in-
vestigators at each site through the InferScholar research plat-
form (Infervision). Spirometry data, demographic informa-
tion, smoking history, clinical indices, and underlying dis-
eases were extracted from electronic medical records using a
standardized data collection form. The data collection period
ranged from August 10, 2019, to October 8, 2020. After ex-
cluding cases with incomplete clinical data (17 cases),

substandard pulmonary function (8 cases), and poor CT image
quality (23 cases), a total of 1393 participants were enrolled in
the final cohort. Eligible subjects were then randomly divided
into a training set (n = 837, 391 with COPD), a validation set
(n = 278, 135 with COPD), and a test set (n = 278, 118 with
COPD) at a ratio of 3:1:1 for subsequent model development
(see Figure 1). We further elected to use a random subset of
the NLST cohort (n = 620) as a means of external validation.
The NLST study was conducted by the National Cancer
Institute to determine the feasibility of using LDCT for lung
cancer screenings and included subjects with spirometry-
defined COPD, facilitating an investigation of model efficien-
cy for LDCT and diverse populations [25]. The NLST subset
included participants between 55 and 74 years old, with a
smoking history of more than 30 pack-years and no self-
reported history of lung cancer, thereby allowing us to further
evaluate themodel efficiency among smokers. Detailed NLST
subset information is provided in Table S1. This study was
approved by the ethics commissions of all participating hos-
pitals and requirements for written informed consent were
waived due to the retrospective nature of the research.

COPD diagnosis was confirmed by forced expiratory vol-
ume in 1 second (FEV1) to forced vital capacity (FVC) ratio
less than 0.7 after inhalation of bronchodilators. The severity
of COPDwas graded according to the GOLD standard [2]. CT
images were acquired using a range of acquisition protocols

Fig. 1 A multi-center COPD
dataset establishment diagram
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and scanners, representative of clinical routines. Further de-
tails regarding image acquisition are provided in Table S2.

Data preprocessing

Because the CT images were acquired from different vendors
with varying scanning parameters, the original data were first
adjusted to lung window settings using lower and upper
Hounsfield unit (HU) bounds of − 1500 and 600, respectively.
All images were then resized to a resolution of 512 × 512
pixels using bilinear interpolation and the whole CT volume
was normalized.

Development of the COPD detection model

The workflow for the experimental COPD detection model is
illustrated in Figure 2 and consists of three primary steps: (1)
preparation of CT lung instances and bags; (2) feature extrac-
tion using a deep residual neural network, ResNet18; and (3)
an attention mechanism–based classifier for COPD detection.
Whole CT volumes were divided into multiple parts, with a
single axial slice (one instance) being selected from each set
and formed into a bag (collection of instances) with defined

patient labels (COPD vs non-COPD) used for training the
network [26]. A weakly supervised approach, MIL, was
adopted due to the heterogeneous nature of the COPD CT
instances [27]. MIL has previously been used to examine
available CT voxels and facilitate the detection of asymptom-
atic or subtle lesions during screening [28], while keeping
computational costs and memory requirements manageable.
In the next step, ResNet18 was used for feature extraction,
generating a dictionary of visual characteristics from bag in-
stances. Attention mechanisms were further applied to aug-
ment the most discriminative features related to COPD, there-
by increasing detection accuracy [29]. Finally, the resulting
responses were converted into probability values using a
softmax classifier. A detailed network architecture and train-
ing methodology are provided in Supplemental Appendix 2.

Development of the COPD staging model

The GOLD stage of confirmed COPD cases was classified by
training an end-to-end deep learning model to identify radio-
graphic features suggestive of disease severity. As shown in
Figure 3, a lung segmentation algorithm was first applied to
raw 3D CT data to create binary lung masks and exclude

Fig. 2 A flowchart for the proposed COPD detection model. The COPD
detection pipeline consisted of three primary steps: (1) preparation of CT
lung instances and bags (top left); (2) feature extraction using ResNet18
(bottom left); and (3) an attention mechanism–based classifier (bottom
right). The top-right image shows details concerning the ResBlock layer.
In 2D ResNet18, we use c, s, and d to denote number of output channels,

strides, and down-sampling factor. “ResBlock, c = 128, d = 2” denotes a
vanilla ResBlock with 128 output channels and a down-sample skip con-
nection that reduces the resolution with a factor of 2 in x, y direction.
Conv, convolution; BatchNorm, batch normalization; ReLU, rectified
linear unit; Avg, average; FC, fully connected layer

Fig. 3 Illustration of theGOLD stage classificationmodel.Model input is
a composite of three channels, including raw CT volumes, segmented
lung parenchyma, and emphysema features (CT value ≤ 950 HU).
Stacked channels were then passed through a 3D ResNet50 network

consisting of five ResBlock layers. A final softmax layer was applied to
the output of the fully connected layer to generate four GOLD stage
categories. HU, Hounsfield units
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unrelated information that might cause confusion or reduce
learning efficiency. This segmentation algorithm was devel-
oped in-house, derived from a signature U-net architecture
[30], and implemented in MxNet. We next employed a
multi-channel strategy that included raw CT volumes, seg-
mented lung parenchyma, and emphysema features (percent
low-attenuation area less than −950 Hounsfield units, %LAA-
950) as model inputs. Stacked channels were concatenated
into 3D volumes and passed to a 3D ResNet50 network for
post-processing. The proposed 3D ResNet50 consisted of five
ResBlock layers capable of processing high-dimensional and
complex features for improved prediction outcomes. A final
softmax layer was applied to the output of the fully connected
layer, to generate four GOLD stage categories. The detailed
network architecture and training methodology are provided
in Supplemental Appendix 3.

Model validation

The performance of the proposed attention-based MIL COPD
detection model was evaluated using a test set of 278 non-
overlapping participants. External validation was further con-
ducted with 620 LDCT scans acquired from the NLST cohort.
The receiver operating characteristic (ROC) curves and their
confidence interval were determined in accordance with the
DeLong methods, to assess the DL model’s ability to identify
COPD patients from a large heterogeneous dataset. Confusion
matrices such as sensitivity, specificity, negative predictive
value (NPV), positive predictive value (PPV), and F1 score
were determined when applying an optimal threshold selected
from the validation set. We also reported the COPD detection
accuracy of a common quantitative CTmeasurement (%LAA-
950), as a reference to prior studies reporting similar out-
comes. A five-fold cross-validation was used to evaluate the
staging performance of themulti-channel COPD staging mod-
el. Considering the imbalance in the number of patients within
each GOLD stage, micro F1 score and Cohen’s weighed kap-
pa were applied to allow comparison.

Statistical analysis

Measurement data of the baseline clinical and demographic
characteristics with normal distribution were presented as
mean ± standard deviation (SD), and data with non-normal
distribution were presented as the median (M) and upper and
lower quartile spacing (IQR). Categorical variables were pre-
sented as numbers (%). The Wilcoxon signed-rank or
Kruskal-Wallis tests were used for numerical variables, and
Fisher exact tests were used for categorical variables. No mul-
tivariable analyses were conducted, because we deployed
each model as an assessment of risk over the entire cohort.
Statistical analysis was performed using the IBM SPSS

statistics 20.0 software (SPSS) in the R programming lan-
guage (version 3.4.0, http://www.Rproject.org).

Results

Demographic and clinical characteristics

A total of 1393 participants were included in the study:
749 spirometry-defined COPD patients and 644 non-
COPD participants. The median age of COPD patients
was higher than that of non-COPD participants (62 vs
56, p < 0.001) and the majority of the COPD cohort
was male (76.09%), which is consistent with COPD gen-
der distributions in China [6]. In addition, a higher pro-
portion of smokers (24.53% vs 4.67%, p < 0.001), a re-
duced FEV1 percentage (52.56% vs 103.25%, p < 0.001),
and a lower average body mass index (BMI) (22.73 vs
24.02, p < 0.001) were evident among the COPD patients.
The percentages of stage 1, 2, 3, and 4 spirometry-defined
COPD subjects on the GOLD scale were 3.73%, 59.63%,
30.28%, and 6.37%, respectively. Cardiovascular disease
was the most common comorbidity within the dataset,
followed by asthma in the COPD group and diabetes
mellitus in the non-COPD group. Of the non-COPD par-
ticipants, 376 (50.20%) were healthy subjects with normal
CT manifestations and clinical assessments. Detailed de-
mographic and clinical characteristics for the participants
are provided in Table 1.

COPD detection performance

We first examined the overall detection performance of the
proposed CT-DL model. The present attention-based MIL
algorithm correctly determined the presence or absence of
COPD in 243 of 278 subjects in the test set, with an AUC of
0.934 (95% CI: 0.903, 0.961), as shown in Figure 4A. When
applying the optimal threshold value (a probability of 0.25
determined by Youden [31] in the validation set), we obtained
the sensitivity, specificity, NPV, PPV, and F1 score of 0.805,
0.925, 0.888, 0.865, and 0.894, respectively (see Table 2).

We subsequently evaluated the generalizability of the mod-
el among groups categorized by sex, age, CT manufacturer,
and slice thickness, as we anticipate that the model will be
applicable in diverse clinical settings. The model exhibited
relatively robust performance, with AUC values ranging be-
tween 0.874 and 1.000 (see Table 2 and Figure 4C). This
performance was not affected by modifications to imaging
settings or participant demographics. The common quantita-
tive CT measurement %LAA-950 was also used as a refer-
ence, producing an AUC of 0.708 (95% CI: 0.648, 0.768) for
the same test set when detecting COPD using univariate re-
gression analysis (see Table 2).
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For the external validation dataset (NLST), the model
showed an AUC of 0.866 (95% CI: 0.805, 0.928), with the
sensitivity and specificity of 0.804 and 0.835, using the same
threshold. The confusion matrices revealed that 516 of 620
subjects were accurately categorized, with the sensitivity and
specificity of 0.804 and 0.835, respectively, using the optimal
threshold of the maximized Youden Index (see Figure 4B).
Other measurements, including sensitivity, specificity, PPV,
NPV, and F1 score, are summarized in Table 2.

Feature extraction visualization

The lack of transparency inmachine learning can be overcome
by applying gradient-weighted class activation mapping
(Grad-CAM) to visualize feature extraction using a heatmap
[16]. As shown in Figure 5, signature lesions related to COPD
detection and differential diagnosis, such as emphysema (A),
diffuse exudation (B), bronchiectasis (C), and pulmonary
mass (D), were manifest as increased values in the Grad-
CAM results, while zero values in the heatmap corresponded
to normal regions in the lung. Insights generated from the CT-
DL model were compared with manual annotations made by
experienced respiratory specialists, and the results indicated
that the model pays specific attention to these lesions when
distinguishing COPD subjects.

GOLD stage prediction performance

Confusion matrices showed the number of cases between the
spirometry-defined GOLD stage and the differential classifi-
cation of the proposed CT-DL model in the pooled dataset.
The number of accurate GOLD stage predictions is shown in
diagonal, with a pooled overall accuracy of 76.4% (423 out of
553) (see Figure 6). Detailed results in Table 3 show that the
AUC for classifying GOLD stages 1, 2, 3, and 4 were 0.901,
0.903, 0.848, and 0.952, respectively. The model adopted a
Cohen’s weighted kappa of 0.619, suggesting a strong agree-
ment between predictions and truth labels. Other measure-
ments within each stage, including sensitivity, specificity,
and F1 score are summarized in Table 3.

Discussion

In the present study, an attention-based MIL model was de-
veloped to identify spirometry-defined COPD patients using a
large and highly heterogeneous collection of CT scans across
China. The dataset contained participants recruited from both
outpatient and inpatient and physical examination settings.
Implemented with the novel DL networks, our model
achieved an AUC of 0.934 (95% CI: 0.903, 0.961) in the
internal test group of 278 subjects. This DL-based approach

Table 1 Demographic and
clinical characteristics for the
development dataset

Demographic characteristics COPD (n = 644) Non-COPD (n = 749) p value

Age, Yrs, M (IQR) 62 (22–85) 56 (14–84) p < 0.001

Sex, %male (n) 76.09 (490) 45.93 (344) p < 0.001

BMI, mean (SD) 22.73 (3.78) 24.02 (3.07) p < 0.001

Former or current smokers, % (n) 24.53 (158) 4.67 (35) p < 0.001

Pack-years, mean (SD) 36.42 (21.33) 32.08 (22.79) p = 0.1451

FEV1% predicted, mean (SD) 52.56 (14.74) 103.25 (12.80) p < 0.001

GOLD stage, % (n)

1 3.73 (24) NA NA

2 59.63 (384) NA NA

3 30.28 (195) NA NA

4 6.37 (41) NA NA

Underlying diseases, % (n)

Cardiovascular disease 45.65 (294) 15.49 (116) p < 0.001

Diabetes mellitus 18.63 (120) 6.54 (49) p < 0.001

Pulmonary nodule 5.59 (36) 10.01 (75) p < 0.005

Asthma 38.66 (249) 0.80 (6) p < 0.001

Bronchiectasis 9.94 (64) 0.13 (1) p < 0.001

Pneumonia 18.94 (122) 2.67 (20) p < 0.001

Others 2.95 (19) 14.55 (109) p < 0.001

Healthy subjects, % (n) NA 50.20 (376) NA

COPD, chronic obstructive pulmonary disease; Yrs, years; M (IQR), median, interquartile range; SD, standard
deviation; BMI, body mass index; FEV1, forced expiratory volume in 1 second; NA, not applicable
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Table 2 COPD detection performance for the attention-based MIL model

Test set (n = 278) AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

NPV PPV F1 score

Overall performance 0.934
(0.903, 0.961)

0.805
(0.731,0.874)

0.925
(0.881,0.963)

0.888 0.865 0.894

Subgroup—sex
Female (n = 115) 0.924

(0.888, 0.963)
0.708
(0.5, 0.88)

0.945
(0.894, 0.989)

0.773 0.925 0.935

Male (n = 163) 0.929
(0.847, 0.976)

0.829
(0.753, 0.904)

0.899
(0.821, 0.959)

0.918 0.795 0.844

Subgroup—age range
0–25 years (n = 10) 1.000 NA 1.000 NA 1.000 1.000
25–50 years (n = 73) 0.874

(0.733, 0.988)
0.545
(0.222, 0.867)

0.968
(0.919, 1.0)

0.750 0.923 0.945

50–75 years (n = 175) 0.918
(0.874, 0.953)

0.820
(0.728, 0.893)

0.884
(0.815, 0.947)

0.880 0.826 0.854

75–100 years (n = 20) 1.000 0.889
(0.812, 0.951)

1.000 1.000 0.500 0.667

Subgroup—apparatus
GE (n = 182) 0.929

(0.888, 0.963)
0.918
(0.86, 0.968)

0.798
(0.704, 0.884)

0.841 0.893 0.878

SIEMENS (n = 66) 0.941
(0.874, 0.988)

0.897
(0.788, 0.976)

0.889
(0.75, 1.0)

0.921 0.857 0.909

Others (n = 30) 0.989
(0.912, 1)

0.571
(0.391, 0.725)

1.000 1.00 0.884 0.970

Subgroup—slice thickness
1.25 mm (n = 164) 0.959

(0.924, 0.988)
0.902
(0.82, 0.969)

0.923
(0.881, 0.978)

0.941 0.887 0.936

1.5 mm (n = 92) 0.908
(0.844, 0.963)

0.833
(0.731, 0.927)

0.763
(0.625, 0.892)

0.763 0.833 0.763

5 mm (n = 489) 0.927
(0.796, 0.895)

0.847
(0.926, 0.953)

0.861
(0.818, 0.901)

0.878 0.828 0.869

Others (n = 52) 0.879
(0.75, 0.983)

0.571
(0.167, 1.0)

0.933
(0.854, 1.0)

0.933 0.571 0.933

Quantitative CT metrics
%LAA-950 0.708

(0.648,0.768)
0.576
(0.402, 0.715)

0.787
(0.732,0.841)

0.716 0.667 0.618

External validation
NLST (n = 620) 0.866

(0.805, 0.928)
0.804
(0.687, 0.907)

0.835
(0.802, 0.86)

0.977 0.326 0.464

AUC, area under the receiver operating characteristic curve; 95% CI, 95% confidence interval; NPV, negative predictive value; PPV, positive predictive
value; %LAA-950, percentage of lung volume less than or equal to −950 Hounsfield units; NLST, National Lung Screening Trial

Fig. 4 COPD detection performance using the attention-basedMILmod-
el. Receiver operating characteristic curves and confusionmatrices for the
MIL model during prediction of COPD in the internal test set. (b) COPD
detection performance for the external validation set (NLST). (c) Model

generalizability among groups categorized by sex, age, CTmanufacturer,
and slice thickness. ROC, receiver operating characteristic curve; AUC,
area under the receiver operating characteristic curve; 95% CI, 95% con-
fidence interval; NLST, National Lung Screening Trial
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also revealed satisfactory robustness across distinct scanner
models, and slice thickness was employed to reconstruct CT
scans, with AUC of 0.8 and above. The generalizability of the
model was externally validated using a separate dataset col-
lected from a large cohort consisting of LDCT scans (NLST),
with the AUC of 0.866 (95% CI: 0.805, 0.928). A multi-
channel 3D ResNet50 network was further trained to predict
GOLD stages for confirmed COPD patients, achieving an
accuracy above 0.8 for every stage. The proposed model of-
fers the requisite performance for detecting COPD and
predicting GOLD stage, and it is also the first attempt to apply
DL-based approaches to COPD case-finding among the
Chinese populace.

Although the heterogeneous pathological nature of
COPD has been understood for decades, patients are cur-
rently diagnosed primarily by spirometry, a history of

exposure (smoking or other environmental factors), and re-
spiratory symptoms at the time of presentation. Over the last
few years, it has become evident that patients without spi-
rometry abnormalities who experience COPD-like respira-
tory symptoms and acute exacerbation events (with signif-
icant pulmonary structural abnormalities) can often be
found among these populations [32–34]. Crapo et al [35]
presented an analysis of baseline phenotyping and a 5-year
longitudinal progression for the COPDGene study, demon-
strating that spirometry criteria alone were insufficient to
characterize COPD participants among current and former
heavy smokers. Results also indicated that quantitative CT
metrics outperformed spirometry when predicting disease
progression and mortality. Accordingly, CT scans could
be used to improve COPD case-finding and evaluation be-
yond spirometry alone.

Fig. 5 Visualization of features
extracted by the MIL model
during COPD detection. The first
column shows the original CT
axial slices. The second column
shows manual annotations of
emphysema (a), diffuse exudation
(b), bronchiectasis (c), and
pulmonary mass (d), identified by
experienced respiratory
specialists. The third column
shows predictions made by the
MIL model. The MIL model
correctly predicted abnormalities
that were highlighted on attention
heatmaps. The color depth of the
heatmaps represented the
possibility of predicted lesions by
the model
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The development of AI for large-scale data processing has
increasingly led to the use of DL-based techniques in estab-
lishing a direct link between diagnostic images and disease
categorization [10, 36]. This approach overcomes the limita-
tions of conventional manual CT image inspection, such as
inter/intra-observer variability and heavy workloads. It also
bypasses the requirement of prior knowledge of radiographic
features, which is required for quantitative CT analysis.
Gonzàlez et al [22] have trained CNN models using CT im-
ages alone to detect and stage COPD among 7983
COPDGene participants, and achieved an accuracy of 0.773
for 1000 non-overlapping participants. In addition, Hatt et al
[23] implemented CNN models with accuracy of 0.777 in
COPDGene cohort and 0.762 in the NLST cohort. Due to
the constrained graphical processing units’ capability, both
studies adopted a strategy of extracting a subset of CT slices
to build up a single montage for an individual instead of using
the full images. The spatial heterogeneity nature of COPD has
then prompted researchers to adopt an MIL strategy in COPD
detection, as only the label of COPD or non-COPD is needed
in case-finding scenarios. Bruijne et al [37] reported that the
use ofMIL combinedwith support vector machine (MI-SVM)
could facilitate the detection of COPD by automatically iden-
tifying emphysema regions on CT images. Xu et al [26] also
proposed a deep CNN transferred multiple instance learning
(DCT-MIL) model to identify COPD using CT images from
280 participants including 190 COPD patients, with an accu-
racy of 99.29% and AUC of 0.983. The analysis process used

in the present study differed from that used in the aforemen-
tioned studies in terms of patient selection and disease spec-
trum distribution. Meanwhile, we adopted a novel attention-
based MIL strategy that improved the proportion of lesion
character information without increasing the computational
power and costs. A multi-channel 3D ResNet50 network
allowed the model to extract spatial information between
slices and identify abnormal images exhibiting relatively
small regions of interest, further improving staging perfor-
mance (see Supplemental Appendices 2–4).

This study offers several clinical benefits. The deep learn-
ing model was trained using subjects recruited from both re-
spiratory clinics and health management centers, thus includ-
ing participants with normal spirometry as well as CT results.
This scenario is representative of diverse clinical situations in
which COPD patients could be detected. Previous attempts
using DL algorithms for COPD detection have mostly been
trained using cohorts enrolling former and current smokers,
which may not truly reflect case-finding settings. While re-
searchers from the COPDGene and ECLIPSE cohorts have
reported desired COPD imaging results, it is crucial to further
extend this expertise into a Chinese population, because a very
small percentage of subjects from the aforementioned studies
were ethnically Chinese. Furthermore, the increased use of
LDCT for pulmonary nodule assessment and lung cancer
screenings has created an opportunity to apply the present
model to COPD detection, with subsequent confirmation
using spirometry. This is particularly relevant, as our model
was generalized to LDCT in the NLST subset.

The present study does have some limitations. First, spi-
rometry was used to diagnose COPD instead of symptoms or
radiographs, which may prevent our algorithm from being
generalized to the detection of COPD in patients without air-
flow limitations, such as para-septal emphysema. This was a
result of the relatively objective criteria used for enrollment.
Second, the size of our cohort is relatively small compared
with other larger cohorts, and the inclusion criteria may lead
to some undesired biases. Third, a limited number of subjects
with GOLD 1 and 4 were enrolled, which might constrain the
model’s stratification capacity and resulted in the discrepancy

Table 3 GOLD stage prediction performance for the multi-channel 3D
residual network applied to the test set

Class Sensitivity Specificity F1 score AUC (95% CI)

GOLD1 0.474 0.994 0.581 0.901 (0.808, 0.994)

GOLD2 0.853 0.815 0.798 0.903 (0.874, 0.932)

GOLD3 0.748 0.811 0.754 0.848 (0.814, 0.882)

GOLD4 0.629 0.986 0.727 0.952 (0.917, 0.987)

Micro Avg. 0.765 0.922 0.765 0.912 (0.882, 0.941)

AUC, area under the receiver operating characteristic curve; 95%CI, 95%
confidence interval

Fig. 6 Confusion matrices of
five-fold cross-validation per-
formed on the multi-channel 3D
ResNet50 network in classifying
the GOLD stage. AUC, area un-
der the receiver operating charac-
teristic curve; 95% CI, 95% con-
fidence interval
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of staging efficiency between groups. Fourth, the NLST
dataset is considered as a poor validation cohort given its
predominate portion of smokers with high risk of lung cancer.
To improve the efficiency of detection and staging, we are
currently recruiting more participants and aim to optimize
our cohort in the future. Last but certainly not least, the ability
of DL to detect and stage COPD without specification of
clinical or radiographic characteristics could be considered
both a strength and a weakness. The “black box” nature of
the DL model may severely limit its utility in clinical situa-
tions, as it does not provide sufficient information to clinicians
concerning its decision-making process. Future work is ur-
gently needed to elucidate the decision path.

In conclusion, we developed and validated a CT-DL ap-
proach for detecting and staging of spirometry-defined COPD
via a highly heterogeneous Chinese population cohort. The
proposed model approach achieved the desired performance
and could serve as a powerful tool for COPD case-finding,
providing useful indicators for clinicians and clinically rele-
vant findings that could improve management and follow-up
treatment for specific patients.
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