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Abstract
Objectives To evaluate the quality of radiomics studies using cardiac magnetic resonance imaging (CMR) according to the radiomics
quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
guidelines, and the standards defined by the ImageBiomarker Standardization Initiative (IBSI) and identify areas needing improvement.
Materials and methods PubMed and Embase were searched to identify radiomics studies using CMR until March 10, 2021. Of
the 259 identified articles, 32 relevant original research articles were included. Studies were scored according to the RQS,
TRIPOD guidelines, and IBSI standards by two cardiac radiologists.
Results The mean RQS was 14.3% of the maximum (5.16 out of 36). RQS were low for the demonstration of validation
(−60.6%), calibration statistics (1.6%), potential clinical utility (3.1%), and open science (3.1%) items. No study conducted a
phantom study or cost-effectiveness analysis. The adherence to TRIPOD guidelines was 55.9%. Studies were deficient in
reporting title (3.1%), stating objective in abstract and introduction (6.3% and 9.4%), missing data (0%), discrimination/
calibration (3.1%), and how to use the prediction model (3.1%). According to the IBSI standards, non-uniformity correction,
image interpolation, grey-level discretization, and signal intensity normalization were performed in two (6.3%), four (12.5%), six
(18.8%), and twelve (37.5%) studies, respectively.
Conclusion The quality of radiomics studies using CMR is suboptimal. Improvements are needed in the areas of validation,
calibration, clinical utility, and open science. Complete reporting of study objectives, missing data, discrimination/calibration,
how to use the prediction model, and preprocessing steps are necessary.
Key Points
• The quality of science in radiomics studies using CMR is currently inadequate.
• RQS were low for validation, calibration, clinical utility, and open science; no study conducted a phantom study or cost-
effectiveness analysis.

• In stating the study objective, missing data, discrimination/calibration, how to use the prediction model, and preprocessing
steps, improvements are needed.

Keywords Heart . Magnetic resonance imaging .Machine learning . Quality improvement

Abbreviations
CMR Cardiac magnetic resonance imaging
IBSI Image Biomarker Standardization Initiative

LGE Late gadolinium enhancement
RQS Radiomics quality score
TRIPOD Transparent Reporting of a multivariable predic-

tion model for Individual Prognosis Or Diagnosis

Introduction

Cardiac magnetic resonance imaging (CMR) comprehen-
sively evaluates cardiac structure and function and charac-
terizes myocardial tissue. It is considered the gold standard
to assess ventricular function and volume [1]. The ability of
CMR to distinguish heart tissue characteristics facilitates
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assessing myocardial viability, determining a differential
diagnosis, and predicting prognosis in several cardiomyop-
athies [2, 3]. In addition to qualitatively interpreting CMR
images by visual inspection, the use of quantitative param-
eters, including parametric mapping techniques, is growing
[4]. However, it still has limitations with broad overlap
between health and various diseases [5], necessitating a
method that utilizes the information of CMR images to
the maximum.

Radiomics is an emerging field of research that converts
digital medical images into mineable data to extract quan-
titative features, expanding the utility of images into
decision-making and personalized healthcare management
[6]. Traditionally, radiomics studies have been mainly con-
ducted in oncology [7], while it has not been extensively
conducted in cardiology. However, its application to cardi-
ac imaging has been gradually increasing, especially with
CMR [8, 9].

Early studies of echocardiography conducted quantita-
tive texture analysis for differential diagnosis [10, 11], but
the experience of radiomics in echocardiography is limit-
ed due to low reproducibility. In cardiac CT, several stud-
ies reported promising results of radiomics for character-
ization of coronary plaque [12, 13], perivascular adipose
tissue [14, 15], myocardium [16, 17], and cardiac mass
[18, 19]. In CMR, several studies have demonstrated fea-
sibility and potential clinical utility of radiomics analysis
for diagnostic or prognostic purposes [8]. Since radiomics
analysis provides additional objective data from existing
images, it has potential to be added to the routine clinical
workflow [9].

Despite promising results, CMR radiomics is rarely ap-
plied in clinical practice. An important reason for this gap is
that standardization of the methodology and reproducibility
and robustness of the features are not sufficiently verified
[20]. Therefore, generating radiomics data using high-
quality science and reporting practices is essential to its
clinical application [21].

The radiomics quality score (RQS) was developed to assess
the methodology and analysis of a radiomics study [22] and
has been applied to oncology or dementia studies [23–30].
Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) guidelines
are used to evaluate studies that apply diagnostic or prognostic
prediction models [31]. Transparent reporting reduces the risk
of bias and enhances the clinical utility of a prediction model.
Standards defined by the Image Biomarkers Standardization
Initiative (IBSI) provide uniformity for image biomarker no-
menclature and definitions, image processing workflows,
tools for verifying radiomics software implementations, and
reporting of radiomic studies [32].

To the best of our knowledge, no previous study has com-
prehensively evaluated CMR radiomics studies using these

three sets of guidelines. Therefore, the purpose of this study
was to assess the quality of radiomics studies using CMRwith
RQS, TRIPOD guidelines, and IBSI standards to identify
areas in need of improvement.

Materials and methods

Article search strategy

Two cardiac radiologists with 6 and 9 years of experience,
respectively, designed the search strategy. Each radiologist
independently performed systematic searches of PubMed
and EMBASE on March 10, 2021, to identify relevant origi-
nal research articles reporting CMR radiomics studies. The
search terms are listed in Supplementary Materials.

Study selection

Two radiologists independently reviewed the search re-
sults. Articles were initially screened based on titles and
abstracts of articles meeting the inclusion criteria. A study
was selected for inclusion if it analyzed radiomics using
CMR images, involved human participants, collected data
from in vivo studies, was written in English, and had avail-
able full text. Full-text articles were then reviewed for eli-
gibility. A study was excluded if it was test-retest study
without investigating diagnostic or prognostic utility, or
did not evaluate the diagnostic or prognostic performance
(Fig. 1).

Data extraction

Two radiologists independently extracted data, and any
disagreements were resolved by consensus. The extract-
ed parameters included (a) article information: authors,
year of publication, journal type (clinical, imaging, or
computer science journal), diseases, study topic, the
intended use of radiomics features (diagnostic or prog-
nostic), and the sequence(s) used for feature extraction;
(b) enrollee characteristics: number of participants and
primary diagnosis.

Method quality based on RQS

The RQS consists of 16 items and is divided into six do-
mains [22]. The details of RQS are presented in
Supplementary Materials. Two radiologists independently
assessed the RQS of each article. If disagreement occurred
between the two reviewers, a final decision was made by a
consensus through discussion. The topics which were sub-
ject to further discussions until a consensus was reached
included feature reduction, discrimination statistics, non-
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radiomics features, biological correlates, and comparison to
“gold standard”.

Reporting completeness based on TRIPOD guidelines

The TRIPOD checklist consists of 22 main criteria assessed
by a total of 37 items. Items 21 and 22were excluded from this
study because they refer to supplementary and funding infor-
mation. Therefore, each article was evaluated with 35 param-
eters to assess reporting completeness [31]. Furthermore, the
type of radiomics model in each article was categorized as
development only (type 1a), development and validation
using resampling (type 1b), random split-sample validation
(type 2a), non-random split-sample validation (type 2b), val-
idation using separate data (type 3), or validation only (type
4). The details of the TRIPOD checklist and data extraction
method are presented in Supplementary Materials.

Image preprocessing quality and radiomics feature
extraction based on IBSI standards

Two radiologists evaluated whether the preprocessing and
processing items were detailed in the methods based on the
IBSI guidelines (https://ibsi.readthedocs.io/en/latest/): non-
uniformity correction, image interpolation, grey-level
discretization, signal intensity normalization, radiomics fea-
ture extraction software, and segmentation method.

Statistical analysis

The RQS score was calculated for each article (score range, −8
to 36), and the RQS for all articles was expressed as the mean
± standard deviation, and median with interquartile range. For
the six domains in the RQS (protocol quality and segmenta-
tion, feature selection and validation, biologic/clinical valida-
tion and utility, model performance index, high level of evi-
dence, and open science and data), basic adherence was
assigned when a score of at least 1 point was obtained without
minus points. The basic adherence to RQS criteria (range, 0–
16) and each item scored for the TRIPOD guidelines (range,
0–35) were counted and calculated as proportions (%). The
TRIPOD item 5c (“if done” item) and validation items 10c,
10e, 12, 13c, 17, and 19a were excluded from the numerator
and denominator when calculating overall adherence. The six
IBSI standards were scored, and the adherence to each stan-
dard was calculated as a proportion (%). Subgroup analyses
were performed by categorizing articles based on the year of
publication (publication before January 1, 2019 [n = 12], or
after January 1, 2019 [n = 20]) and journal impact factor (4.0
or higher [n = 16] or lower than 4.0 [n = 16]), according to the
2020 Journal Citation Reports. The impact factor 4.0 was
chosen based on the median value of impact factors of
included articles. The non-parametric Mann-Whitney U
test was used to compare RQS scores within each group.
Fisher’s exact test was used to compare proportions of
RQS, TRIPOD guidelines, and IBSI standards for small
sample sizes. All statistical analyses were performed using

Fig. 1 Flow diagram of the study
selection process
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SPSS version 24.0 (IBM), and a p-value < 0.05 was con-
sidered statistically significant.

Results

Characteristics of radiomics studies using CMR

The characteristics of the 32 included radiomics studies
[33–64] are summarized in Table 1 and Fig. 2. The journal,
impact factor, primary diagnosis, study topic, biomarker,
number of participants, and model type are summarized in
Supplementary Table 1. The mean number of patients per
study was 244.5 (standard deviation, 850.9; range, 23–4891).

The proportions of studies by journal type are as follows:
imaging journals (59.4%), clinical journals (28.1%), and com-
puter science journals (12.5%). Radiomics analyses were

conducted for diagnostic purposes (50%) and to identify prog-
nostic biomarkers (50%). The two most frequent primary di-
agnoses were non-ischemic cardiomyopathy (50%) and ische-
mic cardiomyopathy (31.3%). The study purposes included
differential diagnosis (46.9%), adverse event prediction
(34.4%), late gadolinium enhancement (LGE) prediction
(9.4%), functional recovery prediction (6.3%), and genomic
classification (3.1%). Mapping was the most studied sequence
(40.6%), followed by LGE (31.3%), cine (18.8%), T1-
weighted image (3.1%), T2-weighted image (3.1%), and two
or more sequences (6.3%). Most studies performed manual
segmentation (90.6%), whereas three (9.4%) performed auto-
matic segmentation. Studies were more frequently conducted
at 1.5T (62.5%) than 3T (25%). Three studies (9.4%) included
both 1.5T and 3T scans, and one study did not report the
magnetic field strength. Three studies were published in
2010–2015, nine in 2016–2018, and twenty in 2019–2021.

Table 1 Characteristics of the
included 32 cardiac magnetic
resonance imaging radiomics
articles with diagnostic or
prognostic utility

Article characteristics Number of
articles (%)

Patient number Mean = 244.5 (standard deviation, 850.9; range, 23–4891)

Journal type Imaging journal 19 (59.4)

Clinical journal 9 (28.1)

Computer science journal 4 (12.5)

Intended use Diagnostic 16 (50)

Prognostic 16 (50)

Included diseases Non-ischemic cardiomyopathy 16 (50)

Ischemic cardiomyopathy 10 (31.3)

Ischemic and non-ischemic cardiomyopathy 2 (6.3)

Heart failure 2 (6.3)

Tumor 1 (3.1)

Heterogeneous 1 (3.1)

Study topics Differential diagnosis 15 (46.9)

Adverse event prediction 11 (34.4)

Late gadolinium enhancement prediction 3 (9.4)

Functional recovery prediction 2 (6.3)

Genomic classification 1 (3.1)

Sequence used for feature
extraction

Mapping 13 (40.6)

Late gadolinium enhancement 10 (31.3)

Cine 6 (18.8)

T1-weighted image 1 (3.1)

T2-weighted image 1 (3.1)

Two or more sequences 2 (6.3)

Segmentation Manual 29 (90.6)

Automatic 3 (9.4)

Magnetic field strength 1.5 20 (62.5)

3.0 8 (25)

1.5 and 3.0 3 (9.4)

Not described 1 (3.1)
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Four of the 32 studies were published in journals ranked in the
top 10% in the field by impact factor [44, 46, 50, 52].

RQS according to the six key domains

The RQS evaluation is summarized in Table 2. The RQS of the
32 studies combined expressed as a percentage of the ideal
score according to the six key domains is shown in Fig. 3.
The mean overall RQS is 5.16 ± 5.85 (range, −5 to 21), or
14.3 ± 16.3% of the ideal score of 36. Key domain 2 (feature
selection and validation) has the lowest percentage (−21.5%) of
the ideal score, followed by domain 6 (open science and data,
3.1%) and domain 5 (high level of evidence, 19.1%). Domain 4
has the highest percentage of the ideal score (34.9%).

Basic adherence to the RQS according to the six key
domains

The basic adherence to the 16 RQS criteria is documented in
Table 2. The overall basic adherence to the RQS is 35.5%.

Thirty studies (93.8%) followed the domain 1 criterion of
having a well-documented image protocol, and one study used
a public protocol [60]. Only one study used a test-retest ap-
proach at different times to evaluate robustness to temporal
variability [43], and no study performed a phantom study.
Multiple segmentations for the same region were performed
in 19 studies (59.4%) [33–39, 41, 42, 44–46, 48–52, 59, 63].

Twenty-three studies (71.9%) performed the domain 2 criteria
of feature reduction or adjustment for multiple testing [33–39,
41, 42, 44, 46–52, 54, 55, 59–61, 63]. Nine studies (28.1%)

performed validation from the same institute [35, 37, 39, 41,
44, 47, 56, 57, 64]. No study performed external validation.

Twelve studies (37.5%) performed the domain 3 criterion of
cutoff analysis. Twenty-nine studies (90.6%) applied discrimi-
nation statistics using receiver operating characteristics curve
and/or area under the curve, and only one study (3.1%) adopted
calibration statistics without a resampling method [35].

Twenty-two studies (68.8%) performed the domain 4 cri-
terion of discussed biological correlation of the radiomics fea-
tures, and eighteen studies (56.3%) compared the radiomics
features to the gold standard methods. Seven studies (21.9%)
performed multivariable analysis with non-radiomics features
[36, 40, 45, 48, 49, 58, 63], and one study (3.1%) derived the
potential clinical utility [35].

Seven articles (21.9%) reported performing the domain 5
criterion of a prospective study [36, 41, 45, 46, 52, 57, 63]. No
study conducted a cost-effectiveness analysis. Three studies
(9.4%) performed the domain 6 criterion of using open-source
scans or code [38, 41, 60].

Reporting completeness of radiomics-based multi-
variable prediction models using TRIPOD

The mean number of TRIPOD items reported is 16.5 ± 4.0
(standard deviation; range, 9–25) out of the 35 items consid-
ered. The adherence rate for TRIPOD is 55.9% ± 12.2% (stan-
dard deviation; range, 32.1%–78.6%) when “if relevant” and
“if done” items are excluded from the numerator and denom-
inator. The reporting completeness of individual TRIPOD
items is shown in Table 3.

Fig. 2 Summary charts of the 32
included radiomics studies
displayed according to disease,
study topic, used sequence, and
year of publication
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Quality of image preprocessing and radiomics feature
extraction according to IBSI

Most studies did not report preprocessing steps in detail
(Table 4). Two studies (6.3%) performed non-uniformity

correction, four studies (12.5%) performed image interpola-
tion, six studies (18.8%) performed grey-level discretization,
and twelve studies (37.5%) performed signal intensity normal-
ization. The software packages used for radiomics feature ex-
traction were MaZda (43.8%), MATLAB (34.4%), TexRAD

Table 2 Radiomics quality score according to the six key domains

Basic adherence
rate

Mean score Percentage of the ideal
score (%)

Median score
(Q1, Q3)

Total (ideal score 36) 35.5% 5.16 ± 5.85 14.3 ± 16.3 4.5 (1.75, 10)

Domain 1: protocol quality and stability in image
and segmentation (0 to 5 points)

50 (39.1%) 1.59 ± 0.61 31.9 ± 12.3 2 (1, 2)

Protocol quality (2) 30 (93.8%) 0.97 ± 0.31 48.4 ± 15.5 1 (1, 1)

Test-retest (1) 1 (3.1%) 0.03 ± 0.18 3.1 ± 17.7 0 (0, 0)

Phantom study (1) 0 0 0 0 (0, 0)

Multiple segmentation (1) 19 (59.4%) 0.59 ± 0.5 59.4 ± 49.9 1 (0, 1)

Domain 2: feature selection and validation (−8 to 8 points) 32 (50%) −1.72 ± 4.06 −21.5 ± 50.7 −2 (−2, −1)
Feature reduction or adjustment of multiple testing (−3 or 3) 23 (71.9%) 1.31 ± 2.74 43.8 ± 91.4 3 (−3, 3)
Validation (−5, 2, 3, 4, or 5) 9 (28.1%) −3.03 ± 3.2 −60.6 ± 64 −5 (−5, 2)
Domain 3: model performance index (0 to 5 points) 42 (43.8%) 1.53 ± 0.62 30.6 ± 12.4 2 (1, 2)

Cutoff analysis (1) 12 (37.5%) 0.38 ± 0.49 37.5 ± 49.2 0 (0, 1)

Discrimination statistics (2) 29 (90.6%) 1.13 ± 0.55 56.3 ± 27.7 1 (1, 1)

Calibration statistics (2) 1 (3.1%) 0.03 ± 0.18 1.6 ± 8.8 0 (0, 0)

Domain 4: biologic/clinical validation and utility (0 to 6 points) 48 (37.5%) 2.09 ± 1.3 34.9 ± 21.7 2 (1, 3)

Non-radiomics features (1) 7 (21.9%) 0.22 ± 0.42 21.9 ± 42 0 (0, 0)

Biologic correlates (1) 22 (68.8%) 0.69 ± 0.47 68.8 ± 47.1 1 (0, 1)

Comparison to “gold standard” (2) 18 (56.3%) 1.13 ± 1.01 56.3 ± 50.4 2 (0, 2)

Potential clinical utility (2) 1 (3.1%) 0.06 ± 0.35 3.1 ± 17.7 0 (0, 0)

Domain 5: high level of evidence (0 to 8 points) 7 (10.9%) 1.53 ± 2.94 19.1 ± 36.8 0 (0, 0)

Prospective study (7) 7 (21.9%) 1.53 ± 2.94 21.9 ± 42 0 (0, 0)

Cost-effectiveness analysis (1) 0 0 0 0 (0, 0)

Domain 6: open science and data (0 to 4 points) 3 (9.4%) 0.13 ± 0.42 3.1 ± 10.5 0 (0, 0)

Fig. 3 Radiomics quality scores
(RQS) of the 32 studies combined
and expressed as a percentage of
the ideal score according to the six
key domains
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Table 3 Number of the radiomics studies that adhered to the individual items of the Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) guidelines

TRIPOD item Number of
articles (%)

Total (35 items)

Title and abstract

1. Title: identify developing/validating a model, target population, and the outcome 1 (3.1)

2. Abstract: provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome,
statistical analysis, results, and conclusions

2 (6.3)

Introduction

3a. Explain the medical context and rationale for developing/validating the model 31 (96.9)

3b. Specify the objectives, including whether the study describes the development/validation of the model or both 3 (9.4)

Methods

4a. Source of data: describe the study design or source of data (randomized trial, cohort, or registry data) 19 (59.4)

4b. Source of data: specify the key dates 27 (84.4)

5a. Participants: specify key elements of the study setting including number and location of centers 11 (34.4)

5b. Participants: describe eligibility criteria for participants (inclusion and exclusion criteria) 23 (71.9)

5c. Participants: give details of treatment received, if relevant (n = 16) 3 out of 16

6a. Outcome: clearly define the outcome, including how and when assessed 23 (71.9)

6b. Outcome: report any actions to blind assessment of the outcome 14 (43.8)

7a. Predictors: clearly define all predictors, including how and when assessed 32 (100)

7b. Predictors: report any actions to blind assessment of predictors for the outcome and other predictors 20 (62.5)

8. Sample size: explain how the study size was arrived at 14 (43.8)

9. Missing data: describe how missing data were handled with details of any imputation method 0

10a. Statistical analysis methods: describe how predictors were handled 32 (100)

10b. Statistical analysis methods: specify type of model, all model-building procedures (any predictor selection),
and method for internal validation

24 (75)

10d. Statistical analysis methods: specify all measures used to assess model performance and if relevant,
to compare multiple models (discrimination and calibration)

1 (3.1)

11. Risk groups: provide details on how risk groups were created, if done (yes or no, n = 32) 12 (37.5)

Results

13a. Participants: describe the flow of participants, including the number of participants with and without
the outcome. A diagram may be helpful

26 (81.3)

13b. Participants: describe the characteristics of the participants, including the number of participants
with missing data for predictors and outcome

27 (84.4)

14a. Model development: specify the number of participants and outcome events in each analysis 32 (100)

14b. Model development: report the unadjusted association between each candidate predictor and outcome,
if done (yes or no, n = 32)

14 (43.8)

15a. Model specification: present the full prediction model to allow predictions for individuals (regression coefficients, intercept) 5 (15.6)

15b. Model specification: explain how to use the prediction model (nomogram, calculator, etc.) 1 (3.1)

16. Model performance: report performance measures (with confidence intervals) for the prediction model 17 (53.1)

Discussion

18. Limitations: discuss any limitations of the study 30 (93.8)

19b. Interpretation: give an overall interpretation of the results 32 (100)

20. Implications: discuss the potential clinical use of the model and implications for future research 28 (87.5)

For validation (types 2a, 2b, 3, and 4) n = 9

10c. Methods-statistical analysis methods: describe how the predictions were calculated 9 (100)

10e. Methods-statistical analysis methods: describe any model updating (recalibration), if done (n = 0) 0

12. Methods-identify any differences from the development data in setting, eligibility criteria, outcome, and predictors 8 (88.9)

13c. Results-show a comparison with the development data of the distribution of important variables 4 (44.4)

17. Results-model updating: report the results from any model updating, if done (n = 0) 0

19a. Discussion-interpretation: discuss the results with reference to performance in the development data and any other validation data 3 (33.3)
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(12.5%), PyRadiomics (3.1%), and AVIEW (3.1%). One
study did not mention the software used.

Subgroup analysis

The results of the subgroup analysis are shown in Table 5. The
total RQS is higher for the twenty studies published since
2019 than the twelve studies published before 2019, but the
difference is not statistically significant (mean 6.4 ± 6.4 vs.
3.08 ± 4.25; p = 0.114). The studies published since 2019
score higher for domain 1 (p = 0.02) and domain 4 (p =
0.005) items. The most significant difference is observed for
the “comparison to gold standard” parameter (p = 0.007). The
more recently published studies also have higher adherence
rates for the TRIPOD criterion of “describing eligibility
criteria” (p = 0.049). No significant differences are observed
between the two groups for ISBI standards.

The total RQS is higher for studies published in the journals
with higher ( ≥ 4.0) impact factor than those published in
journals with lower ( < 4.0) impact factor (mean 7.56 ± 4.29
vs. 2.75 ± 6.32; p = 0.007). The studies published in higher
impact factor journals score higher for domain 5 (p = 0.035).
The studies published in higher impact factor journals also have
higher adherence rates for TRIPOD criterion of “key dates” (p
= 0.043), “modeling” (p = 0.037), and “unadjusted association”
(p = 0.033). No statistically significant differences are observed
between the two groups for IBSI standards.

Discussion

Our systematic review evaluated the quality of science in
CMR radiomics studies using the RQS, TRIPOD guidelines,

and IBSI standards. Radiomics studies scored poorly in sci-
ence quality and reporting completeness, with 14.3% of the
ideal RQS and 55.9% adherence to the TRIPOD guidelines.
No study performed a phantom study or cost-effective analy-
sis, and approximately half of the TRIPOD items were not
adequately recorded. Most studies did not report preprocess-
ing steps according to the IBSI standards. These results imply
that CMR radiomics studies need significant improvement in
scientific quality.

The number of radiomics studies performed using CMR is
relatively small. However, the studies published to date dem-
onstrate promising results for differential diagnosis and prog-
nosis. Because radiomic features extracted from CMR images
can be affected by the equipment, protocol, or personnel, it is
vital to establish reproducibility and reduce variability for
clinical application [9]. Most CMR radiomics studies focused
on the left ventricle for myocardial tissue characterization in
non-ischemic and ischemic cardiomyopathies, and mapping
was the most frequently used sequence for feature extraction.

The overall mean RQS for CMR studies was 5.16 ± 5.85
(14.3 ± 16.3%), which is lower than the RQS reported for
some oncology studies (mean score 9.4–11) [23, 24], but sim-
ilar to that reported in other radiomics studies on various tu-
mors and dementia (mean score 3.6–6.9) [25–30]. The basic
adherence rate was low for domain 5 (10.9%) and domain 6
(9.4%); such rates are similar to oncology studies [23–25, 27],
suggesting that there are limitations to pursuing higher levels
of evidence and open science. No phantom study or cost-
effective analysis was performed in the included CMR stud-
ies, which is consistent with non-cardiac studies [23, 24, 26,
27] and indicates low-level evidence. The basic adherence rate
of the calibration statistics (3.1%) was lower than that of on-
cology studies (range 9.9–29.9%) [23–25, 27], suggesting that
improvement is needed. The low basic adherence rates for
test-retest (3.1%) and potential clinical utility (3.1%) were
consistent with other studies [24, 26]. The basic adherence
rate of validation (28.1%) was lower than studies on tumors
or dementia (range 46.2–70.1%) [23, 24, 26, 27] but was
similar to one sarcoma study (26.9%) [25]. The nine CMR
studies that performed validation used datasets from the same
institute, and no study performed external validation, resulting
in a low RQS score. Because radiomic features extracted from
CMR images can be largely affected by protocol, standardi-
zation, compensation for multicenter effects, and external val-
idation are necessary and crucial for the clinical application of
radiomics.

Our results are in line with the recently published study that
assessed RQS in cardiac MRI and CT radiomics studies [65].
The median total RQS in the previous study was 7, which was
higher than in our study (mean 5.16, median 4.5). The differ-
ence could be due to the different range of included articles
and interobserver variability for RQS assessment. For exam-
ple, our study included fewer articles with internal validation

Table 4 Quality of image processing and radiomics feature extraction
according to IBSI

Number of articles (%)

Preprocessing performed

Non-uniformity correction 2 (6.3)

Image interpolation 4 (12.5)

Grey-level discretization 6 (18.8)

Signal intensity normalization 12 (37.5)

Software for feature extraction

MaZda 14 (43.8)

MATLAB 11 (34.4)

TexRAD 4 (12.5)

PyRadiomics 1 (3.1)

AVIEW 1 (3.1)

Not described 1 (3.1)

Segmentation method 32 (100)

IBSI Image Biomarker Standardization Initiative
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Table 5 Subgroup analysis of RQS and TRIPOD items in CMR radiomics studies according to the publication dates and journal impact factor

Radiomics quality score Mean score
(n = 32)

Publications
before 2019
(n = 12)

Publications
since 2019
(n =20)

p-value Journal impact
factor ≥ 4.0
(n = 16)

Journal impact
factor < 4.0
(n = 16)

p-value

Total (ideal score 36) 5.16 ± 5.85 3.08 ± 4.25 6.4 ± 6.4 0.114 7.56 ± 4.29 2.75 ± 6.32 0.007

Domain 1: protocol quality and stability
in image and segmentation (0 to 5
points)

1.59 ± 0.61 1.25 ± 0.75 1.8 ± 0.41 0.02 1.81 ± 0.4 1.38 ± 0.72 0.052

Protocol quality (2) 0.97 ± 0.31 0.83 ± 0.39 1.05 ± 0.22 0.054 1.06 ± 0.25 0.88 ± 0.34 0.086

Test-retest (1) 0.03 ± 0.18 0 0.05 ± 0.22 0.439 0 0.06 ± 0.25 0.077

Phantom study (1) 0 0 0 1 0 0 1

Multiple segmentation (1) 0.59 ± 0.5 0.42 ± 0.51 0.7 ± 0.47 0.12 0.75 ± 0.45 0.44 ± 0.51 0.317

Domain 2: feature selection and
validation (− 8 to 8 points)

−1.72 ±
4.06

−1.75 ± 2.8 −1.7 ± 4.73 0.832 −0.56 ± 3.65 −2.88 ± 4.23 0.181

Feature reduction or adjustment
of multiple testing (−3 or 3)

1.31 ± 2.74 1.5 ± 2.71 1.2 ± 2.82 0.764 2.25 ± 2.05 0.38 ± 3.07 0.053

Validation (−5, 2, 3, 4, or 5) −3.03 ± 3.2 −3.25 ± 3.17 −2.9 ± 3.29 0.764 −2.81 ± 3.35 −3.25 ± 3.13 0.699

Domain 3: model performance index
(0 to 5 points)

1.53 ± 0.62 1.75 ± 0.62 1.4 ± 0.6 0.155 1.44 ± 0.63 1.63 ± 0.62 0.212

Cutoff analysis (1) 0.38 ± 0.49 0.42 ± 0.51 0.35 ± 0.49 0.711 0.31 ± 0.48 0.44 ± 0.51 0.472

Discrimination statistics (2) 1.13 ± 0.55 1.33 ± 0.49 1 ± 0.56 0.104 1.06 ± 0.57 1.19 ± 0.54 0.532

Calibration statistics (2) 0.03 ± 0.18 0 0.05 ± 0.22 0.439 0.06 ± 0.25 0 0.317

Domain 4: biologic/clinical validation
and utility (0 to 6 points)

2.09 ± 1.3 1.25 ± 1.29 2.6 ± 1.05 0.005 2.19 ± 1.33 2 ± 1.32 0.685

Non-radiomics features (1) 0.22 ± 0.42 0.17 ± 0.39 0.25 ± 0.44 0.587 0.25 ± 0.45 0.19 ± 0.4 0.674

Biologic correlates (1) 0.69 ± 0.47 0.58 ± 0.51 0.75 ± 0.44 0.332 0.56 ± 0.51 0.81 ± 0.4 0.133

Comparison to “gold standard” (2) 1.13 ± 1.01 0.5 ± 0.9 1.5 ± 0.89 0.007 1.25 ± 1 1 ± 1.03 0.483

Potential clinical utility (2) 0.06 ± 0.35 0 0.1 ± 0.45 0.439 0.13 ± 0.5 0 0.317

Domain 5: high level of evidence
(0 to 8 points)

1.53 ± 2.94 0.58 ± 2.02 2.1 ± 3.29 0.158 2.63 ± 3.5 0.44 ± 1.75 0.035

Prospective study (7) 1.53 ± 2.94 0.58 ± 2.02 2.1 ± 3.29 0.158 2.63 ± 3.5 0.44 ± 1.75 0.035

Cost-effectiveness analysis (1) 0 0 0 1 0 0 1

Domain 6: open science and data
(0 to 4 points)

0.13 ± 0.42 0 0.2 ± 0.52 0.166 0.06 ± 0.25 0.19 ± 0.54 0.526

TRIPOD items All articles
(n = 32)

Publications
before 2019

(n = 12)

Publications
since 2019

(n =20)

p-value Journal impact
factor ≥ 4.0

(n = 16)

Journal impact
factor < 4.0

(n = 16)

p-value

Title and abstract

1. Title 1 (3.1) 0 1 (5) 1 1 (6.3) 0 1

2. Abstract 2 (6.3) 0 2 (10) 0.516 1 (6.3) 1 (6.3) 1

Introduction

3a. The medical context and rationale 31 (96.9) 12 (100) 19 (95) 1 16 (100) 15 (93.8) 1

3b. The objectives 3 (9.4) 1 (8.3) 2 (10) 1 1 (6.3) 2 (12.5) 1

Methods

4a. The study design or source of data 19 (59.4) 5 (41.7) 14 (70) 0.15 11 (68.8) 8 (50) 0.28

4b. The key dates 27 (84.4) 9 (75) 18 (90) 0.338 16 (100) 11 (68.8) 0.043

5a. The study setting 11 (34.4) 4 (33.3) 7 (35) 1 8 (50) 3 (18.8) 0.063

5b. Eligibility criteria 23 (71.9) 6 (50) 17 (85) 0.049 14 (87.5) 9 (56.3) 0.113

5c. Details of treatment received, if
relevant (n = 16)

3 out of 16 0 3 (15) 0.17 2 (12.5) 1 (6.3) 1

6a. Define the outcome 23 (71.9) 7 (58.3) 16 (80) 0.24 13 (81.3) 10 (62.5) 0.433

6b. Blind assessment of the outcome 14 (43.8) 5 (41.7) 9 (45) 0.854 8 (50) 6 (37.5) 0.476

7a. Define all predictors 32 (100) 12 (100) 20 (100) NA 16 (100) 16 (100) NA

7b. Blind assessment of predictors 20 (62.5) 7 (58.3) 13 (65) 0.724 11 (68.8) 9 (56.3) 0.465

8. Sample size 14 (43.8) 3 (25) 11 (55) 0.098 10 (62.5) 4 (25) 0.033

4369Eur Radiol (2022) 32:4361–4373



(28.1% vs. 45%), and more articles with prospective design
(21.9% vs. 4%). The greatest difference was found in potential
clinical utility item (3.1% vs. 94%). In our study, an article
earned points if the clinical utility was objectively assessed,
such as decision curve analysis to demonstrate net improve-
ment. On the other hand, discussing the possible utility of
radiomics without an adequate analysis did not provide points.
Despite some differences, both studies revealed that

improvement is needed in validation, calibration, cost-effec-
tiveness, and open science items.

The overall adherence to the TRIPOD guidelines was
55.9%, consistent with previous radiomics studies [23, 27].
Specifically, the rates of adherence to TRIPOD guidelines
were low for reporting title (3.1%), missing data (0%),
discrimination/calibration (3.1%), and how to use the predic-
tion model (3.1%). Most articles did not explicitly describe

Table 5 (continued)

Radiomics quality score Mean score
(n = 32)

Publications
before 2019
(n = 12)

Publications
since 2019
(n =20)

p-value Journal impact
factor ≥ 4.0
(n = 16)

Journal impact
factor < 4.0
(n = 16)

p-value

9. Missing data 0 0 0 NA 0 0 NA

10a. How predictors were handled 32 (100) 12 (100) 20 (100) NA 16 (100) 16 (100) NA

10b. Modeling 24 (75) 8 (66.7) 16 (80) 0.433 15 (93.8) 9 (56.3) 0.037

10d. Model performance (both
discrimination and calibration)

1 (3.1) 0 1 (5) 1 1 (6.3) 0 1

11. Risk groups, if done
(yes or no, n = 32)

12 (37.5) 5 (41.7) 7 (35) 0.724 5 (31.3) 7 (43.8) 0.465

Results

13a. The flow of participants 26 (81.3) 10 (83.3) 16 (80) 1 14 (87.5) 12 (75) 0.654

13b. The characteristics of the participants 27 (84.4) 9 (75) 18 (90) 0.338 15 (93.8) 12 (75) 0.333

14a. Number of participants and outcome
in each analysis

32 (100) 12 (100) 20 (100) NA 16 (100) 16 (100) NA

14b. Unadjusted association, if done
(yes or no, n = 32)

14 (43.8) 4 (33.3) 10 (50) 0.358 10 (62.5) 4 (25) 0.033

15a. The full prediction model 5 (15.6) 0 5 (25) 0.13 3 (18.8) 2 (12.5) 1

15b. How to the use the prediction model 1 (3.1) 0 1 (5) 1 1 (6.3) 0 1

16. Performance measures 17 (53.1) 6 (50) 11 (55) 0.784 9 (56.3) 8 (50) 0.723

Discussion

18. Limitations 30 (93.8) 11 (91.7) 19 (95) 1 16 (100) 14 (87.5) 0.484

19b. Interpretation 32 (100) 12 (100) 20 (100) NA 16 (100) 16 (100) NA

20. Implications 28 (87.5) 11 (91.7) 17 (85) 1 14 (87.5) 14 (87.5) 1

For validation (types 2a, 2b, 3, and 4) n = 9 n = 3 n = 6 n = 5 n = 4

10c. How the predictions were calculated 9 (100) 3 (100) 6 (100) NA 5 (100) 4 (100) NA

10e. Recalibration, if done (n = 0) 0 0 0 NA 0 0 NA

12. Methods-differences from the
development data

8 (88.9) 2 (66.7) 6 (100) 0.333 5 (100) 3 (75) 0.444

13c. Results-comparison with the
development data

4 (44.4) 0 4 (66.7) 0.167 2 (40) 2 (50) 1

17. Results-model updating, if done
(n = 0)

0 0 0 NA 0 0 NA

19a. Discussion-interpretation of valida-
tion results

3 (33.3) 1 (33.3) 2 (33.3) 1 3 (60) 0 0.167

IBSI items All articles
(n = 32)

Publications
before 2019

(n = 12)

Publications
since 2019

(n =20)

p-value Journal impact
factor ≥ 4.0

(n = 16)

Journal impact
factor < 4.0

(n = 16)

p-value

Non-uniformity correction 2 (6.3) 2 (16.7) 0 0.133 1 (6.3) 1 (6.3) 1

Image interpolation 4 (12.5) 2 (16.7) 2 (10) 0.62 3 (18.8) 1 (6.3) 0.6

Grey-level discretization 6 (18.8) 2 (16.7) 4 (20) 1 2 (12.5) 4 (25) 0.654

Signal intensity normalization 12 (37.5) 6 (50) 6 (30) 0.288 8 (50) 4 (25) 0.144

Segmentation method 32 (100) 12 (100) 20 (100) NA 16 (100) 16 (100) NA

NA not applicable
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development or validation in the title (item 1), abstract (item
2), or introduction (item 3b). Only one study [35] conducted
calibration statistics (item 10d) and constructed a nomogram
for clinical use (item 15b), resulting in low adherence rates for
these items. Improving the adherence of research conduct and
reporting according to the TRIPOD guidelines could improve
the quality of radiomics models.

The image preprocessing steps performed before extracting
radiomics features affect the repeatability and reproducibility
of results [66, 67]. However, most CMR radiomics studies fail
to describe the preprocessing steps according to the IBSI stan-
dards of non-uniformity correction, image interpolation, grey-
level discretization, and signal intensity normalization (6.3%,
12.5%, 18.8%, and 37.5%, respectively), and the adherence
rates are lower than those of radiomics studies in cancer pa-
tients [25, 27]. Making more concerted efforts to conduct
image preprocessing steps according to IBSI standards could
improve the reproducibility of CMR radiomics studies.

The subgroup analysis revealed that the total RQS was
higher in studies published since 2019 than studies published
before 2019; however, the differences did not reach statistical
significance. More recent studies have been conducted with
better protocol quality and stability (domain 1) and biologic/
clinical validation and utility (domain 4). The adherence rates
for most TRIPOD guidelines also tended to be higher in the
more recent studies. However, for IBSI standards, even the
more recent studies exhibited inadequate adherence.

When grouped according to impact factor, studies pub-
lished in journals with a higher (≥4.0) impact factor had higher
RQS scores than studies published in journals with a lower
(<4.0) impact factor. The studies published in higher impact
factor journals had a higher level of evidence (domain 5),
because they included more prospective studies. In TRIPOD
items, they more clearly defined the study dates, type of mod-
el, and unadjusted association between candidate predictor
and outcome. However, no significant difference was ob-
served for IBSI standards between articles grouped by journal
impact factor.

Our results suggest that the RQS, TRIPOD guidelines, and
IBSI standards were not adequately followed even in recently
published studies or articles published in more highly ranked
journals. We conclude that additional effort is needed to im-
prove the scientific quality and reporting completeness in
CMR radiomics studies.

There are several limitations to our study. First, the number
of included CMR radiomics studies was small. Second, some
items of RQS and TRIPOD may be too idealistic for most
studies to meet. For example, it is not easy to performmultiple
CMR scans in clinical practice. In addition, it is challenging to
meet all the TRIPOD guidelines because most CMR
radiomics studies are retrospective. However, it is necessary
to be as transparent as possible about protocol parameters and
data extraction methods. Lastly, we did not assess the inter-

reader reproducibility for scores due to the consensus
approach.

In conclusion, the overall scientific quality and reporting
completeness of CMR radiomics studies are inadequate.
Improvements are needed in the areas of validation, calibra-
tion, clinical utility, and open science. Complete reporting of
study objectives, missing data, discrimination/calibration, and
how to use the prediction model is necessary, and image pre-
processing steps must be reported in detail.
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