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Abstract
Objective To establish a radiomics nomogram based on dynamic contrast-enhanced (DCE) MR images to preoperatively
differentiate combined hepatocellular-cholangiocarcinoma (cHCC-CC) from mass-forming intrahepatic cholangiocarcinoma
(IMCC).
Methods A total of 151 training cohort patients (45 cHCC-CC and 106 IMCC) and 65 validation cohort patients (19 cHCC-CC
and 46 IMCC) were enrolled. Findings of clinical characteristics and MR features were analyzed. Radiomics features were
extracted from the DCE-MR images. A radiomics signature was built based on radiomics features by the least absolute shrinkage
and selection operator algorithm. Univariate and multivariate analyses were used to identify the significant clinicoradiological
variables and construct a clinical model. The radiomics signature and significant clinicoradiological variables were then incor-
porated into the radiomics nomogram by multivariate logistic regression analysis. Performance of the radiomics nomogram,
radiomics signature, and clinical model was assessed by receiver operating characteristic and area under the curve (AUC) was
compared.
Results Eleven radiomics features were selected to develop the radiomics signature. The radiomics nomogram integrating the
alpha fetoprotein, background liver disease (cirrhosis or chronic hepatitis), and radiomics signature showed favorable calibration
and discrimination performance with an AUC value of 0.945 in training cohort and 0.897 in validation cohort. The AUCs for the
radiomics signature and clinical model were 0.848 and 0.856 in training cohort and 0.792 and 0.809 in validation cohort,
respectively. The radiomics nomogram outperformed both the radiomics signature and clinical model alone (p < 0.05).
Conclusion The radiomics nomogram based on DCE-MRI may provide an effective and noninvasive tool to differentiate cHCC-
CC from IMCC, which could help guide treatment strategies.
Key Points
• The radiomics signature based on dynamic contrast-enhanced magnetic resonance imaging is useful to preoperatively differ-
entiate cHCC-CC from IMCC.

• The radiomics nomogram showed the best performance in both training and validation cohorts for differentiating cHCC-CC
from IMCC.
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Abbreviations
ADC Apparent diffusion coefficient
AFP Alpha fetoprotein
AP Arterial phase
AUC Area under curve
CA19-9 Cancer antigen 19-9
CHCC-
CC

Combined hepatocellular-cholangiocarcinoma

CT Computed tomography
DP Delayed phase
HCC Hepatocellular carcinoma
ICC Intrahepatic cholangiocarcinoma
IMCC Mass-forming intrahepatic cholangiocarcinoma
LASSO Least absolute shrinkage and selection operator
MRI Magnetic resonance imaging
PP Portal phase
ROC Receiver operating characteristic curve

Introduction

Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is
believed to arise from hepatic progenitor cells with the expres-
sion of both biliary and hepatocellular markers [1, 2], which
accounts for 0.4–14.2% of primary liver malignancies [2, 3].
In contrast, intrahepatic cholangiocarcinoma (ICC) is the sec-
ond most common primary liver malignancy after hepatocel-
lular carcinoma (HCC), which arises from intrahepatic biliary
epithelium [4, 5].

CHCC-CC is gaining increasing attention clinically and
pathologically, due to its unique biology, histopathology,
and clinical behavior, despite being rare. Surgery remains
the mainstay of treatment for the majority of patients with
resectable primary liver malignancies [3]. Previous studies
reported that the survival rates after resection of cHCC-CC
appeared to be worse than those of HCC and similar to those
of ICC [2, 6]. In addition, Machairas et al reported that long-
term results of liver transplantation in the setting of cHCC-CC
were associated with fairly unfavorable overall outcomes
compared to HCC yet were improved compared to ICC [7].
Therefore, the ability to diagnose cHCC-CC accurately before
surgery is of great value, and it may play a critical role in
further treatment guidance.

In current clinical practice, computed tomography (CT)
and magnetic resonance imaging (MRI) have been widely
used for detection and characterization of liver tumors [8, 9].
However, it is still extremely difficult to preoperatively diag-
nose cHCC-CC by imaging studies, due to the complex im-
aging features of the two entities and the rarity of this tumor
[3]. The imaging characteristics of cHCC-CC include not only
features typical of HCC, but also those of ICC [3, 10].
Imaging misdiagnosis has been reported in almost two-thirds
of patients with cHCC-CC [11]. Liver-specific MR contrast

agents such as gadoxetic acid are increasingly used in the
evaluation of focal liver lesions because of their dual actions,
namely as extracellular contrast agent and hepatobiliary agent
[12, 13]. Hwang et al reported that gadoxetic acid-enhanced
MRI was valuable for differentiation between cHCC-CC and
mass-forming ICC [14]. But its value is mainly shown in the
diagnosis of HCC-predominant cHCC-CC [14]. Although
using needle biopsy is a minimally invasive and a rapid meth-
od of pathologic evaluation of hepatic masses, its clinical ap-
plication is limited due to increasing the potential risk of nee-
dle tract seeding and hematogenous dissemination [15]. Thus,
the best choice is still to diagnose cHCC-CC by as noninva-
sive a technique as possible.

Radiomics can provide important information on the entire
underlying intra-tumor heterogeneity and cancer phenotype
by extracting numerous quantitative features from radiologic
images [16]. Previous studies have demonstrated that
radiomics has favorable abilities to help characterize lesions,
assess tumors, and evaluate patients’ responses to treatment in
the liver [17–20]. Mokrane et al reported that radiomics could
be used to noninvasively diagnose HCC in cirrhotic patients
with indeterminate liver nodules [18]. Li et al built a new
radiomics model for the differential diagnosis of HCC and
hepatic metastasis of rectal cancer [19]. Therefore, it is con-
ceivable that radiomics on MRI has potential to help distin-
guish between cHCC-CC and ICC.

This study focused on the differentiation of cHCC-CC
from mass-forming intrahepatic cholangiocarcinoma
(IMCC), because previous studies reported that imaging fea-
tures of cHCC-CC appeared to more closely resemble ICC
rather than HCC [21–23]. Thus, the aim of our study was to
develop a radiomics nomogram based on dynamic contrast-
enhanced (DCE) MR images for preoperative differentiation
of cHCC-CC from IMCC.

Materials and methods

This retrospective study was approved by the institutional
review board and the requirement for informed consent was
waived.

Patients

This study was conducted in patients with pathologically
proven cHCC-CC or IMCC at surgery between June 2015
and September 2020 at the Zhongshan Hospital, Shanghai.
The inclusion criteria were as follows: (1) preoperative liver
dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) in the Zhongshan Hospital, Shanghai, within 2
weeks before surgery; (2) patients with single cHCC-CC or
single IMCC; (3) lesion size ≥ 1cm; (4) no history of previous
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treatment for liver lesion; (5) available MR imaging including
optimal image quality for our analysis.

The final cohort consisted of 216 patients (64 cHCC-CC
and 152 IMCC) and was randomly divided into a training
cohort (45 cHCC-CC and 106 IMCC) and a validation cohort
(19 cHCC-CC and 46 IMCC) with a proportion of 7:3.
Flowchart of patients’ collection and scheme for analysis is
shown in Fig. 1.

Clinical data and pathology

The clinical data including demographic, preoperative tumor
markers (AFP, CEA, CA19-9), background liver disease

(cirrhosis or chronic hepatitis), and pathologic information
were obtained from medical records.

MRI data acquisition

MRI examinations were performed with a 1.5-T (uMR 560;
United Imaging Healthcare) scanner. The conventional MR
protocol included transverse breath-hold T2-weighted with
fat-suppression turbo spin echo sequence (2693/85.58 repeti-
tion time/echo time (TR/TE), 201 × 288 matrix, 6 mm section
thickness, 380 mm × 360 mm field of view (FOV)) and trans-
verse T1-weighted breath-hold in-phase and out-of-phase gra-
dient echo sequence (115.8/4.4 (in-phase), 2.2 (out-of-phase)

Fig. 1 Flowchart shows patients’
collection and scheme for
analysis
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TR/TE, 230 × 288 matrix, 6 mm section thickness, 380 mm ×
390 mm FOV). A breath-hold single-shot echo-planar diffu-
sion-weighted imaging (DWI) was performed with b values of
0, 500 mm2/s (2807/75.7 TR/TE, 115 × 128 matrix, 6 mm
section thickness, 380 mm × 300 mm FOV). For dynamic
MRI, the following images were obtained using a breath-
hold 3D T1-weighted with fat-suppression fast spoiled gra-
dient echo sequence (4.43/2.2 TR/TE, 192 × 256 matrix,
3 mm section thickness, 400 mm × 280 mm FOV):
unenhanced phase, arterial phase (AP, 20–35 s), portal phase
(PP, 70–90 s), and delayed phase (DP, 180 s). A total dose
of 0.2 mL/kg gadopentetate dimeglumine (Gd-DTPA) was
administered intravenously using a power injector at a rate
of 2 mL/s, followed by a 20-mL saline flush.

Radiologic evaluation

Two abdominal radiologists (Y.Z. and G.F.Z. with 9 and 16
years of experience, respectively) retrospectively reviewed the
MR images together on PACS, who were blinded to patho-
logical outcomes and clinical findings. If disagreements oc-
curred, a third senior radiologist (P.J.X. with 27 years of ex-
perience) would resolve their differences. MR features of each
lesion were evaluated as follows: (1) tumor margin (well-de-
fined or irregular); (2) enhancement pattern on the arterial
phase were registered as follows: (a) rim enhancement:
hyperenhancement limited to the periphery of the lesion, in-
volving ≤ 25% of its area; (b) partial enhancement:
hyperenhancement involving 25–75% of the lesion; (c) global
enhancement: hyperenhancement involving > 75% of the le-
sion; (3) target sign, defined as peripheral diffusion restriction
with central isointensity/hypointensity on DWI image; (4) dy-
namic enhancement pattern: (A) progressive: the tumor pro-
gressively enhanced over time, centripetal enhancement was
contained; (B) persistent: the intensity or range of enhance-
ment remained unchanged on all three phases; (C) wash in
with wash out: arterial hyperenhancement followed by
hypoenhancement on portal or delayed phases; (D) degressive
(wash in without wash out): decreasing hyperintensity over
time with no contrast agent wash out on portal or delayed
phases; (5) biliary dilation; (6) hepatic capsule retraction; (7)
tumor size: defined asmaximum tumor diameter on transverse
MR images on the delayed phase.

Radiomics analysis of MR Images

Workflow

The workflow of a typical radiomics process in our study
included tumor segmentation, feature extraction, feature selec-
tion, and model construction and evaluation (Fig. 2).

Tumor segmentation and radiomics feature extraction

Three-dimensional manual segmentation was performed by
reader 1 (Y.Z. with 9 years of work experience) using ITK-
SNAP v.3.6.0 from UPenn (www.itksnap.org). Volumes of
interests (VOIs) were manually drawn along the visible bor-
ders of tumor on the dynamic arterial, portal, and delayed
phase images. In total, 788 radiomics features were extracted
from each VOI using an in-house software written in Python
(Pyradiomics version 2.12; https://pyradiomics.readthedocs.
io/en/2.1.2/), giving a total of 2364 features for each patient
(tumors in the arterial, portal, and delayed phases). The
radiomics features extracted included shape (n = 14), first-
order (n = 18), textural features (n = 68), and wavelet features
(n = 688). Information on the feature extraction is detailed in
Supplemental Table 1.

To explore the reproducibility of radiomics features, a co-
hort of 40 lesions were randomly chosen and two radiologists
(reader 1; reader 2, G.F.Z. with 16 years of work experience)
independently performed repeat segmentation. Then, the
intra- and interclass correlation coefficients (ICC) were calcu-
lated, and values > 0.8 were considered almost perfect
agreement.

Radiomics feature selection and signature construction

All the data of radiomics features were transformed into
z-score normalization to reduce the bias caused by differ-
ent index dimensions. Then, feature selection was carried
out in the following three steps. First, features with greater
ICC than 0.8 were kept in for further analysis [24].
Second, Pearson’s correction coefficients were calculated
to examine redundant and collinear features, and features
with mutual correlation coefficients > 0.9 were removed
[25]. Third, the least absolute shrinkage and selection
operator (LASSO) method with 10-fold cross-validation
was applied to select most optimal features and construct
a radiomics signature [25, 26]. The radiomics signature
was calculated as the Radscore for quantification via a
linear combination of selected features with their corre-
sponding weights [25, 26].

Clinical model construction

The univariate analysis was used to assess the difference of
clinicoradiological characteristics between cHCC-CC and
IMCC in the training cohort. Then, variables with p < 0.05
in univariate analysis were applied to a multivariate logistic
regression analysis to elucidate the independent factors.
Meanwhile, the clinical model was built on the basis of these
independent factors.
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Radiomics nomogram model construction

The novel radiomics nomogram model incorporating inde-
pendent clinicoradiological factors and radiomics signature
(Radscore) was constructed by using multivariable logistic
regression analysis in the training set. Backward stepwise se-
lection was employed with the Akaike information criterion
(AIC) as the stopping rule. The model with the minimum AIC
score generated the final combination. Calibration curves of
the nomogram were plotted to assess the consistency between
prediction and observation, accompanied by the Hosmer-
Lemeshow test.

Performance and validation of models The discrimination
performance of the above three models was evaluated by the
receiver operating characteristic curve (ROC) and area under
the ROC curve (AUC) was compared using the Delong test.
The corresponding sensitivity, specificity, and accuracy were
also calculated. Internal validation of models was performed
using an independent validation.

Statistical analysis

The chi-square test or Fisher exact test was used for categor-
ical variables. Continuous variables were compared by using
the Mann-Whitney U test or Student t test, when appropriate.
All statistical analyses were performed using SPSS (version
21.0; IBM) and R software (Version 3.6.1). A two-sided
p value < 0.05 was considered statistically significant.

Results

Comparisons of demographics, clinical parameters, and radio-
logic features are summarized in Table 1. No statistical differ-
ence in the ratio of cHCC-CC (45/151 vs 19/65, p = 0.933)
was observed between training and validation cohorts.
Univariate analysis indicated that age, sex, AFP, and back-
ground liver disease were significantly different between
cHCC-CC and IMCC in training cohort (p < 0.05). At the
multivariate analysis, only AFP and background liver disease

Fig. 2 Workflow of the key steps to conduct radiomics analysis of DCE-MR in our study
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were independent factors to differentiate cHCC-CC from
IMCC (Table 2). The AUCs of clinical model constructed
with the two independent factors were 0.856 (95% CI:
0.790, 0.908) in the training cohort and 0.809 (95% CI:
0.693, 0.896) in the validation cohort (Table 3). The formula
for clinical model is described in Table 4.

Feature selection and radiomics signature
construction

Among 2364 extracted radiomics features, 2166 features
showed high stability (Supplemental Fig. 1). Of these features,
478 features were identified as independent after Pearson’s

Table 1 Comparison of patient characteristics and Radscore of cHCC-CC and IMCC

Characteristics Training cohort Validation cohort

cHCC-CC
(n = 45)

IMCC
(n = 106)

p value cHCC-CC
(n = 19)

IMCC
(n = 46)

p value

Age, years 0.006* 0.018*

≥ 60 18 68 5 27

< 60 27 38 14 19

Sex 0.004* 0.873

Male 35 56 14 33

Female 10 50 5 13

Tumor marker

AFP > 20 μg/L 28 11 < 0.001* 11 3 < 0.001*

CA19-9 > 37 μg/L 10 41 0.050 9 22 0.973

CEA > 5 μg/L 10 22 0.840 4 16 0.275

Background liver disease < 0.001* < 0.001*

Cirrhosis or chronic hepatitis 37 31 15 13

Non-cirrhotic or chronic hepatitis 8 75 4 33

Tumor contour 0.381 0.464

Well-defined 26 53 13 27

Irregular 19 53 6 19

Enhancement pattern on the arterial phase 0.008* 0.638

Rim enhancement 10 50 7 22

Partial enhancement 21 40 7 16

Global enhancement 14 16 5 8

Biliary dilation 2 21 0.016* 1 6 0.663

Hepatic capsule retraction 16 59 0.024* 9 18 0.540

Dynamic enhancement pattern < 0.001* 0.310

Progressive 26 83 12 36

Persistent 5 14 4 3

Wash in with wash out 9 1 1 1

Wash in without wash out 5 8 2 6

Target sign 7 34 0.037* 2 11 0.315

Tumor size, cm† 4.7 ± 2.8 5.3 ± 2.4 0.152 4.8 ± 2.7 5.1 ± 2.6 0.694

Radscore† −0.386 ± 0.593 −1.151 ± 0.483 < 0.001* −0.554 ± 0.424 −1.075 ± 0.571 0.001*

Note. Unless otherwise indicated, data are numbers of patients

AFP, alpha fetoprotein; CA19-9, cancer antigen 19-9; CEA, carcinoembryonic antigen

Student’s t test was used for the continuous data. Categorical data are compared by using the χ2 test or Fisher exact test, as possible
†Data are means ± standard deviation

*Data are statistically significant results
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correlation analysis. The further analysis of LASSO regres-
sion was used to select 11 features to derive a radiomics sig-
nature in the training cohort (Fig. 3). The formula for the
radiomics signature (Radscore) is described in Table 4. The
details of the 11 selected features are presented in
Supplemental Table 2. In general, cHCC-CC showed a signif-
icantly higher Radscore than IMCC in the training cohort

(−0.386 ± 0.593 vs −1.151 ± 0.483, p < 0.001), and then
was confirmed in the validation cohort (−0.554 ± 0.424 vs
−1.075 ± 0.571, p = 0.001) (Table 1, Supplemental Fig. 2).
The radiomics signature yields an AUC of 0.848 (95% CI:
0.780, 0.901) in the training cohort and 0.792 (95% CI:
0.673, 0.883) in the validation cohort (Table 3).

Radiomics nomogram model construction

The final model integrating independent clinicoradiological
factors and radiomics signature obtained the best performance
for differentiation of cHCC-CC from IMCC with an AUC of
0.945 (95% CI: 0.896, 0.975) in the training cohort and 0.897
(95% CI: 0.796, 0.959) in the validation cohort (Table 3). The
formula for radiomics nomogram model is described in
Table 4. The model is presented as the nomogram in Fig. 4a.
Favorable calibrations of the nomogramwere obtained in both
the training and validation cohorts (Fig. 4b, c). Hosmer-
Lemeshow test yields a p value of 0.455 and 0.373,
respectively.

Diagnostic performance comparisons by ROC between
three different models in the training and validation cohorts
are given in Fig. 4d and e. The radiomics nomogram model
outperformed either the radiomics signature or clinical model
in the training cohort (AUC: 0.945 vs 0.848, 0.856; p = 0.001,
< 0.001), and then was confirmed in the validation cohort
(AUC: 0.897 vs 0.792, 0.809; p = 0.045, 0.037). However,
the Delong test illustrated that there was no significant differ-
ence between the radiomics signature and clinical model in
both training (p = 0.857) and validation (p = 0.842) cohorts.

Table 2 Multivariate logistic regression analysis of clinicoradiological
characteristics

Characteristics Odds ratio 95% CI p value

Age, < 60 years 2.685 0.836–8.628 0.097

Sex, male 2.961 0.852–10.289 0.088

AFP > 20 μg/L 21.424 5.748–79.850 < 0.001*

Background liver disease 6.341 1.946–20.667 0.002*

Arterial enhancement pattern 0.411

Rim enhancement 0.423 0.085–2.108

Partial enhancement 0.984 0.202–4.800

Global enhancement 1.000

Biliary dilation 0.349 0.049–2.472 0.292

Hepatic capsule retraction 0.286 0.073–1.118 0.072

Dynamic enhancement pattern 0.236

Progressive 1.096 0.153–7.826

Persistent 1.154 0.124–10.709

Wash in with wash out 35.206 0.821–1509.760

Wash in without wash out 1.000

Target sign 0.983 0.209–4.612 0.982

Note. AFP, alpha fetoprotein

*Data are statistically significant results

Table 3 Discrimination
performance of the clinical
model, radiomics signature, and
radiomics nomogram

Model Group Sensitivity Specificity Accuracy AUC (95%
CI)

Cutoff

Clinical model Training
cohort

0.911 0.642 0.722 0.856
(0.790,
0.908)

> −2.897

Validation
cohort

0.790 0.717 0.738 0.809
(0.693,
0.896)

> −2.897

Radiomics
signature

Training
cohort

0.822 0.745 0.768 0.848
(0.780,
0.901)

> −0.884

Validation
cohort

0.842 0.652 0.708 0.792
(0.673,
0.883)

> −0.884

Radiomics
nomogram

Training
cohort

0.978 0.792 0.848 0.945
(0.896,
0.975)

> −1.607

Validation
cohort

0.790 0.761 0.769 0.897
(0.796,
0.959)

> −1.607

Note. AUC, area under ROC curve; CI, confidence interval
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Table 4 The formulas for the
clinical model, radiomics
signature, and radiomics
nomogram

Model Formula

Clinical model Y = − 2.8973 + 2.4290 × AFP (0, ≤ 20 μg/L; 1, > 20 μg/L) + 2.1931 × background
liver disease (0, negative; 1, positive)

Radiomics signature
(Radscore)

Y = − 0.9230 − 0.2071 × AP_wavelet.LHL_glszm_Size_Zone_Non-Uniformity_
Normalized − 0.1857 × AP_wavelet.HLL_first-order_Mean − 0.2246 × AP_
wavelet.LLL_glszm_Small_Area_Emphasis + 0.0615 × PP_original_shape_
Elongation + 0.0404 × PP_wavelet.HHL_first-order_Skewness + 0.0577 × DP_
original_shape_Elongation + 0.1483 × DP_original_shape_Sphericity + 0.1707 ×
DP_wavelet.LLH_glszm_Gray_Level_Non-Uniformity_Normalized − 0.0328 ×
DP_wavelet.LHL_first-order_Maximum − 0.0789 × DP_wavelet.HLH_glcm_
Imc1 − 0.0645 × DP_wavelet.LLL_first-order_90Percentile

Radiomics nomogram Y = − 0.4987 + 3.3004 × Radscore + 3.0768 × AFP (0, ≤ 20 μg/L; 1, > 20 μg) +
1.9127 × background liver disease (0, negative; 1, positive)

Note. AFP, alpha fetoprotein; AP, arterial phase; PP, portal phase; DP, delayed phase

Fig. 3 The least absolute
shrinkage and selection operator
(LASSO) regression for
radiomics features selection and
signature construction. a In the
LASSO model, the penalization
parameter λ selection used 10-
fold cross-validation as the
minimum criteria. The log (λ) (x-
axis) was plotted against the
partial likelihood deviance (y-
axis). The minimum criteria and
the 1−SE criteria were used to
draw dotted vertical lines. As a
result, an optimal λ of 0.064, with
log (λ) = −2.745 was chosen
(minimum criteria). b LASSO
coefficient profiles of the
radiomics features. Tenfold cross-
validation in the log (λ) sequence
was used to draw the vertical line
at the value selected; also
indicated are 11 features with
nonzero coefficients
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Fig. 4 The radiomics nomogram incorporating the AFP level,
background liver disease, and radiomics signature (Radscore) (a). Good
calibration of the radiomics nomogram is shown in the training (b) and in
the validation (c) cohorts. Diagnostic performance of the the clinical

model, radiomics signature, and radiomics nomogram was assessed and
compared through ROC curves in both the training (d) and validation (e)
cohorts
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Discussion

In this work, we sought to establish a novel radiomics nomo-
gram incorporating AFP, background liver disease, and the
developed radiomics signature of DCE-MRI for preoperative
differentiation of cHCC-CC from IMCC. The combined mod-
el achieved a satisfactory discrimination performance and
showed a favorable reliability.

As far as we know, only few studies have been reported in
the literature including radiomics-basedmethods for diagnosis
of cHCC-CC [27, 28]. Zhang et al built a new CT-based

radiomics model to differentiate cHCC-CC from ICC preop-
eratively, with an AUC of 0.942 [27]. They also found that
radiomics features extracted from the peritumoral area had the
potential for differentiation of cHCC-CC from IMCC; how-
ever, no statistical significant difference could be observed
compared with radiomics features inside the tumor [27]. A
study by Liu et al showed that radiomics features extracted
from gadoxetic acid-enhanced MR images demonstrated the
best performance for differentiation of cHCC-CC from non-
cHCC-CC with the highest AUC of 0.770, while CT was of
limited value [28]. The weakness of their study is lack of
separate training and validation sets, and it did not contain
relevant clinical factors. According to previous reports,
contrast-enhanced imaging is often used in radiomics analyses
of tumors and is beneficial to help highlight vascularity and
spatial heterogeneity [28, 29]. Liu et al’s study demonstrated
that radiomics analysis in non-contrast MRI sequences appeared
to have less value compared with contrast MRI sequences to
differentiate cHCC-CC from other primary liver tumors [28].
This may reflect that essential differences in enhancement pat-
terns between cHCC-CC and non-cHCC-CC tumors were help-
ful tomake a correct diagnosis. Therefore, we tried to construct a
novel radiomics nomogram of good reliability and investigate
the potential value of MRI radiomics analysis to differentiate
cHCC-CC from IMCC before surgery.

The radiomics signature consisting of 11 radiomics fea-
tures in our study was able to predict the classification of
cHCC-CC vs IMCC with acceptable performance in the train-
ing (AUC of 0.848) and validation (AUC of 0.792) cohorts.
Consistent with previous studies, shape and wavelet features
were included in our radiomics signature. Shape features were
often extracted to provide a quantitative description of the
physical appearance of the tumors, surface irregularity, and
eccentricity, which could be useful for differential diagnosis
of tumors [30–32]. Yap et al’s study indicated that shape met-
rics alone could achieve high prediction performance and hold
high variable importance in the combined shape and texture
radiomics model to discriminate benign from malignant renal
masses [31]. Cuocolo et al found that the radiomics shape
features derived from MRI index lesion could be potential
imaging biomarkers for detecting clinically significant pros-
tate cancer (csPCa) [32]. Wavelet features are extracted from
the images transformed by wavelet filter (which can decom-
pose special patterns hidden in mass of data) [33]. Some pre-
vious studies have suggested that wavelet features may better
explore tumor biology and heterogeneity [34–36]. Liang et al
reported that wavelet features were of great value to predict
early recurrence of ICC after partial hepatectomy [34]. A
study by Zhou et al showed that a radiomics signature built
via 7 wavelet features extracted from MR imaging could pre-
dict MVI of IMCC [35]. We assumed that differences of these
wavelet features in cHCC-ICC and IMCC might be related to
the differences in their histopathological tumor composition

Fig. 4 continued.
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(such as tumor cellularity, fibrosis, necrosis, and occasionally
mucin). However, it is still challenging to figure out the asso-
ciation between a single radiomics feature and complex tumor
biological processes [37].

In line with previous studies, AFP and background liver
disease were independent predictors for cHCC-CC, which
suggested that patients of cHCC-CC are much more likely to
have higher AFP level or background liver disease than those
of IMCC [10, 27, 38]. In clinical practice, these predictors can
be easily detected and incorporated into a nomogram for dif-
ferential diagnosis of cHCC-CC and IMCC. In addition, we
discovered that cHCC-CC was more often in male and in
people under the age of 60, compared with IMCC; our results
were in accordancewith earlier studies [38, 39]. For radiologic
features, we found that enhancement pattern on the arterial
phase, dynamic enhancement pattern, target sign, biliary dila-
tion, and hepatic capsule retraction were significantly different
between cHCC-CC and IMCC in training cohort. These find-
ings were partly close to previous studies [14, 22]. However,
these radiologic features were not independent factors after
multivariate analysis and were excluded in our nomogram.

Finally, we constructed a radiomics nomogram in combi-
nation of clinical factors (serum AFP level and background
liver disease) and the radiomics signature. ROC analyses re-
vealed that the nomogram provided the best performance for
differentiation of cHCC-CC from IMCC, which outperformed
either the radiomics signature or clinical model in both train-
ing set and validation cohort. Meanwhile, there were no sta-
tistically significant differences in diagnosis performance be-
tween clinical model and the radiomics signature in both train-
ing set and validation cohort. These findings were partly close
to a study by Zhang et al, where a CT-based radiomics nomo-
gram for differentiation of cHCC-CC from ICC reached the
highest AUC than other single single-factor models [27].

Limitation

We do acknowledge several limitations in this study. First,
because of retrospective nature of this study, it is more sus-
ceptible to potential selection bias. Second, the sample size of
patient cohorts, especially the validation cohort of 19 patients
with cHCC-CC, was relatively small. Third, our results were
from a single-center study and further prospective multicenter
studies are required to obtain high-level evidence for clinical
application. Fourth, we established the models based on pa-
tients with only single lesion; thus, the results cannot be ex-
tended to patients with multiple lesions. Last, we did not in-
vestigate the value of radiomics for prognosis prediction in
cHCC-CC and IMCC, as the follow-up data for patients in
the study is still being collected. It will be interesting and
useful to explore this issue in further research.

Conclusion

To summarize, this study presents a radiomics nomogram that
incorporates both the radiomics signature and clinical factors,
and can be a noninvasive and promising tool for preoperative
differentiation of cHCC-CC from IMCC.
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