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Abstract
Objectives  To develop and validate radiomic models for preoperative prediction of intraductal component in invasive breast 
cancer (IBC-IC) using the intratumoral and peritumoral features derived from dynamic contrast-enhanced MRI (DCE-MRI).
Methods  The prediction models were developed in a primary cohort of 183 consecutive patients from September 2017 to 
December 2018, consisting of 45 IBC-IC and 138 invasive breast cancers (IBC). The validation cohort of 111 patients (27 
IBC-IC and 84 IBC) from February 2019 to January 2020 was enrolled to test the prediction models. A total of 208 radiomic 
features were extracted from the intratumoral and peritumoral regions of MRI-visible tumors. Then the radiomic features 
were selected and combined with clinical characteristics to construct predicting models using the least absolute shrinkage 
and selection operator. The area under the curve (AUC) of receiver operating characteristic, sensitivity, and specificity were 
used to evaluate the performance of radiomic models.
Results  Four radiomic models for prediction of IBC-IC were built including intratumoral radiomic signature, peritumoral 
radiomic signature, peritumoral radiomic nomogram, and combined intratumoral and peritumoral radiomic signature. The 
combined intratumoral and peritumoral radiomic signature had the optimal diagnostic performance, with the AUC, sensitiv-
ity, and specificity of 0.821 (0.758–0.874), 0.822 (0.680–0.920), and 0.739 (0.658–0.810) in the primary cohort and 0.815 
(0.730–0.882), 0.778 (0.577–0.914), and 0.738 (0.631–0.828) in the validation cohort.
Conclusions  The radiomic model based on the combined intratumoral and peritumoral features from DCE-MRI showed a 
good ability to preoperatively predict IBC-IC, which might facilitate the individualized surgical planning for patients with 
breast cancer before breast-conserving surgery.
Key Points   
• Preoperative prediction of intraductal component in invasive breast cancer is crucial for breast-conserving surgery planning.
• Peritumoral radiomic features of invasive breast cancer contain useful information to predict intraductal components.
• Radiomics is a promising non-invasive method to facilitate individualized surgical planning for patients with breast cancer 
   before breast-conserving surgery.
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HER2	� Human epidermal growth factor recep-
tor 2

IBC	� Invasive breast cancer
IBC-IC	� Intraductal component in invasive breast 

cancer
IBSI	� Image biomarker standardization 

initiative
ICC	� Intraclass correlation coefficient
LASSO	� Least absolute shrinkage and selection 

operator
NEX	� Number of excitations
NME	� Non-mass enhancement
ROC	� Receiver operating characteristic
ROI	�  Region of interest
PR	� Progesterone receptor
TA	� Total acquisition time
TE	� Echo time
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TRIPOD	� Transparent reporting of a multivariable 

prediction model for individual progno-
sis or diagnosis statement

Introduction

Breast cancer is the most commonly diagnosed cancer 
among women [1, 2]. Breast-conserving surgery (BCS) fol-
lowed by radiotherapy is now established as the “standard 
of care” for early-stage invasive breast cancer (IBC) [3, 4]. 
Emerging pieces of evidence suggest that positive surgical 
margins are correlated with the increased locoregional recur-
rence after BCS [5–7]. Therefore, the success of BCS relies 
on the clear surgical margins during initial tumor resection 
in a cosmetically acceptable manner [8].

The presence of an intraductal component (ductal car-
cinoma in situ, DCIS) in invasive breast cancer (IBC-IC) 
is a commonly mentioned risk factor that drives positive 
margin [9–11], re-operation rate [12, 13], and local-regional 
recurrence [7, 14] in BCS. Lack of imaging biomarkers for 
preoperatively identifying IBC-IC is the main cause for posi-
tive surgical margin and repetitive surgery [13]. MRI is an 
important imaging modality in locoregional management of 
breast cancer [15] and has been proven to be more sensitive 
and accurate than mammography and ultrasonography in 
detecting and depicting the extent of a given invasive cancer 
[16] and DCIS [17, 18]. Previous studies also indicated that 
preoperative MRI improved surgical planning and outcomes 
of patients with DCIS by depicting additional malignancy 
[18] and was associated with a lower risk of positive surgical 
margins in patients with IBC eligible for BCS [19].

Preoperative prediction of the presence of an intra-
ductal component in a given tumor is crucial for surgical 
planning and outcome in breast cancer [20]. To date, some 

researchers found that the MRI could improve the detection 
and depiction of the IBC-IC before surgery, compared with 
the other imaging modalities [21, 22]. Together with MRI-
guided needle biopsy and MRI-guided surgery, MRI could 
contribute to improved surgical outcomes by reducing the 
positive margin during BCS [21]. However, evidence of the 
utility of radiomics based on dynamic contrast-enhanced 
MRI (DCE-MRI) to improve the preoperative prediction of 
IBC-IC, to our knowledge, is scarce. Radiomics refers to the 
science of converting medical images into high-throughput 
quantitative features, followed by subsequent data analysis 
and model building for clinical decision-making support 
[23]. MRI-based radiomics unravel an increasing number 
of mineable quantitative imaging biomarkers [24] and have 
been applied in breast cancer diagnosis [25, 26], molecular 
subtypes classification [27], therapeutic evaluation [28–30], 
early prognostic prediction [31–33], and recurrence risk pre-
diction [34, 35], to stratify patients for precise and personal-
ized care [36].

Therefore, we hypothesized that the intratumoral and per-
itumoral radiomic features derived from DCE-MRI might 
predict IBC-IC. The purpose of this retrospective study was 
to develop and validate radiomic models from two inde-
pendent DCE-MRI protocols for preoperative prediction of 
IBC-IC.

Materials and methods

Patients

The retrospective analysis was approved by our institutional 
review board and the informed consent was waived. A total 
of 374 consecutive female patients between September 2017 
and January 2020 were preliminarily enrolled in this study. 
The inclusion criteria were (1) patients with unilateral IBC 
confirmed by surgical pathology and (2) with DCE-MRI 
examination, which was the routine tool to aid breast sur-
geons for preoperative consulting and surgery planning in 
our institution. The exclusion criteria were (1) patients with 
previous breast surgery (n = 47), (2) with previous neoad-
juvant or induction chemotherapy (n = 25), (3) with occult 
breast cancer (n = 2), and (4) without qualified image data 
(n = 6). Finally, a total of 294 patients were remained and 
divided into primary cohort (September 2017 to Decem-
ber 2018) and validation cohort (February 2019 to January 
2020) according to two different MRI acquisition protocols 
(Fig. 1).

Histopathological analyses

Histopathology and immunohistochemistry data were 
directly obtained from the surgical pathology report. The 
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existence and status of the intraductal component were 
reviewed by two dedicated breast pathologists with 5 and 
30 years of experience. All cases were thoroughly evalu-
ated to identify the existence of the intraductal compo-
nent from hematoxylin-eosin staining sections. Additional 
immunohistochemical staining (cytokeratin 5/6 and p63) 
was performed to differentiate intraductal components 
from invasive cancer. The status of the intraductal com-
ponent including fraction and nuclear grade [37] was 
measured and documented as its ratio of the entire lesion 
(i.e., invasive plus intraductal part) [21]. In this study, 
IBC-IC was defined as the cases with DCIS component 
in or around invasive cancer (i.e., index cancer), while 
invasive cancer without DCIS component was defined as 
IBC. Estrogen receptor (ER) and progesterone receptor 
(PR) positivity was defined as the presence of 10% or more 
positively stained nuclei in 10 high-power fields. Human 
epidermal growth factor receptor 2 (HER2) expression was 
scored from 0 to 3: tumors with a score of 3 were classified 
as positive, tumors with a score of 0 or 1 were classified 
as negative, and tumors with scores of 2 were subjected 
to HER2 gene amplification by using chromogenic in situ 
hybridization to further confirm [31]. The threshold of 
high or low Ki-67 was defined as 14% [38].

MRI acquisition

All included patients underwent DCE-MRI on the 3.0 T 
scanner (Skyra, Siemens Healthcare) with a 16-channel 
breast coil. Gadodiamide (0.1 mmol/kg; Omniscan, GE 
Healthcare) was intravenously administered using a power 
injector (rate, 2.5 mL/s) before DCE-MRI. Then, a 20-mL 
saline flush was injected (rate, 2.5 mL/s). Two different 
ultrafast DCE-MRI protocols for radiomic model develop-
ment and validation respectively were described as follows.

DCE‑MRI protocol 1  The ultrafast DCE-MRI protocol for the 
primary cohort was performed between September 2017 and 
December 2018 which has been described in our previous 
studies [39, 40]. It included 26 consecutive phases using the 
commercially available CAIPIRINHA-Dixon-TWIST-VIBE 
sequence (Siemens Healthcare): repetition time (TR), 5.64 
ms; echo time (TE), 2.46 ms; echo train length (ETL), 32; 
number of excitations (NEX), 1; field of view (FOV), 360 
× 360 mm; slice thickness, 2.5 mm; no gap; matrix, 269 × 
384; flip angle, 10°; acquisition type, 3D; temporal resolu-
tion, 12.0 s/phase; and total acquisition time (TA), 5 min 12 
s. The images were reconstructed from the k-space using 
the inverse Fourier transform with interleaved stochastic 
trajectories method.

DCE‑MRI protocol 2  The ultrafast DCE-MRI protocol for the 
validation cohort was performed between February 2019 
and January 2020. It included 20 consecutive phases using 
the homemade sequence: TR, 5.06 ms; TE, 1.83 ms; ETL, 
32; NEX, 1; FOV, 340 × 255 mm; slice thickness, 2.5 mm; 
no gap; matrix, 320 × 240; flip angle, 10°; acquisition type, 
3D; temporal resolution, 16.6 s/phase; and TA, 5 min 33 s. 
The images were reconstructed from the k-space using the 
inverse Fourier transform with the linear filling method.

Image processing and segmentation

The 5th phase images of 26 dynamic phases in the primary 
cohort and the 4th phase images of 20 dynamic phases in 
the validation cohort were selected for processing and seg-
mentation, which were equivalent to the first post-contrast 
images at the early arterial phase [41]. Then these images 
were preprocessed using the Artificial Intelligence Kit 
(A.K., version 3.2.0, GE Healthcare) software before seg-
mentation. All images were firstly resampled to 1 × 1 × 1 
mm3 isotropic voxels with a trilinear interpolation algorithm. 

Fig. 1   Flowchart for patient 
recruitment in this study. 
IBC-IC, intraductal compo-
nent in invasive breast cancer; 
IBC, invasive breast cancer; 
DCE-MRI, dynamic contrast-
enhanced MRI
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The position of the interpolation grid was aligned by the 
center and the dimensions of the interpolation grid were 
rounded to the nearest integer. Gaussian filter was used for 
anti-aliasing when down-sampling and the bias-field correc-
tion was also conducted. Then voxel intensity values were 
normalized with a z-score to eliminate the influence of the 
different ranges of gray values.

The region of interest (ROI) that covers the entire MRI-
visible tumor (i.e., index tumor) was manually contoured 
slice by slice in axial plane using ITK-SNAP (version 
3.8.0, http://​www.​itksn​ap.​org). The largest tumor was 
selected as the index tumor when there were multiple 
lesions. The peritumoral regions were then obtained using 
the A.K. software by equidistant 3-dimensional dilation 
of the intratumoral regions with 4 mm [42–44]. The seg-
mentations for all cases were performed by one radiologist 
with 5 years of experience in breast imaging. To assess 
inter-observer agreement, 30 randomly selected cases were 
segmented again by another radiologist with 15 years of 
experience in breast imaging. Both radiologists were blind 
to the clinical and histopathological data. The reliability 
was calculated using the intraclass correlation coefficient 

(ICC). Features with ICCs greater than 0.75 indicated 
satisfactory reproducibility and were reserved for further 
analysis. The representative DCE-MRI images and the 
intratumoral and peritumoral ROIs are shown in Fig. 2.

Radiomic feature extraction

A total of 208 original features including shape, first order, 
and texture features were extracted from both the intratu-
moral and peritumoral ROIs (104 features for each) after 
image preprocessing and segmentation using an open-
source Python package (PyRadiomics, version 3.0, https://​
pyrad​iomics.​readt​hedocs.​io) [45], which was basically 
compliant with the image biomarker standardization ini-
tiative (IBSI) standard [46]. A fixed bin number of 32 was 
used to discretize voxel intensity values before extracting 
texture features according to its good performance after 
z-score normalization in MRI [47]. Further details of radi-
omic features are provided in Supplementary Materials 
and Table S1-2.

Fig. 2   The representative 
dynamic contrast-enhanced 
MRI images and the intratu-
moral and peritumoral regions 
of interest. a, b A 63-year-old 
female with invasive breast can-
cer. c, d A 46-year-old female 
with intraductal component in 
invasive breast cancer

4848 European Radiology (2022) 32:4845–4856

http://www.itksnap.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io


1 3

Radiomic feature selection and radiomic signature 
construction

Radiomic features were standardized using z-score normali-
zation and then selected to build radiomic signatures based 
on intratumoral radiomic features, peritumoral radiomic 
features, and the combined intratumoral and peritumoral 
radiomic features respectively in the primary cohort. Then, 
a four-step feature selection methodology was performed. 
Firstly, the Mann-Whitney U test was conducted to select the 
features that were statistically different between patients with 
IBC-IC and IBC. The p value threshold for the remaining 
significant features was set at 0.05. Secondly, the Spearman 
correlation analysis was sequentially conducted to exclude 
redundant radiomic features. Highly correlated features 
(Spearman correlation coefficient > 0.9) were excluded. 
Thirdly, the least absolute shrinkage and selection operator 
(LASSO) method was used to select the most predictive fea-
tures associated with IBC-IC in the primary cohort [48]. The 
radiomic signatures were calculated via a linear combina-
tion of the selected features and weighted by the respective 
coefficients. Spearman correlations were performed among 
the features in radiomic signatures to assess their multicol-
linearity. Feature selection and radiomic signature building 
were all performed using R software (version 4.0.0, http://​
www.r-​proje​ct.​org).

Model development and validation

Independent factors for differentiating IBC-IC from IBC 
among radiomic signatures and clinical variables were iden-
tified by inputting significant variables found in the primary 
cohort using univariate logistic regression analysis. Then 
a multivariable logistic regression analysis was applied to 
build a radiomic nomogram.

The discrimination performance of each model was 
assessed by the area under the curve (AUC) of receiver-
operator characteristic (ROC) curve in both the primary 
and validation cohorts. The optimal threshold was deter-
mined by maximizing the Youden index. The sensitivity and 
specificity were also calculated. The binomial exact method 
was used to determine the confidence intervals (CIs) of the 
reported performance metrics. The Hosmer-Lemeshow 
(H-L) test was performed to assess the goodness-of-fit of 
predictive models. The calibration curve was also plotted 
and its corresponding calibration slope and calibration-in-
the-large were measured [49].

MRI image analysis

All MRI images were retrospectively analyzed by two 
radiologists according to the American College of Radi-
ology Breast Imaging Reporting and Data System (ACR 

BI-RADS). Both radiologists were blinded to the pathologi-
cal outcomes and assessed the following MRI morphologic 
features of each index tumor on the first post-contrast phase 
of DCE-MRI, including the lesion type (mass or non-mass 
enhancement, NME), lesion internal enhancement (homo-
geneous or heterogeneous), shape (oval/round or irregu-
lar), and margin (circumscribed or irregular/speculated) of 
masses. The disagreements between the two radiologists 
were resolved by consulting a third radiologist with 23 years 
of experience in breast imaging.

TRIPOD and statistical analysis

As a prediction model study for diagnostic purposes, this 
study followed the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRI-
POD) statement [50].

Statistical analyses were performed using MedCalc (ver-
sion 18.2.1, https://​www.​medca​lc.​org) and SPSS software 
(version 26.0, https://​www.​ibm.​com). The independent sam-
ple t-test was used to compare the age between IBC-IC and 
IBC groups. The chi-square test or Fisher’s exact test was 
conducted to analyze categorical variables including meno-
pausal status, MRI morphologic features, and histopatho-
logical characteristics. The comparisons of AUCs between 
the predictive radiomic model with the highest AUC and the 
others were performed using the DeLong test in the primary 
and validation cohorts [51]. Further comparisons of sensitiv-
ity and specificity were performed using the McNemar test 
[52]. A two-tailed p value of <0.05 was considered statisti-
cally significant. The multiple comparisons were corrected 
using the Bonferroni method.

The association between IBC-IC and MRI morpho-
logic features was further assessed using univariate logis-
tic regression analysis. The prediction performance of the 
MRI morphologic features was assessed by the AUC of ROC 
curve and compared with that of the best radiomic model 
using the DeLong test [51].

Results

Demographic characteristics

A total of 294 patients including 72 (24.5%) IBC-IC 
patients and 222 (75.5%) IBC patients were recruited in 
this study. The MRI morphologic features and clinical and 
histopathological characteristics of patients in the primary 
and validation cohorts are summarized in Table 1. Sig-
nificant differences were found in lesion type between 
the IBC-IC group and the IBC group in both primary and 
validation cohorts (p < 0.001 and p = 0.009). The IBC-IC 
patients were younger than IBC patients (p = 0.012) and 
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the proportion of irregular or speculated mass margin and 
HER2 positive in the IBC-IC group was higher than that 
in the IBC group (p = 0.013 and 0.044) in the primary 
cohort. But there were no significant differences in age, 
mass margin, and HER2 status in the validation cohort (p 
= 0.336, 0.820, and 0.726). Additionally, there were no 

significant differences in menopausal status, lesion inter-
nal enhancement, mass shape, histological type, molecular 
subtype, ER status, PR status, and Ki-67 between the IBC-
IC and IBC groups in the primary and validation cohorts 
(all p > 0.05).

Table 1   MRI morphologic features and clinical and histopathological characteristics of patients in the primary and validation cohorts

* Mass shape and margin were calculated with a denominator of 166 masses in the primary cohort and 104 in the validation cohort. Data are 
numbers of patients, with percentages in parentheses. IBC-IC, intraductal component in invasive breast cancer; IBC, invasive breast cancer; SD, 
standard deviation; HER2, human epidermal growth factor receptor 2; ER, estrogen receptor; PR, progesterone receptor

Characteristics Primary cohort (n = 183) Validation cohort (n = 111)

IBC-IC (n = 45) IBC (n = 138) p IBC-IC (n = 27) IBC (n = 84) p

Age (mean ± SD) 45.1 ± 8.1 49.4 ± 10.3 0.012 48.9 ± 8.8 51.1 ± 10.4 0.336
Menopausal status 0.223 0.792
Premenopausal 31 (68.9%) 81 (58.7%) 14 (51.9%) 46 (54.8%)
Postmenopausal 14 (31.1%) 57 (41.3%) 13 (48.1%) 38 (45.2%)
Lesion type < 0.001 0.009
Mass 34 (75.6%) 132 (95.7%) 22 (81.5%) 82 (97.6%)
Non-mass enhancement 11 (24.4%) 6 (4.3%) 5 (18.5%) 2 (2.4%)
Lesion internal enhancement 0.270 0.568
Homogeneous 5 (11.1%) 25 (18.1%) 6 (22.2%) 14 (16.7%)
Heterogeneous 40 (88.9%) 113 (81.9%) 21 (77.8%) 70 (83.3%)
Mass shape* 0.737 0.999
Round or oval 2 (5.9%) 12 (9.1%) 3 (13.6%) 11 (13.4%)
Irregular 32 (94.1%) 120 (90.9%) 19 (86.4%) 71 (86.6%)
Mass margin* 0.013 0.820
Circumscribed 4 (11.8%) 44 (33.3%) 8 (36.4%) 32 (39.0%)
Irregular or speculated 30 (88.2%) 88 (66.7%) 14 (63.6%) 50 (61.0%)
Histological type 0.100 0.999
Invasive ductal carcinoma 45 (100.0%) 124 (89.9%) 27 (100.0%) 80 (95.2%)
Invasive lobular carcinoma 0 (0.0%) 4 (2.9%) 0 (0.0%) 1 (1.2%)
Others 0 (0.0%) 10 (7.2%) 0 (0.0%) 3 (3.6%)
Molecular subtype 0.055 0.239
Luminal A 10 (22.2%) 24 (17.4%) 5 (18.5%) 12 (14.3%)
Luminal B 21 (46.7%) 58 (42.0%) 15 (55.6%) 41 (48.8%)
HER2 positive 10 (22.2%) 18 (13.0%) 6 (22.2%) 14 (16.7%)
Triple negative 4 (8.9%) 38 (27.6%) 1 (3.7%) 17 (20.2%)
ER 0.256 0.296
Positive 31 (68.9%) 82 (59.4%) 20 (74.1%) 53 (63.1%)
Negative 14 (31.1%) 56 (40.6%) 7 (25.9%) 31 (36.9%)
PR 0.270 0.116
Positive 29 (64.4%) 76 (55.1%) 20 (74.1%) 48 (57.1%)
Negative 16 (35.6%) 62 (44.9%) 7 (25.9%) 36 (42.9%)
HER2 0.044 0.726
Positive 20 (44.4%) 39 (28.3%) 9 (33.3%) 25 (29.8%)
Negative 25 (55.6%) 99 (71.7%) 18 (66.7%) 59 (70.2%)
Ki-67 0.326 0.418
Low 13 (28.9%) 30 (21.7%) 6 (22.2%) 13 (15.5%)
High 32 (71.1%) 108 (78.3%) 21 (77.8%) 71 (84.5%)
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Radiomic feature selection and radiomic signature 
construction

Of the 208 extracted original radiomic features, 89 fea-
tures from the intratumoral region and 55 features from the 
peritumoral region showed good inter-observer agreement 
(ICCs > 0.75). The process of radiomic features selection is 
presented in Supplementary Fig. S1-2. Finally, 4, 4, and 7 
features were selected to construct intratumoral, peritumoral, 
and combined intratumoral and peritumoral radiomic signa-
tures respectively. The mean and standard deviation of these 
features are provided in Supplementary Table S3 to conduct 
z-score normalization before calculation.

The calculation formula for intratumoral radiomic signa‑
ture  ln (P/1-P) = -1.357 - 0.0095 × shape_Flatness - 0. 8371 
× shape_Sphericity + 0.6066 × shape_SurfaceVolumeRatio 
- 0.7562 × GLDM_LowGrayLevelEmphasis, where P is the 
probability of IBC-IC (cutoff > 0.1817).

The calculation formula for peritumoral radiomic signature  
ln (P/1-P) = -1.2048 - 0.4029 × shape_Flatness + 0.2186 
× firstorder_10Percentile + 0.3995 × firstorder_RootMean-
Squared - 0.2168 × firstorder_TotalEnergy, where P is the 
probability of IBC-IC (cutoff > 0.2755).

The calculation formula for combined intratumoral and 
peritumoral radiomic signature   ln (P/1-P) = -1.4034 
- 0.9322 × intratumoral_shape_Sphericity + 0.5822 × 
intratumoral_shape_SurfaceVolumeRatio - 0.5794 × 
intratumoral_GLDM_LowGrayLevelEmphasis + 0.2619 
× peritumoral_firstorder_10Percentile + 0.1189 × peritu-
moral_firstorder_Range + 0.3665 × peritumoral_firstorder_
RootMeanSquared - 0.3933 peritumoral_firstorder_TotalEn-
ergy, where P is the probability of IBC-IC (cutoff > 0.2496).

The distributions of these radiomic signatures in the pri-
mary and validation cohorts are shown in Supplementary 
Fig. S3. The Spearman correlations among the features in 
these radiomic signatures are presented in Supplementary 
Table S4.

Model development and validation

Univariate logistic regression analysis found that IBC-IC 
was associated with age (OR = 0.954, p = 0.013). Further 
multivariate logistic regression analysis found that only age 
in the peritumoral dataset was associated with IBC-IC (p = 
0.041) (Table 2). Therefore, the peritumoral radiomic nomo-
gram was developed by integrating the peritumoral radiomic 
signature and age (Supplementary Fig. S4). The calculation 
formula for peritumoral radiomic nomogram is as follows: 
ln (P/1-P) = 2.0973 - 0.0410 × age + 1.1666 × peritumoral 
radiomic signature, where P is the probability of IBC-IC 
(cutoff > 0.2374).

Finally, four radiomic models for prediction of IBC-IC 
were built including intratumoral radiomic signature, peritu-
moral radiomic signature, peritumoral radiomic nomogram, 
and combined intratumoral and peritumoral radiomic signa-
ture. The ROC curves of these radiomic models in the pri-
mary and validation cohorts are shown in Fig. 3. The AUC, 
sensitivity, and specificity of each radiomic model in the 
primary and validation cohorts are summarized in Table 3.

The calibration curves of intratumoral radiomic sig-
nature, peritumoral radiomic signature, peritumoral 
radiomic nomogram, and combined intratumoral and 
peritumoral radiomic signature showed good agreement 
between prediction and observation in both primary and 
validation cohorts (Supplementary Fig.  S5), and the 
results of the Hosmer-Lemeshow test were insignificant 

Table 2   Univariate and 
multivariate logistic regression 
analyses for predictive factors of 
IBC-IC in the primary cohort

IBC-IC, intraductal component in invasive breast cancer; CI, confidence interval

Variables Odds ratio 95% CI p

Univariate logistic analysis
Age 0.954 0.920–0.990 0.013
Intratumoral radiomic signature 3.201 1.989–5.152 < 0.001
Peritumoral radiomic signature 3.410 1.846–6.298 < 0.001
Combined intratumoral and peritu-

moral radiomic signature
3.493 2.220–5.496 < 0.001

Multivariate logistic analysis
Intratumoral radiomic nomogram Age 0.968 0.930–1.008 0.119

Radiomic signature 3.047 1.890–4.913 < 0.001
Peritumoral radiomic nomogram Age 0.960 0.923–0.998 0.041

Radiomic signature 3.211 1.730–5.961 < 0.001
Combined intratumoral and peritu-

moral radiomic nomogram
Age 0.970 0.929–1.013 0.168
Radiomic signature 3.364 2.130–5.312 < 0.001
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(p = 0.324, 0.177, 0.219, 0.256 in the primary cohort and 
p = 0.873, 0.265, 0.800, 0.281 in the validation cohort, 
respectively), which suggested no departure from a per-
fect fit.

Univariate logistic regression analysis revealed that 
lesion type was associated with IBC-IC (OR = 7.118, 
95% CI = 2.457–20.622, p < 0.001). The lesion type 
yielded AUCs of 0.600 (0.526–0.672) in the primary 
cohort and 0.581 (0.483–0.674) in the validation cohort 
(Supplementary Fig. S6).

Comparison of models and TRIPOD

The combined intratumoral and peritumoral radiomic signa-
ture yielded the highest AUC among the radiomic models in 
both the primary and validation cohorts (AUC = 0.821, 95% 
CI = 0.758–0.874; AUC = 0.815, 95% CI = 0.730–0.882, 
respectively). According to the DeLong test, the AUC of 
the combined intratumoral and peritumoral radiomic signa-
ture was higher than that of the peritumoral radiomic sig-
nature and nomogram in the primary cohort (p < 0.001 and 

Fig. 3   Receiver operating characteristic curves of radiomic models for prediction of intraductal component in invasive breast cancer. a Primary 
cohort. b Validation cohort

Table 3   Diagnostic 
performance of radiomic 
models in the primary and 
validation cohorts

AUC​, the area under the curve; CI, confidence interval

Models Cohorts AUC (95% CI) Sensitivity Specificity

Intratumoral radiomic signature Primary 0.780
(0.712, 0.837)

0.956
(0.849, 0.995)

0.514
(0.428, 0.600)

Validation 0.758
(0.667, 0.834)

0.815
(0.619, 0.937)

0.441
(0.332, 0.553)

Peritumoral radiomic signature Primary 0.701
(0.629, 0.767)

0.600
(0.443, 0.743)

0.732
(0.650, 0.804)

Validation 0.810
(0.725, 0.878)

0.852
(0.663, 0.958)

0.679
(0.568, 0.776)

Peritumoral radiomic nomogram Primary 0.720
(0.649, 0.784)

0.733
(0.581, 0.854)

0.674
(0.589, 0.751)

Validation 0.787
(0.700, 0.859)

0.815
(0.619, 0.937)

0.607
(0.495, 0.712)

Combined intratumoral and peritu-
moral radiomic signature

Primary 0.821
(0.758, 0.874)

0.822
(0.680, 0.920)

0.739
(0.658, 0.810)

Validation 0.815
(0.730, 0.882)

0.778
(0.577, 0.914)

0.738
(0.631, 0.828)
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p = 0.006), but not in the validation cohort (p = 0.930 and 
0.626). There were no significant differences in the AUCs 
between the combined intratumoral and peritumoral radi-
omic signature and the intratumoral radiomic signature in 
the primary (p = 0.080) or validation cohort (p = 0.056) 
(Table 4). The McNemar test showed the specificities of 
the combined intratumoral and peritumoral radiomic signa-
ture in both the primary and validation cohorts were higher 
than those of the intratumoral radiomic signature (both p < 
0.001). The sensitivity of the combined intratumoral and 
peritumoral radiomic signature was higher than that of the 
peritumoral radiomic signature in the primary cohort (p = 
0.006), but not in the validation cohort (p = 0.727) (Table 4). 
The discriminating performances of the combined intratu-
moral and peritumoral radiomic signature in the primary 
and validation cohorts were superior to that of the lesion 

type (0.821 vs. 0.600, p < 0.001; 0.815 vs. 0.581, p < 0.001, 
respectively). The representative images of the lesion type 
as mass and NME in IBC-IC and IBC groups are shown in 
Fig. 4.

We concluded the type of this study could be type 2b, 
and the TRIPOD checklist is presented in Supplementary 
Table S5.

Discussion

In this study, we developed and validated radiomic mod-
els incorporating intratumoral and peritumoral radiomic 
features for preoperative prediction of IBC-IC based on 
two different DCE-MRI protocols. The result showed the 

Table 4   Comparisons of AUC, 
sensitivity, and specificity 
between the combined 
intratumoral and peritumoral 
radiomic signature and the other 
radiomic models in the primary 
and validation cohorts

* Differences were significant at p < 0.05 corrected with Bonferroni’s method. AUC​, the area under the 
curve

Comparisons AUC​ Sensitivity Specificity

Z p χ2 p χ2 p

Primary cohort
Intratumoral radiomic signature 1.750 0.080 3.125 0.070 29.032 < 0.001*

Peritumoral radiomic signature 3.371 < 0.001* 6.750 0.006* 0.000 0.999
Peritumoral radiomic nomogram 2.763 0.006* 1.125 0.289 0.164 0.163
Validation cohort
Intratumoral radiomic signature 1.908 0.056 0.000 0.999 23.040 < 0.001*

Peritumoral radiomic signature 0.088 0.930 0.125 0.727 0.762 0.383
Peritumoral radiomic nomogram 0.488 0.626 0.000 0.999 3.704 0.052

Fig. 4   a–d The representa-
tive images of the lesion type 
as mass and NME in IBC-IC 
and IBC groups. The radiomic 
signature was calculated from 
the combined intratumoral 
and peritumoral model and the 
cutoff probability for predic-
tion of IBC-IC was 0.2496. 
NME, non-mass enhancement; 
IBC-IC, intraductal component 
in invasive breast cancer; IBC, 
invasive breast cancer

4853European Radiology (2022) 32:4845–4856



1 3

combined intratumoral and peritumoral radiomic signature 
had the optimal ability to preoperatively predict IBC-IC.

Preoperative prediction of IBC-IC based on DCE-MRI 
can help breast surgeons to optimize surgical planning before 
BCS. The incidence of IBC-IC is not rare in clinical practice. 
It was 24.5% (72/294) in our study, which was similar to 
previous literatures (20.6 to 52.6%) [21, 22, 53, 54]. IBC-IC 
is also a well-known risk factor that drives positive margin 
[9–11] and re-operation rate [13] in BCS. The published 
positive surgical margin rates in patients with IBC-IC ranged 
from 19.3 to 38.3% [55, 56] and the average re-operation 
rate was about 29.5% [13], which were both much higher 
than that in patients with pure IBC. Therefore, anticipating 
the IBC-IC before surgery can help surgeons appropriately 
define resection margins during BCS and reduce the rate 
of positive surgical margins [21] and incomplete resections 
[20]. Our results showed that the radiomic models based 
on DCE-MRI could non-invasively predict the presence of 
an intraductal component in patients with IBC before BCS, 
which might facilitate the personalized surgical planning for 
these patients. Together with MRI-guided needle biopsy and 
MRI-guided surgery, previous research demonstrated that 
the rate of positive surgical margins in IBC-IC patients could 
be reduced to 3.7% [21].

Traditional imaging researches found that the extensive 
IBC-IC often presented as ductal or linear enhancement, 
long spicules, a regional enhancing area, or nodules adjacent 
to a mass on MRI [22]. Compared the MRI findings with 
the histopathological examination, Van Goethem et al found 
that the peritumoral enhancement on MRI corresponded in 
89.1% of cases with malignant extension by surgery pathol-
ogy, and more than half of these correlated with DCIS [57]. 
Therefore, utilization of the peritumoral radiomic features 
may be helpful in the detection of IBC-IC. Previous studies 
showed that the early and overall peritumoral enhancement 
and amount of fibroglandular tissue around the MRI-visible 
tumor were associated with extensive IBC-IC, and the AUC 
of the prediction model based on these features was 0.79 
[20]. These results are concordant with our results, suggest-
ing that the peritumoral characteristics of breast tumors on 
MRI are of great help for the detection of IBC-IC. Recent 
studies have also demonstrated that the peritumoral radi-
omic features contained crucial information for breast cancer 
diagnosis [58], prognosis prediction [42, 44], and therapeu-
tic evaluation [59]. As compared with the above studies, 
our study revealed that the combined intratumoral and peri-
tumoral radiomic signature was the most optimal model 
among the radiomic models in predicting IBC-IC with the 
highest AUCs of 0.821 and 0.815 in both the primary and 
validation cohorts.

Our results also showed that the predictive performance 
of radiomic features was superior to the morphological fea-
tures. Traditionally, morphological features of index tumor 

on MRI are the only predictors for IBC-IC prediction, which 
are subject to visual interpretation. The traditional diagnostic 
mode is highly affected by the experience of radiologist. 
Thus, the performance for the prediction of IBC-IC based on 
morphological features ranged from 68 to 84.9% in previous 
literature [21, 22].

In the combined intratumoral and peritumoral radiomic 
signature, the intratumoral shape_Sphericity was negatively 
associated with IBC-IC and the intratumoral shape_Sur-
faceVolumeRatio was positively associated with IBC-IC, 
indicating that the masses of IBC-IC had less spherical and 
compact shape than that of IBC. The GLDM_LowGray-
LevelEmphasis from the intratumoral region was negatively 
associated with IBC-IC, indicating that the masses of IBC-
IC had less homogeneous textures with less concentration 
of low gray-level values. Besides, 4 first-order features from 
the peritumoral region including 10Percentile, Range, Root-
MeanSquared, and TotalEnergy were selected to construct 
the combined intratumoral and peritumoral radiomic sig-
nature. Our results suggested that the IBC-IC had a higher 
10th percentile and range of gray level intensity, a higher 
square root of the mean of all the squared intensity values, 
and a lower sum of the squares of voxel values within the 
peritumoral region than IBC.

This study had several limitations. First, the retrospective 
design of this study had inherent selection bias. Second, the 
radiomic models in the study were developed and validated 
from two ultrafast DCE-MRI protocols using the same MRI 
scanner. Thus, the variance of radiomic features caused by 
different MRI scanners was not investigated. In addition, 
this was a single-center study. Hence, the radiomic models 
in this study need to be verified in a multicenter study with 
different imaging equipment in the future.

In conclusion, we developed and validated the radiomic 
model for preoperative prediction of IBC-IC based on the 
combined intratumoral and peritumoral features from DCE-
MRI. This radiomic model provided the individualized prob-
ability of IBC-IC and might help to optimize surgical plan-
ning for patients with breast cancer before BCS.
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