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Abstract
Objective To develop a multiparametric MRI-based radiomics nomogram for predicting lymphovascular invasion (LVI) 
status and clinical outcomes in patients with breast invasive ductal carcinoma (IDC).
Methods A total of 160 patients with pathologically confirmed breast IDC (training cohort: n = 112; validation cohort: 
n = 48) who underwent preoperative breast MRI were included. Imaging features were extracted from T2-weighted imaging 
(T2WI), apparent diffusion coefficient (ADC) maps, and contrast-enhanced T1-weighted imaging (cT1WI) sequences. A 
four-step procedure was applied for feature selection and radiomics signature building. Univariate and multivariate logistic 
regression analyses were conducted to identify the features associated with LVI, which were then incorporated into the radi-
omics nomogram. The performance of the nomogram was evaluated by its discrimination, calibration, and clinical useful-
ness. Kaplan–Meier survival curves based on the two radiomics models were used to estimate disease-free survival (DFS).
Results The fusion radiomics signature of the T2WI, cT1WI, and ADC maps achieved a better predictive efficacy for LVI 
than either of them alone. The proposed radiomics nomogram, incorporating the fusion radiomics signature and MRI-reported 
peritumoral edema, showed satisfactory capabilities of calibration and discrimination in both training and validation datasets, 
with AUCs of 0.919 (95% CI: 0.871–0.967) and 0.863 (95% CI: 0.726–0.999), respectively. The radiomics signature and 
nomogram-defined high-risk groups had a shorter DFS than those in the low-risk groups (both p < 0.05). Higher Rad-scores 
were independently associated with a worse DFS in the whole cohort (p < 0.05).
Conclusions The proposed nomogram, incorporating multiparametric MRI-based radiomics signature and MRI-reported 
peritumoral edema, achieved a satisfactory preoperative prediction of LVI and clinical outcomes in IDC patients.
Key Points 
• The fusion radiomics signature of the T2WI, cT1WI, and ADC maps achieved a better predictive efficacy for LVI than 

either of them alone.
• The proposed nomogram achieved a favorable prediction of LVI in IDC patients with AUCs of 0.919 and 0.863 in the 

training and validation datasets, respectively.
• The radiomics model could classify patients into high- and low-risk groups with significant differences in DFS.
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mrALN  MRI-reported axillary lymph nodes
NME  Nonmass enhancement
T2WI  T2-weighted imaging
TIC  Time-intensity curve

Introduction

Breast cancer has become the most commonly diagnosed 
cancer, as well as the leading cause of cancer-related 
deaths in women worldwide [1]. In these patients, it is the 
metastases at distant sites, rather than the primary tumor, 
that are the main cause of death [2]. One of the key factors 
of metastases is lymphovascular invasion (LVI), which was 
defined as the infiltration of neoplastic cells within blood 
vessels or lymphatic lumens [3]. Notably, it is one of the 
critical steps in the metastasis, and it has been proved to be 
an independent prognostic factor for local recurrence (LR) 
or distant metastasis (DM) of breast cancer [4]. At present, 
LVI can only be diagnosed with a surgical specimen post-
operatively [5]. Preoperative knowledge of LVI in breast 
cancer may assist clinicians in making more reliable clini-
cal decisions, including type of surgery, surgical margin 
determination, and guiding more aggressive neoadjuvant 
treatment protocols. However, preoperative prediction of 
LVI is still a main challenge [6].

Clinicopathologic risk indicators related to LVI of 
breast cancer have been studied, but the results are incon-
sistent [7, 8]. MRI is an important diagnostic tool for 
tumor detection and prediction of neoadjuvant therapy 
or prognosis in patients with breast cancer, owing to the 
advantages of high-resolution and multiparameter scan-
ning [9]. Previous studies have shown that some MRI 
features, such as peritumoral edema, adjacent vessel sign 
(AVS), and tumor apparent diffusion coefficient (ADC) 
values were associated with LVI [10–14]. However, these 
features have not been extensively utilized for prediction 
of LVI, and they should be further assessed clinically.

Radiomics can capture underlying pathophysiological 
information, and it has noticeably attracted scholars’ atten-
tion [15, 16]. The association between intratumor hetero-
geneity and LVI has been previously reported [17–20]. To 
date, few studies have evaluated the application of radi-
omics to predict LVI in patients with breast cancer [21], 
and no study has specifically concentrated on the potential 
value of multiparametric MRI-based radiomics to reliably 
predict LVI and outcomes.

Therefore, the present study aimed to investigate 
whether the radiomics nomogram, integrating clinical fac-
tors, MRI features, and radiomics features extracted from 
multiparametric MRI could be used to predict LVI and 
outcomes in patients with invasive breast cancer.

Materials and methods

Patients

This retrospective study was approved by the institutional 
ethics review board of our hospital and the requirement 
of informed consent was waived. A total of 538 consecu-
tive female patients with breast invasive ductal carcinoma 
(IDC), who underwent mastectomy or breast-conserving sur-
gery from March 2014 to December 2017, were recruited. 
Patients were excluded if one of the following criteria was 
met: LVI status was not explicitly reported pathologically, 
patients with a history of other malignant tumors, undergo-
ing neoadjuvant chemotherapy preoperatively, undergoing 
vacuum-assisted excisional biopsy before the MRI examina-
tion, poor quality of imaging, or unavailable follow-up data. 
Finally, a total of 160 patients with IDC were included and 
were randomly assigned into training dataset (n = 112) and 
validation dataset (n = 48) at a ratio of 7:3.

Histopathology

All patients underwent surgical treatment within 2 weeks 
after MRI examination. The pathological type, grade, and 
LVI status were recorded. LVI was defined as positive when 
there were cancer cells in lymphatic vessels or small blood 
vessels outside the tumor. Immunohistochemistry (IHC) 
was performed to detect the expression levels of estrogen 
receptor (ER), progesterone receptor (PR), human epider-
mal growth factor receptor 2 (HER-2), and Ki-67 expres-
sion status. The cutoff value for ER and PR was set at 1%, 
and the cutoff value for Ki-67 was 20%. Concerning the 
HER-2 status, according to the American Society of Clinical 
Oncology (ASCO)/College of American Pathologists (CAP) 
guidelines [22], tumors with an IHC staining score of 0 or 
1 + were defined as HER-2-negative and those with an IHC 
staining score of 3 + as HER-2-positive. For tumors with an 
IHC staining score of 2 + , fluorescence in situ hybridization 
(FISH) was further performed to confirm the HER-2 status. 
A non-amplified FISH result denotes the HER-2 status as 
negative, and an amplified result denotes the HER-2 status 
as positive. Breast cancer can be classified into four main 
immunohistochemical subtypes, namely luminal A, luminal 
B, HER2-enriched, and triple negative subtypes according to 
the 2013 St. Gallen Consensus Conference [23].

MRI protocol and radiologic evaluation

All MRI examinations were performed on Achieva 3.0-T 
system (Philips Healthcare) with an eight-channel phased 
array breast coil. The routine protocols were composed 
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of turbo spin-echo T1-weighted imaging (T1WI), fat-sup-
pressed spin-echo T2-weighted imaging (T2WI), echo-
planar diffusion-weighted imaging (DWI), and dynamic 
contrast-enhanced MRI (DCE-MRI). Imaging acquisition 
parameters were detailed in Appendix E1. For patients with 
multiple lesions, the largest lesion was selected for radiom-
ics analysis.

MR images were reviewed independently by two breast 
radiologists with 15 and 10 years of MR experience respec-
tively, and consensus was reached by discussion in event of 
disagreement. Both radiologists were blinded to all histo-
pathological data. Those radiologists assessed the follow-
ing imaging features of tumors: tumor size, lesion type, 
tumor margin, time-intensity curve (TIC) pattern, peritu-
moral edema, AVS, and MRI-reported axillary lymph node 
(mrALN) status. Peritumoral edema positive was defined as 
the higher signal intensity surrounding the tumor compared 
with that of surrounding breast tissue or almost equal to 
that of water by visual evaluation on T2W images [24]. The 
presence of the AVS was defined as the presence of ves-
sel either entering the lesion or contacting the edge of the 
lesion on the contrast T1W images [10]. Positive-MRI find-
ings of ALN were accompanied with a short-axis diameter 
exceeding 10 mm, a ratio of the longest axis to the shortest 
axis was < 1.5, loss of fatty hilum, and eccentric cortical 
thickening [25].

MRI segmentation and radiomics features 
extraction

Regions of interests (ROIs) were manually drawn on the 
transverse T2WI, DWI, and cT1WI (the early enhanced phase 
at 60 s after contrast injection), along the edge of the lesion 
slice-by-slice for each patient, by the above two radiologists 
using ITK-SNAP 3.8 software (http:// www. itksn ap. org). The 
ROIs on DWI were automatically mapped to ADC map.

Image preprocessing and feature extraction were per-
formed using open-source Pyradiomics software (http:// 
PyRad iomics. readt hedocs. io/ en/ latest/). Details of the fea-
ture extraction algorithms are presented in Appendix E2.

Radiomics feature selection and radiomics signature 
building

We devised a four-step procedure for selecting robust radi-
omics features. Firstly, the intraclass correlation coefficient 
(ICC) was calculated to explore the stability of radiomics 
features, and features with an ICC < 0.80 were excluded. 
Secondly, the univariate analysis was performed to select 
LVI-related features (with p < 0.01). Thirdly, the Spearman’s 
correlation analysis with r ≥ 0.90 was used to eliminate the 
redundancy. Finally, we used the least absolute shrinkage 
and selection operator (LASSO) method to select the most 

significant features in the training dataset. Multivariate 
logistic regression analysis was then conducted to develop 
a radiomics signature using the Akaike information criterion 
(AIC) as the stopping rule for predicting LVI.

Development, performance, and validation 
of the radiomics nomogram

Univariate analysis was used to assess the association between 
the clinico-radiological (clinicopathological and radiological) 
characteristics and LVI status, and significant risk factors were 
considered for the multivariate logistic regression analysis to 
develop the clinico-radiological model. Similarly, the radi-
omics signature and the abovementioned clinico-radiological 
signatures were then tested using univariate and multivariable 
logistic regression analyses to construct the radiomics nomo-
gram for prediction of LVI in the training dataset.

Receiver operating characteristic (ROC) curves and the 
area under the curve (AUC) values were used to assess the 
discrimination performance of the established models for 
LVI prediction. Calibration curve was adopted to investigate 
the calibration of the radiomics nomogram in the training 
and validation datasets. The Hosmer–Lemeshow test was 
used to assess the goodness-of-fit of the radiomics nomo-
gram. Decision curve analysis (DCA) was conducted to esti-
mate the clinical usefulness of the radiomics nomogram by 
calculating the net benefits at different values of threshold 
probability.

Statistical analysis

The statistical analysis was conducted using the SPSS 22.0 
software (IBM Corp.) and R software version 3.6.3 (http:// 
www.R- proje ct. org, Appendix E3). Clinico-radiological fea-
tures of patients in LVI-positive and LVI-negative groups 
and in the training and validation datasets were compared 
by the Student t-test or the Mann–Whitney U test for con-
tinuous variables and Chi-squared or the Fisher exact test for 
categorical variables. Disease-free survival (DFS) was the 
outcome of interest, which was defined as the time from the 
date of surgery to that of the first LR or DM or death from 
any cause. The association of the radiomics nomogram with 
DFS was analyzed by using the Kaplan–Meier method and 
compared by the log-rank test. The optimum cutoff values to 
classify patients into high-risk and low-risk groups, accord-
ing to the radiomics signature or nomogram, were identified 
using the maximally selected rank statistical method. Univari-
ate and multivariate logistic regression analyses with the Cox 
proportional-hazards regression determined the predictors of 
DFS. Variables that reached a statistical significance in the 
univariate analysis were considered for the multivariate logis-
tic regression analysis. A two-sided p < 0.05 was considered 
statistically significant.
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Results

Clinico‑radiological characteristics

No significant difference was found in all the clinico-radio-
logical features between the training and validation datasets 
(p = 0.056–0.988) (Table S1). The clinico-radiological fea-
tures of patients in LVI-positive and LVI-negative groups 
in the training and validation datasets are shown in Table 1. 
The rates of LVI were 36.7% (41 of 112) and 31.3% (15 of 
48) in the training and validation datasets, respectively.

The univariate analysis showed that tumor size, lesion type, 
tumor margin, peritumoral edema, AVS, and mrALN status 
were significantly correlated to LVI (p < 0.05) (Table S2). The 
multivariate logistic regression analysis revealed that peritu-
moral edema (odds ratio [OR] = 3.500; 95%confidence inter-
val [CI]: 1.611–7.604; p = 0.002), AVS (OR = 2.266; 95%CI: 
1.025–5.010; p = 0.043), and mrALN status (OR = 3.503; 
95%CI: 1.625–7.552; p = 0.001) remained independent pre-
dictors of LVI (Table 2). A clinico-radiological model was 
then established based on the abovementioned independent 
predictors of LVI. Representative MR images of LVI-positive 
and LVI-negative of IDC are presented in Figure S1.

Radiomics feature selection, radiomics signature 
building, and validation

In this study, a total of 3111 imaging features for each patient 
were extracted, 1037 features were from each of the ADC, 
cT1WI, and T2WI sequences. We selected 930, 897, and 976 
features with high stability and reproducibility (ICC > 0.80) 
from these features for the above sequences, respectively. 
Afterward, a total of 1228 features were selected by the uni-
variate analysis. After eliminating redundancy by applying the 
Pearson correlation analysis, 96 features remained, and were 
then subjected to the LASSO method. Finally, 3 ADC features, 
2 cT1WI features, and 7 T2WI features were selected. The 
Rad-score calculation formulas of each sequence were con-
structed with the corresponding selected features, respectively 
(Appendix E4).

For the fusion radiomics signature derived from the 
abovementioned sequences, eight radiomics features were 
selected after the multivariate logistic regression analy-
sis, including two wavelet features and six Laplacian of 
Gaussian (LoG) features. All these eight features were 
significantly different between the LVI-positive and LVI-
negative groups (all p < 0.05; Fig. 1). The Rad-score cal-
culation formula of the fusion radiomics signature model 
was constructed (Appendix E4). The distributions of the 
Rad-scores for each patient in the training and validation 
datasets are shown in Fig. 2a and b. The Rad-scores in the 
LVI-positive group were significantly higher than those in 

the LVI-negative group in the training and validation data-
sets (Fig. 2c and d).

The prediction performances of the single radiomics sig-
nature and the fusion radiomics signature for predicting LVI 
status are presented in Fig. 3 and Table 3. The radiomics 
signature derived from ADC, cT1WI, and T2WI sequences 
yielded AUC values of 0.804 (95%CI: 0.719–0.889), 0.800 
(95%CI: 0.717–0.883), and 0.860 (95%CI: 0.790–0.930) 
in the training dataset, which were then confirmed in the 
validation dataset with the AUC values of 0.762 (95%CI: 
0.600–0.924), 0.713 (95%CI: 0.558–0.868), and 0.844 
(95%CI: 0.705–0.984), respectively. The fusion radiomics 
signature yielded the highest AUC values of 0.905 (95%CI: 
0.850–0.960) and 0.848 (95%CI: 0.712–0.985) in the train-
ing and validation datasets, respectively.

Development, performance, and validation 
of the radiomics nomogram

On multivariate logistic regression analysis, the radiom-
ics signature and peritumoral edema were identified as 
independent risk factors for predicting LVI status. The 
radiomics nomogram incorporating the abovementioned 
independent predictors showed the highest discrimina-
tion ability for predicting LVI, with AUC values of 0.919 
(95%CI:0.871–0.967) and 0.863 (95%CI: 0.726–0.999) in 
the training and validation datasets, respectively (Figs. 3 and 
4, Figure S2, and Table 3).

The calibration curve of the radiomics nomogram showed 
a good agreement between the predicted LVI probabilities 
and the actual LVI status in both training and validation 
datasets (Fig. 5a and b). The DCA showed that the radiomics 
nomogram had higher net benefit than the radiomics signa-
ture and the clinico-radiological model in predicting LVI in 
the two datasets (Fig. 5c and d).

Predictors of survival

The median follow-up period was 41  months (range, 
5–75 months). LR, DM, or deaths from any cause occurred 
in 25 patients (15.6%) at a median follow-up period of 
16 months (range, 5–36 months).

We identified the optimal radiomics signature or nom-
ogram-defined score for prediction of DFS as 0.711 and 
0.581, respectively. Accordingly, all patients were divided 
into high-risk and low-risk groups, and the Kaplan–Meier 
survival curves showed that higher radiomics signature 
or nomogram-defined scores were significantly associ-
ated with a worse DFS in the entire cohort (hazard ratio 
[HR], 2.950; 95%CI: 1.339–6.501, p = 0.005 versus HR, 
3.160; 95%CI: 1.434–6.963, p = 0.003) (Fig. 6). Table S3 
summarizes the results of the univariate Cox regression 
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Table 1  Comparisons of 
clinico-radiological features 
between patients with LVI and 
without LVI in the training and 
validation datasets

Characteristics Training dataset (n = 112) p value Validation dataset (n = 48) p value

LVI present
(n = 41)

LVI absent
(n = 71)

LVI present
(n = 15)

LVI absent
(n = 33)

Age, years 49.5 ± 10.3 48.0 ± 10.2 0.455 49.6 ± 8.0 48.5 ± 8.8 0.684
Menopausal status 0.389 0.327

  Premenopausal 22 (53.7%) 44 (62.0%) 10 (66.7%) 17 (51.5%)
  Postmenopausal 19 (46.3%) 27 (38.0%) 5 (33.3%) 16 (48.5%)

Tumor  sizea, cm 2.8 (2.0–4.4) 1.8 (1.5–2.5) 0.000b 2.9 (1.6–4.0) 2.3 (1.6–2.7) 0.095b

Lesion type 0.008 0.084c

  Mass 29 (70.7%) 64 (90.1%) 12 (80.0%) 32 (97.0%)
  NME 12 (29.3%) 7 (9.9%) 3 (20.0%) 1 (3.0%)

Margin 0.013 0.409c

  Circumscribed 3 (7.3%) 19 (26.8%) 1 (6.7%) 6 (18.2%)
  Not circumscribed 38 (92.7%) 52 (73.2%) 14 (93.3%) 27 (81.8%)

TIC pattern 0.927c 0.537c

  Type I 1 (2.4%) 2 (2.8%) 0 (0.0%) 1 (3.0%)
  Type II 25 (61.0%) 45 (63.4%) 8 (53.3%) 19 (57.6%)
  Type III 15 (36.6%) 24 (33.8%) 7 (46.7%) 13 (39.4%)

Peritumoral edema 0.000 0.031
  Negative 11 (26.8%) 50 (70.4%) 5 (33.3%) 22 (66.7%)
  Positive 30 (73.2%) 21 (29.6%) 10 (66.7%) 11 (33.3%)

AVS 0.000 0.283c

  Negative 17 (41.5%) 55 (77.5%) 10 (66.7%) 27 (81.8%)
  Positive 24 (58.5%) 16 (22.5%) 5 (33.3%) 6 (18.2%)

mrALN status 0.000 0.016
  Negative 16 (39.0%) 56 (78.9%) 6 (40.0%) 25 (75.8%)
  Positive 25 (61.0%) 15 (21.1%) 9 (60.0%) 8 (24.2%)

ER status 0.766 1.000c

  Negative 15 (36.6%) 24 (33.8%) 3 (20.0%) 7 (21.2%)
  Positive 26 (63.4%) 47 (66.2%) 12 (80.0%) 26 (78.8%)

PR status 0.440 0.809
  Negative 21 (51.2%) 31 (43.7%) 6 (40.0%) 12 (36.4%)
  Positive 20 (48.8%) 40 (56.3%) 9 (60.0%) 21 (63.6%)

HER2 status 0.685 0.283c

  Negative 32 (78.0%) 53 (74.6%) 10 (66.7%) 27 (81.8%)
  Positive 9 (22.0%) 18 (25.4%) 5 (33.3%) 6 (18.2%)

Ki-67 index(%) 0.224 0.727c

   < 20 4 (9.8%) 13 (18.3%) 3 (20.0%) 10 (30.3%)
   ≥ 20 37 (90.2%) 58 (81.7%) 12 (80.0%) 23 (69.7%)

Molecular subtype 0.542 0.983c

  Luminal A 3 (7.3) 12 (16.9) 3 (20.0) 10 (30.3)
  Luminal B 23 (56.1) 37 (52.1) 9 (60.0) 16 (48.5)
  HER2 positive 8 (19.5) 11 (15.5) 2 (13.3) 2 (6.1)
  Triple negative 7 (17.1) 11 (15.5) 1 (6.7) 5 (15.2)

Histological grade 0.995d 0.748d

  Low 1 (2.4%) 3 (4.2%) 0 (0.0%) 2 (6.1%)
  Moderate 28 (68.3%) 46 (64.8%) 13 (86.7%) 26 (78.8%)
  High 12 (29.3%) 22 (31.0%) 2 (13.3%) 5 (15.2%)

pT category 0.015d 1.000
  1 10 (24.4) 32 (45.1) 5 (33.3) 11 (33.3)
  2 26 (63.4) 36 (50.7) 10 (66.7) 22 (66.7)
  3 5 (12.2) 3 (4.2) 0 (0) 0 (0)
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analysis of the predictors of DFS in the entire cohort. The 
results of the multivariate Cox regression analysis showed 
that the Rad-score was an independent predictor of DFS 
(HR, 4.535; 95%CI: 1.428–14.404, p = 0.010), following 
the peritumoral edema (Table 4).

Discussion

In the present study, we developed and validated a radiom-
ics signature derived from multiparametric MRI, which 
was capable of predicting LVI in patients with breast IDC. 

Abbreviations: LVI, lymphovascular invasion; NME, nonmass enhancement; mrALN status, MRI axillary 
lymph nodes status; AVS, adjacent vessel sign; BCS, breast-conserving surgery; TIC, time-intensity curve
a Data are medians, with interquartile ranges in parentheses
b p values were obtained with the Mann–Whitney U test
c p values were obtained with the Fisher exact test
d p values were obtained with the χ2 test for trend. Unless otherwise specified, continuous variables were 
compared by the Student t-test and categorical variables were compared using the χ2 test

Table 1  (continued) Characteristics Training dataset (n = 112) p value Validation dataset (n = 48) p value

LVI present
(n = 41)

LVI absent
(n = 71)

LVI present
(n = 15)

LVI absent
(n = 33)

pN category 0.000d 0.003d

  0 8 (19.5) 50 (70.4) 5 (33.3) 24 (72.7)
  1 16 (39.0) 13 (18.3) 3 (20.0) 4 (12.1)
  2 7 (17.1) 4 (5.6) 2 (13.3) 4 (12.1)
  3 10 (24.4) 4 (5.6) 5 (33.3) 1 (3.0)

Stages 0.000d 0.037d

  1 4 (9.8) 28 (39.4) 2 (13.3) 9 (27.3)
  2 18 (43.9) 34 (47.9) 6 (40.0) 19 (57.6)
  3 19 (46.3) 9 (12.7) 7 (46.7) 5 (15.2)

Type of surgery 0.004 0.136c

  Mastectomy 38 (92.7) 49 (69.0) 14 (93.3) 23 (69.7)
  BCS 3 (7.3) 22 (31.0) 1 (6.7) 10 (30.3)

Adjuvant chemotherapy 1.000c 0.642c

  No 2 (4.9) 3 (4.2) 2 (13.3) 3 (9.1)
  Yes 39 (95.1) 68 (95.8) 13 (86.7) 30 (90.9)

Adjuvant radiotherapy 0.387 0.269
  No 25 (61.0) 49 (69.0) 7 (46.7) 21 (63.6)
  Yes 16 (39.0) 22 (31.0) 8 (53.3) 12 (36.4)

Adjuvant endocrine therapy 0.652 1.000c

  No 15 (36.6) 23 (32.4) 4 (26.7) 9 (27.3)
  Yes 26 (63.4) 48 (67.6) 11 (73.3) 24 (72.7)

Table 2  Multivariate logistic 
analysis of the risk factors for 
LVI

Abbreviations: AVS, adjacent vessel sign; mrALN status, MRI axillary lymph nodes status

Variable Clinico-radiological model Radiomics model

Odds ratio p value Odds ratio p value

Peritumoral edema 3.500 (1.611–7.604) 0.002 3.439 (1.134–11.178) 0.032
AVS 2.266 (1.025–5.010) 0.043 NA NA
mrALN status 3.503 (1.625–7.552) 0.001 NA NA
Rad-score NA NA 2.666 (1.862–4.256)  < 0.001
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Fig. 1  Plots (a–h) illustrate the eight radiomics features with a significant difference between the LVI-positive and LVI-negative groups in the 
training dataset

Fig. 2  Plots (a, b) show the Rad-score for each patient, and plots (c, d) depict the Rad-score in the training and validation datasets, respectively

4085European Radiology (2022) 32:4079–4089
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Furthermore, the proposed radiomics nomogram that inte-
grated MRI features and the radiomics signature exhib-
ited a high accuracy for predicting LVI preoperatively, 

providing a straightforward and noninvasive approach for 
personalized prediction of LVI preoperatively. Addition-
ally, the nomogram was significantly associated with DFS, 
playing an important role in predicting the prognosis in 
patients with breast IDC.

A recent study considered that DCE-MRI-based radiom-
ics signature was an independent risk factor for predicting 
LVI status of IDC patients [21]. In their study, the research-
ers only evaluated the clinical value of radiomics derived 
from contrast-enhanced MRI. While in the present study, 
multiparametric MRI-based radiomics features, includ-
ing T2WI, ADC maps, and cT1WI, were extracted and 
used for LVI prediction. The results demonstrated that the 
fusion radiomics signature from the combination of all the 
sequences achieved a better predictive efficacy than either 
of them alone for LVI status of breast cancer. Different 
sequences can reflect different characteristics of tumors, 
such as tumor intensity, histologic cellularity, and microves-
sel density. Therefore, multiparametric MRI features can 
make full use of the advantages of each sequence to reflect 
more comprehensive tumor information. Additionally, seven 

Fig. 3  Plots (a, b) display the 
ROC curves of the radiomics 
signatures, the clinico-radiolog-
ical model, and the radiomics 
nomogram for LVI status in the 
training and validation datasets, 
respectively

Table 3  Diagnostic performance of the radiomics signatures, clinico-
radiological model, and the radiomics nomogram for LVI status

Model C-index(95%CI)

Training dataset Validation dataset

Radiomics signature-
ADC

0.804 (0.719–0.889) 0.762 (0.600–0.924)

Radiomics signature-
cT1WI

0.800 (0.717–0.883) 0.713 (0.558–0.868)

Radiomics signature-
T2WI

0.860 (0.790–0.930) 0.844 (0.705–0.984)

Radiomics signature-
fusion

0.905 (0.850–0.960) 0.848 (0.712–0.985)

Clinico-radiological 
model

0.803 (0.720–0.885) 0.761 (0.607–0.914)

Radiomics nomogram 0.919 (0.871–0.967) 0.863 (0.726–0.999)

Fig. 4  The developed radiomics 
nomogram for the prediction of 
LVI status in the training dataset
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of the eight selected features were derived from T2-weighted 
images, while the DCE-MRI-based radiomics signature was 
not included. This is consistent with previous speculation 
that T2-weighted images capture better tumor heterogeneity 
than contrast-enhanced T1-weighted images [26, 27].

For the fusion radiomics signature, eight radiomics fea-
tures were selected after the multivariate logistic regression 
analysis, including two wavelet features and six LoG fea-
tures. The LoG filter employs a Gaussian filter to smooth 

the images, which may help decrease the influence of noise. 
It can also enhance textural details, which will help improve 
the efficiency of capturing phenotypic features mapped to 
tumoral heterogeneity [28, 29]. The wavelet transforma-
tion can help us quantify high-dimensional multi-frequency 
tumor information that are difficult to explain intuitively 
[30]. Wavelet features mirror multi-frequency information 
of the tumor in a different wavelet-transformed frequency 
range [30]. LoG and wavelet features are extracted from 

Fig. 5  Plots (a, b) illustrate 
the calibration curves of the 
radiomics nomogram in the 
training and validation datasets, 
respectively. Plots (c, d) show 
the results of DCA for the radi-
omics nomogram in the training 
and validation datasets, respec-
tively. The Y-axis represents the 
net benefit. The X-axis indicates 
the threshold probability

Fig. 6  Kaplan–Meier survival analysis according to the radiomics signature (a) and the nomogram (b) in the entire cohort
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multiple frequency and spatial domain, which are difficult 
to explain intuitively in clinic. Nevertheless, through radi-
omics analysis, these high-dimensional image features were 
detected and successfully used in the prediction of efficacy 
of neoadjuvant therapy, lymph node metastasis, and gene 
expression [28–30]. In our study, all these high-dimensional 
features were significantly higher in the LVI-positive group 
than those in the LVI-negative group.

In addition, peritumoral edema, AVS, and mrALN status 
were independent predictors of LVI in the clinico-radiolog-
ical model in this study. However, only peritumoral edema 
showed a sufficient predictive power with the adjunction of 
radiomics signature into the multivariable logistic regres-
sion model. Then, peritumoral edema was incorporated to 
develop a radiomics nomogram model, which showed a 
satisfactory discrimination ability for predicting LVI, with 
an AUC value of 0.863 (95% CI: 0.726–0.999) in the vali-
dation dataset. The biological mechanism of the associa-
tion between peritumoral edema and LVI remains elusive. 
Peritumoral edema may be caused by the increased vas-
cular permeability and peritumoral injection of cytokines 
[10, 24]. Uematsu et al. pointed out that edema may be 
caused by obstruction and dilation of lymphatic drainage 
massage by tumor emboli, and a high degree of LVI is 
significantly associated with edema [12, 13].

Histological LVI has been reported to be associated with 
a poorer prognosis of breast cancer in numerous studies 
[4, 31–33]. Additionally, there is a significant difference in 
survival outcomes between the high- and low-risk groups 
defined by our radiomics-based models, in which patients 
with high-risk LVI had a significantly poorer DFS, com-
pared with those with low-risk LVI. As the outcomes in the 
LVI high-risk group were not satisfactory postoperatively, 
neoadjuvant therapy may be a better choice for patients in 
the high-risk group to obtain drug sensitivity in vivo and to 
kill potential metastatic cells as early as possible. Therefore, 

based on our radiomics model, it is feasible to guide the 
treatment plan and implement personalized treatment.

Several limitations of this study should be pointed 
out. Firstly, this was a retrospective single-center study, 
indicating the necessity to a large-scale prospective 
multicenter study to further validate the effectiveness 
of the proposed radiomics nomogram. Secondly, multi-
phase DCE-MRI is commonly used in breast contrast-
enhanced scan of breast, while only the early images after 
enhancement were used to extract radiomics features in 
this study. Finally, the DCE-MRI sequence of our institu-
tion was originally designed for the analysis of quantita-
tive pharmacokinetic parameters. The spatial resolution 
was slightly inferior to the conventional contrast T1W 
sequence, which may affect the robustness of these radi-
omics features. Moreover, extracting radiomics features 
of quantitative parameter (ktrance, kep, and Ve) of DCE-
MRI may provide more information for identification of 
LVI status, so that further studies are needed to verify 
this aspect as well.

In conclusion, radiomics features derived from mul-
tiparametric MRI are potential biomarkers for predicting 
LVI. The proposed radiomics nomogram, incorporating 
multiparametric MRI-based radiomics signature and MR-
reported peritumoral edema, exhibited a promising pre-
dictive efficacy for LVI status and clinical outcomes, and 
may provide valuable guidance for individualized treat-
ment in patients with breast IDC.
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Table 4  Multivariable Cox regression analysis of predictors of DFS 
in the entire cohort

Variable Hazard ratio(95% CI) p value

Peritumoral edema
  Negative Ref
  Positive 3.062 (0.875–10.711) 0.080

Stage
  1 Ref
  2 2.406 (0.260–22.223) 0.439
  3 19.703 (2.160–179.700) 0.008

Adjuvant radiotherapy
  No Ref
  Yes 3.066 (1.051–8.945) 0.040

Rad-score 4.535 (1.428–14.404) 0.010
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Ethical approval Institutional Review Board approval was obtained.

Methodology  
• retrospective
• diagnostic or prognostic study
• performed at one institution
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