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Abstract
Objective To conduct multiparametric magnetic resonance imaging (MRI)-derived radiomics based on multi-scale tumor 
region for predicting disease-free survival (DFS) in early-stage squamous cervical cancer (ESSCC).
Methods A total of 191 ESSCC patients (training cohort, n = 135; validation cohort, n = 56) from March 2016 to September 
2019 were retrospectively recruited. Radiomics features were derived from the T2-weighted imaging (T2WI), contrast-
enhanced T1-weighted imaging (CET1WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) 
map for each patient. DFS-related radiomics features were selected in 3 target tumor volumes  (VOIentire,  VOI+5 mm, and 
 VOI−5 mm) to build 3 rad-scores using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. 
Logistic regression was applied to build combined model incorporating rad-scores with clinical risk factors and compared 
with clinical model alone. Kaplan–Meier analysis was used to further validate prognostic value of selected clinical and 
radiomics characteristics.
Results Three radiomics scores all showed favorable performances in DFS prediction. Rad-score  (VOI+5 mm) performed best 
with a C-index of 0.750 in the training set and 0.839 in the validation set. Combined model was constructed by incorporating 
age categorized by 55, Federation of Gynecology and Obstetrics (Figo) stage, and lymphovascular space invasion with rad-
score  (VOI+5 mm). Combined model performed better than clinical model in DFS prediction in both the training set (C-index 
0.815 vs 0.709; p = 0.024) and the validation set (C-index 0.866 vs 0.719; p = 0.001).
Conclusion Multiparametric MRI-derived radiomics based on multi-scale tumor region can aid in the prediction of DFS for 
ESSCC patients, thereby facilitating clinical decision-making.
Key Points  
• Three radiomics scores based on multi-scale tumor region all showed favorable performances in DFS prediction. Rad- 
   score (VOI+5 mm) performed best with favorable C-index values.
• Combined model incorporating multiparametric MRI-based radiomics with clinical risk factors performed significantly
    better in DFS prediction than the clinical model.
• Combined model presented as a nomogram can be easily used to predict survival, thereby facilitating clinical  
    decision-making.
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Abbreviations
ADC  Apparent diffusion coefficient
BIC  Bayesian information criterion
CET1WI  Contrast-enhanced T1-weighted imaging
CI  Confidence interval
DFS  Disease-free survival
DWI  Diffusion-weighted imaging
ESSCC  Early-stage squamous cervical cancer
FIGO  Federation of Gynecology and Obstetrics
HPV  Human papillomavirus
ICC  Intraclass correlation coefficient
LASSO  Least absolute shrinkage and selection 

operator
LVI  Lymphovascular space invasion
MRI  Magnetic resonance imaging
SCC  Squamous cervical cancer
SCCA   Squamous cell carcinoma antigen
T2WI  T2-weighted imaging
t-ROC  Time-dependent receiver operating 

characteristic
VIF  Variance inflation factor
VOIs  Volumes of interest

Introduction

Cervical cancer is the fourth most common cause of cancer-
related mortality in women worldwide, and squamous cervical 
cancer (SCC) accounts for 75–80% of cases [1]. With the popu-
larity of cancer screening, the incidence of early-stage (IB-IIA) 
SCC (ESSCC) has increased dramatically during the past dec-
ades [1, 2]. Radical hysterectomy with bilateral pelvic lymph 
node dissection is the cornerstone of treatment for ESSCC [3]. 
Despite curative treatment, 25–30% of patients with ESSCC 
experience locoregional recurrence or distant metastasis [2]. 
Therefore, accurate prognosis prediction is essential for choos-
ing the optimal surgical plan, postoperative adjuvant therapy, 
and the intensity of postoperative observation.

Federation of Gynecology and Obstetrics (Figo) staging 
is most commonly used to evaluate cervical cancer progno-
sis in clinical practice [1, 4]. However, Figo staging is easily 
affected by physician’s experience, and it is limited by the 
lack of tumor’s pathological characteristics. Some pathologi-
cal characteristics such as tumor differentiation, lymph node 
metastasis, and lymphovascular space invasion (LVI) have been 
identified as adverse prognostic factors for cervical cancer in 
previous studies [5, 6]. Therefore, the new 2018 Figo staging 
incorporates the pathological finding into the disease staging 
[4]. However, the pathological information can only be obtained 
through invasive methods, and it is easily influenced by sam-
pling error and interobserver variability. Therefore, there is a 

need for noninvasive prognostic indicators that provide quantifi-
able risk measures for patients with cervical cancer.

Given its excellent contrast resolution, magnetic reso-
nance imaging (MRI) is the first-line imaging modality 
to diagnose, stage, and monitor cervical cancer [7, 8]. In 
addition to detailed anatomical information, MRI can 
describe the tumor microscopic characteristics through 
some functional MRI sequences, such as contrast-enhanced 
T1-weighted imaging (CET1WI) and diffusion-weighted 
imaging (DWI). A meta-analysis has revealed that DWI and 
its derived apparent diffusion coefficient (ADC) may be a 
suitable candidate indicator of recurrence in patients with 
cervical cancer [9]. However, MRI-derived quantitative met-
rics are usually expressed as average values, which ignore 
the heterogeneity of tumors.

Radiomics is a mathematical-statistical procedure that 
quantifies high-throughput features from medical images, 
and enables noninvasive profiling of tumor heterogeneity 
[10, 11]. In the field of cervical cancer, previous studies have 
verified that radiomics might be a promising tool in pre-
dicting tumor staging, LVI, and lymph node status [12–15]. 
Fang et al reported an MRI-derived radiomics score as a 
prognostic biomarker in patients with cervical cancer [16]; 
however, only T2-weighted imaging (T2WI) and CET1WI 
were used, while functional DWI and ADC maps were not 
incorporated. Moreover, previous studies have usually per-
formed the extraction of radiomics features based on the 
entire volumetric tumor region, but peritumoral informa-
tion was ignored. Yet, some previous studies have shown 
the significant application of peritumoral radiomics in tumor 
assessment [17, 18].

Therefore, this study aimed to conduct multiparamet-
ric MRI-derived radiomics based on multi-scale tumor 
region for predicting disease-free survival (DFS) in ESSCC 
patients.

Materials and methods

Study population

Our institutional review board approved this retrospective 
study and written informed consent was not required. A total 
of 346 consecutive patients with suspicious cervical cancer 
for preoperative pelvic MRI assessment from March 2016 
to September 2019 were retrospectively enrolled. The inclu-
sion criteria were as follows: (1) patients underwent radical 
hysterectomy and bilateral pelvic lymph node dissection; 
(2) postoperative pathology confirmed to be ESSCC (Figo 
stage IB-IIA); (3) patients had no history of chemotherapy 
or radiotherapy before MRI examination; (4) image quality 
was adequate for analysis; (5) clinical data were complete. 
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Table 1  Characteristics of 
patients with early-stage 
cervical cancer in the training 
and validation sets

Data are numbers of patients and parentheses indicate the proportion if not specified
HPV, human papillomavirus; SCCA , squamous cell carcinoma antigen; Figo, Federation of Gynecology 
and Obstetrics; LVI, lymphovascular space invasion; DFS, disease-free survival; IQ, interquartile

Characteristics Training set (135) Validation set (56) p value

Age (years, mean ± SD) 50.3 ± 10.0 49.9 ± 9.2 0.978
Age (years) 0.794

   ≤ 50 72 (53.3%) 28 (50.0%)
   > 50 63 (46.7%) 28 (50.0%)

Age (years) 0.999
   ≤ 55 84 (62.2%) 35 (62.5%)

   > 55 51 (37.8%) 21 (37.5%)
Erythrocytes  (10−9/L, mean ± SD) 4.2 ± 0.5 4.3 ± 0.5 0.103
Neutrophils  (10−9/L, mean ± SD) 6.4 ± 2.0 6.5 ± 2.8 0.686
Platelets  (10−9/L, mean ± SD) 236.9 ± 69.0 237.0 ± 69.0 0.904
HPV 0.880

  Negative 66 (48.9%) 26 (46.4%)
  Positive 69 (51.1%) 30 (53.6%)

CEA (ng/mL, mean ± SD) 4.4 ± 7.8 3.7 ± 7.2 0.360
CA125 (u/mL, mean ± SD) 21.1 ± 23.9 17.9 ± 13.4 0.806
CA199 (u/mL, mean ± SD) 16.0 ± 24.0 12.7 ± 8.6 0.943
SCCA (ng/mL, mean ± SD) 8.8 ± 12.8 9.3 ± 11.6 0.485
Size (cm, mean ± SD) 3.7 ± 1.1 3.5 ± 1.3 0.379
Figo stage 0.231

  IB 65 (48.1%) 33 (58.9%)
  IIA 70 (51.9%) 23 (41.1%)

Differentiation 0.837
  Low grade 47 (34.8%) 21 (37.5%)
  Middle grade 75 (55.6%) 31 (55.4%)
  High grade 13 (9.6%) 4 (7.1%)

Lymph node metastasis 0.568
  Non-metastasis 94 (69.6%) 42 (75.0%)
  Metastasis 41 (30.4%) 14 (25.0%)

Number of lymph node metastasis 0.797
   ≤ 2 117 (86.7%) 50 (89.3%)

   > 2 18 (13.3%) 6 (10.7%)
LVI 0.093

  Negative 37 (27.4%) 23 (41.1%)
  Positive 98 (72.6%) 33 (58.9%)

Invasion depth 0.181
   ≤ 2/3 38 (28.1%) 22 (39.3%)

   > 2/3 97 (71.9%) 34 (60.7%)
Additional chemotherapy 0.825

  Yes 22 (16.3%) 10 (17.9%)
  No 113 (83.7%) 46 (82.1%)

Rad-score  (VOIentire) (medians ± IQ)  − 0.7 ± 3.4  − 0.7 ± 3.1 0.879
Rad-score  (VOI+5 mm) (medians ± IQ)  − 0.7 ± 4.1  − 0.6 ± 5.6 0.769
Rad-score  (VOI−5 mm) (medians ± IQ)  − 1.1 ± 3.0  − 1.0 ± 2.8 0.798
DFS time (months, mean ± SD) 29.1 ± 13.6 27.2 ± 13.4 0.424
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Finally, 191 patients (mean age, 50 years; range, 24–73 years) 
were included in the study. The patients were allocated to a 
training set and a validation set on basis of the time of sur-
gery at 7:3 ratio. The training set consisted of 135 patients 
(mean age, 50 years; range, 24–73 years) from March 2016 
to August 2018, whereas the validation set consisted of 56 
patients (mean age, 50 years; range, 32–69 years) from Sep-
tember 2018 to September 2019. Detailed demographic char-
acteristics are summarized in Table 1.

Postoperative follow‑up

All of the patients underwent radical hysterectomy and bilateral 
pelvic lymph node dissection. Thirty-two patients (training set, 
n = 22; validation set, n = 10) received adjuvant chemoradiother-
apy postoperatively. The patients were routinely followed up 
every 3–6 months during the first 2 years, 6 months for the next 
3–5 years, and then once a year thereafter. Disease-free survival 
(DFS) was defined as the period from the date of surgery to the 
date of first locoregional recurrence, distant metastasis, or last 
follow-up. Locoregional recurrence and distant metastasis were 
screened by means of gynecological examination and cross-sec-
tional imaging such as computed tomography (CT), MRI, and 
positron emission tomography CT, or proven by biopsy [1, 2].

MRI acquisitions and parameters

All of the patients were examined using 1.5-T MRI (Achieva, 
Philips Healthcare) using a 16-channel matrix torso coil. 
For contrast scanning, a gadolinium contrast (Omniscan, GE 
HealthCare) was intravenously administered at 0.1 mL/kg 
at 2.5 mL/s, followed by 20 mL of saline flushing. Detailed 
MRI scan parameters are listed in Table S1.

Clinical and pathological information

Clinical information including age, blood routine exami-
nation (erythrocytes, neutrophils, platelets), human papil-
lomavirus (HPV) status, and serum gynecological tumor 
markers (CEA, CA125, CA199, and squamous cell carci-
noma antigen (SCCA)) was obtained from medical records 
[1]. Age was categorized by 50 and 55 (years) separately 
to obtain a binary variable. Tumor size was determined as 
the longest diameter of the lesion with the maximum tumor 
size. Pathological information included tumor differentia-
tion, lymph node metastasis, LVI, and invasion depth. The 
number of lymph node metastases was categorized by two. 
Figo staging was determined following the 2018 Figo stag-
ing guidelines [4].

Fig. 1  The study flowchart and the radiomics workflow
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Multi‑scale tumor segmentation and radiomics 
feature extraction

Tumor segmentation was conducted by reader 1 (with 
6 years of experience in gynecological MRI) and confirmed 
again by reader 2 (with 8 years of experience in gynecologi-
cal MRI). Both readers were blinded to clinical information 
and pathological results.

The workflow of our study is shown in Fig. 1. Tumor seg-
mentation was performed semi-automatically using syngo.via 
Frontier Radiomics (Siemens Healthcare) on axial oblique 
T2WI, DWI, ADC, and sagittal CET1WI [19]. The software 
allowed semi-automatic entire volumetric interest  (VOIentire) 
segmentation through integrated hybrid algorithm combining 
a threshold-based approach with model-based morphologi-
cal processing [19, 20]. The method consisted of three parts: 
(1) identification of points on the tumor boundary by region 
growing and subsequent ray casting from the seed point; (2) 
calculation of an ellipsoid that approximates the shape of 
the tumor; (3) convex hull of the inverse mask within the 
dilated ellipsoid [20]. Then, regions at a 5-mm distance outer 
 (VOI+5 mm) and inner  (VOI−5 mm) from the tumor surface 
were automatically reconstructed using specified dilate and 
erode tools, which applied the morphological operations of 
erosion and dilation to the target  VOIentire. Finally, three types 
of VOIs were generated  (VOIentire,  VOI+5 mm, and  VOI−5 mm), 
and the contour of each VOI was locally refined mainly in 
the involved tumors with obscure boundary. The process of 
multi-scale tumor segmentation is depicted in Fig. 2.

After tumor segmentation, radiomics features from each 
VOI were automatically computed using syngo.via Frontier 
Radiomics interfaces with the PyRadiomics library [21]. 
Radiomics features, including 17 shape-based features, 18 

first-order statistical features, and 75 textural features, were 
extracted from the original image set. Textural features 
included five classes (24 Gray Level Co-occurrence Matrix 
(GLCM), 14 Gray Level Dependence Matrix (GLDM), 16 
Gray Level Size Zone Matrix (GLSZM), 16 Gray Level Run 
Length Matrix (GLRLM), 5 Neighbouring Gray Tone Differ-
ence Matrix (NGTDM)). Detailed information on the texture 
features is listed in Table S2. Default parameter settings are 
available from the website (https:// github. com/ AIM- Harva 
rd/ pyrad iomics/ tree/ master/ examp les/ examp leSet tings). To 
obtain high-throughput features, the non-linear intensity 
transforms on image voxels (square, square root, logarithm, 
and exponential); Laplacian of Gaussian (LoG) filtering with 
sigma values of 0.5, 1.5, 2.5, 3.5, and 4.5 mm; and eight 
wavelet transformations algorithms (LLL, LLH, LHL, LHH, 
HLL, HLH, HHL, and HHH) were conducted for first-order 
statistical and textural features (Table S3). Standardization 
with z scores was performed for all extracted radiomics fea-
tures to eliminate the impact of the different ranges of gray 
values.

Radiomics feature selection and three radiomics 
scores’ calculation

A two-step procedure was applied for high-dimensional 
radiomics feature selection. First, 75 patients were randomly 
selected for test and re-test and intraclass correlation coef-
ficient (ICC) was calculated to evaluate the reproducibil-
ity of the features. Features with ICC higher than 0.8 were 
remained in the subsequent analysis. Second, least absolute 
shrinkage and selection operator (LASSO) Cox regression 
was applied for radiomics feature selection and radiomics 

Fig. 2  VOI segmentation for the 
radiomics analysis. A radiolo-
gist first segmented the whole 
tumor region  (VOIentire) semi-
automatically with the help 
of the software (red line). On 
basis of  VOIentire of the tumor, 
the regions at 5 mm outer 
 (VOI+5 mm, blue line) and inner 
 (VOI−5 mm, green line) from the 
tumor boundary surface were 
automatically reconstructed, 
respectively, using the object 
operations module integrated in 
the software
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scores’ (rad-scores) construction. LASSO Cox regression 
compressed the coefficients of useless features to zero with the 
regulation parameter λ through tenfold cross-validation [16]. 
Rad-scores were then constructed by a linear combination of 
final selected robust features with their respective coefficients.

On account of three different types of VOIs, three radiom-
ics scores (rad-score  (VOIentire), rad-score  (VOI+5 mm), and 
rad-score  (VOI−5 mm)) were finally built through the above-
mentioned procedure, respectively.

Establishment, performance, and validation 
of clinical and combined models

Together with the three constructed radiomics scores, clini-
cal predictors of recurrence with statistical significance in 
the univariable Cox regression analysis were included in 
multivariate Cox regression analysis. Backward stepwise 
variable selection was implemented with the Bayesian infor-
mation criterion (BIC) [22]. Variance inflation factor (VIF) 
was checked for each variable included in the final combined 
model [23]. The clinical model, including only the clinical 
risk factors, was also built for comparison.

DFS probabilities were estimated using the Kaplan–Meier 
method and compared using the log-rank test [24]. Prognostic 
predictive ability of the models was assessed and compared 
using C-index calculated as prognostic performance indicator 
[25]. Time-dependent receiver operating characteristic (t-ROC) 
analysis with the areas under the curve at different time points 
was applied to assess prognostic accuracy [26]. Calibration 
curves were used to evaluate calibration precision. Internal 
validation was tested in an independent validation cohort.

Clinical utility

The clinical usefulness of the constructed models was evalu-
ated by decision curve analysis through quantifying the net 
benefits at different threshold probabilities for the entire set 
[27]. The y-axis measured the net benefit, calculated by sum-
ming the benefits (true positive values) and subtracting the 
harms (false positive values). The x-axis represented the per-
centage of threshold probability, i.e., probability of positive 
clinical outcome (locoregional recurrence, distant metastasis, 
and death). “All” or “none” referred to the situations when all 
or none of the patients had positive clinical outcome (locore-
gional recurrence, distant metastasis, and death) [28].

Statistical analysis

Statistical analyses were conducted using SPSS (version 23.0, 
SPSS), MedCalc (version 15.0, MedClac), and statistical 
packages R (The R Founding: http:// www.r- proje ct. org; ver-
sion 3.4.3). A t test or Mann–Whitney U test was used to com-
pare numerical variables (age, erythrocyte count, neutrophil 

count, platelet count, serum levels of gynecological tumor 
markers, tumor size, rad-scores, DFS time) between different 
groups. The chi-square test was used to compare categorical 
variables (age categorized by 50, age categorized by 55, HPV, 
Figo stage, differentiation, lymph node metastases, number of 
lymph node metastasis, LVI, invasion depth, additional chem-
otherapy) between different groups. LASSO Cox regression 
was implemented using the “glmnet” and “rms” packages. 
The Kaplan–Meier survival analysis was performed using the 
“survival” package and the comparisons were done using the 
log log-rank test. The “Hmisc” package was used for compari-
sons between C-indexes. The “rmda” package was used for 
decision curve analysis. A two-sided p value less than 0.05 
was indicative of statistically significant difference.

Results

Clinical characteristics

Detailed baseline characteristics of the patients are shown in 
Table 1. There were no significant differences in any of the 
clinical and pathological characteristics between the train-
ing set and the validation set (p range, 0.093 to 0.999). The 
median duration of the follow-up was 29 months (interquar-
tile range, 16–40 months).

Radiomics feature selection and three radiomics 
scores’ construction

In total, 1187 T2WI features, 971 DWI features, 1054 ADC 
features, and 1092 CET1WI features with ICC higher than 
0.8 remained. Reproducibility of the extracted features is 
depicted in Fig S1. Owing to multi-scale tumor segmenta-
tion, three different radiomics scores (rad-score  (VOIentire), 
rad-score  (VOI+5  mm), and rad-score  (VOI−5  mm)) were 
respectively built through LASSO Cox regression analysis. 
Rad-score  (VOIentire) contained three T2WI features, one 
DWI feature, two ADC features, and three CET1WI fea-
tures. Rad-score  (VOI+5 mm) contained one T2WI feature, 
two DWI features, one ADC feature, and four CET1WI fea-
tures. Rad-score  (VOI−5 mm) contained two T2WI features 
and one ADC feature. The process of LASSO Cox regres-
sion is shown in Fig S2. The formulae of the three radiom-
ics scores are detailed in Appendix 1. Detailed information 
regarding the final selected single radiomics features in each 
of the three radiomics scores is shown in Table S4.

DFS prediction performance of the three radiomics 
scores

The three radiomics scores showed favorable perfor-
mances in DFS prediction with C-index values over 
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0.700, both in the training set and in the validation set. 
Rad-score  (VOI+5 mm) performed best, with a C-index of 
0.750 (95% CI: 0.658, 0.842) in the training set and 0.839 
(95% CI: 0.696, 0.983) in the validation set. Two presented 
ESSCC patients, who had distinctly different DFS times 
(49.6 months vs 13.8 months) with similar clinicopatho-
logical features, showed significantly different rad-score 
 (VOIentire) (− 1.9 vs 1.3; p < 0.001), rad-score  (VOI+5 mm) 
(− 1.7 vs 2.5; p < 0.001), and rad-score  (VOI−5 mm) (− 2.3 
vs 0.6; p < 0.001) (Fig. 3).

The performances of the final selected single radiomics 
features in the three radiomics scores for 2-year DFS prob-
ability are shown in Table S4. The distribution of three built 
rad-scores and their correlation with DFS are shown in Fig-
ure S3. The predictive performances of the three radiomics 

scores in predicting DFS and 2-year DFS probability are 
shown in Table S5.

Development, performance, and validation 
of clinical and combined model

Three clinicopathological characteristics (age categorized 
by 55, Figo stage, and LVI) and three established radiom-
ics scores (rad-score  (VOIentire), rad-score  (VOI+5  mm), 
and rad-score  (VOI−5 mm)) were predictive of recurrence 
in univariable Cox analysis (Table 2). With application of 
stepwise multivariable Cox analysis with the lowest BIC 
score, age categorized by 55, Figo stage, LVI, and rad-score 
 (VOI+5 mm) were identified as independent predictors of 
recurrence (Table 2).

Fig. 3  Two presented cases of ESSCC patients who had distinctly 
different DFS time (49.6 months vs 13.8 months) with similar clin-
icopathological features showed significantly different rad-score 

 (VOIentire) (− 1.9 vs 1.3; p < 0.001), rad-score  (VOI+5  mm) (− 1.7 vs 
2.5; p < 0.001), and rad-score  (VOI−5 mm) (− 2.3 vs 0.6; p < 0.001)

2546 European Radiology  (2022) 32:2540–2551

1 3



Age categorized by 55, Figo stage, and LVI were finally 
selected to build the clinical model. For DFS prediction, the 
clinical model possessed a C-index of 0.709 (95% CI: 0.624, 
0.784) in the training set and 0.719 (95% CI: 0.583, 0.831) 
in the validation set. The combined model was constructed 

after combining these three clinicopathological characteris-
tics with rad-score  (VOI+5 mm) and was presented as a nomo-
gram (Fig. 4a). The combined model demonstrated good 
predictive performance, with a C-index of 0.815 (95% CI: 
0.739, 0.876) in the training set and 0.866 (95% CI: 0.748, 

Table 2  Univariable and 
multivariable Cox regression 
analyses for association with 
DFS

Parentheses indicate 95% confidence interval
Figo, Federation of Gynecology and Obstetrics; LVI, lymphovascular space invasion; NA, not appliable

Variable Univariable analysis Multivariable analysis

Hazard ratio p value Hazard ratio p value

Age categorized by 55 2.713 (1.393, 5.281) 0.003 1.251 (1.157, 1.352) 0.007
Figo stage 2.597 (1.275, 5.290) 0.009 1.744 (0.839, 3.623) 0.036
LVI 3.467 (1.225, 9.810) 0.019 4.106 (1.437, 11.732) 0.008
Rad-score  (VOIentire) 1.129 (1.007, 1.352) 0.001 NA NA
Rad-score  (VOI+5 mm) 1.551 (1.357, 1.852)  < 0.001 1.278 (1.178, 1.386)  < 0.001
Rad-score  (VOI−5 mm) 1.231 (1.057, 1.452)  < 0.001 NA NA

Fig. 4  The combined model 
was constructed and presented 
as a nomogram (a). To use the 
nomogram, add corresponding 
points for four variables (verti-
cal projection to a point to the 
first graph scale for each vari-
able) and locate it on the total 
points scale. Vertical project 
from the total points scale to the 
bottom risk scale and get the 
probability of DFS. The linear 
predictor scale is the coordinate 
value of the linear predictive 
value. Through corresponding 
transformation function, the 
linear predictive value can be 
converted to the probability of 
DFS. The graphs show areas 
under time-dependent ROC 
curves of the nomogram for 
DFS in the training set (b) and 
validation set (c). The calibra-
tion curves demonstrated good 
calibration of the nomogram in 
the training set (d) and valida-
tion set (e)
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0.942) in the validation set. The combined model performed 
better in DFS prediction than the clinical model, both in the 
training set and in the validation set (p = 0.024; p = 0.001, 
respectively). The predictive performances of the clinical 
and the combined models for predicting DFS and 2-year 
DFS probabilities are summarized in Table 3 and shown 
in Fig S4. The predictive performances of the combined 
model in predicting DFS at multiple time points are detailed 
in Table 4. Time-dependent ROC curves of the combined 
model in DFS prediction are depicted in Fig. 4b–c. Good 
calibration of the combined model was confirmed by calibra-
tion curves (Fig. 4d–e).

Kaplan–Meier analysis

The Kaplan–Meier analysis was applied to further validate 
prognostic value of the selected clinicopathological and 
radiomics characteristics. Age > 55, Figo IIA, presence 
of LVI, and higher risk of rad-score  (VOI+5 mm) were all 

significantly associated with worse DFS in the entire cohort 
(p = 0.001; p = 0.001; p = 0.001; p < 0.001, respectively). The 
Kaplan–Meier cumulative event curves for ESSCC recur-
rence stratified by age categorized by 55, Figo stage, LVI, 
and rad-score  (VOI+5 mm) are depicted in Fig. 5.

Clinical practice

The combined model showed good positive net benefits 
across wide ranges of probability thresholds. When the 
threshold probability was 0.286 and 0.500, the net benefit 
value was 0.500 and 0.387, respectively. When the threshold 
probability was over 0.103, the combined model added more 
benefit than in the situations where all or none of the patients 
had positive clinical outcome and also more than the clinical 
model (Fig. 6). This demonstrated the favorable clinical util-
ity of the combined model in aiding clinicians to determine 
adjuvant treatment (chemotherapy) in patients with ESSCC 
according to the risk of recurrence.

Table 3  Predictive performance 
of clinical and combined model 
in predicting DFS and 2-year 
DFS probability

Parentheses indicate 95% confidence interval
DFS, disease-free survival; AUC , area under curve

Indicator Clinical model Combined model

Training set Validation set Training set Validation set

C-index 0.709 (0.624, 0.784) 0.719 (0.583, 0.831) 0.815 (0.739, 0.876) 0.866 (0.748, 0.942)
AUC 0.725 (0.642, 0.798) 0.702 (0.565, 0.817) 0.843 (0.770, 0.900) 0.871 (0.754, 0.945)
Accuracy 0.641 (0.597, 0.761) 0.649 (0.577, 0.782) 0.793 (0.683, 0.886) 0.849 (0.721, 0.973)
Sensitivity 0.633 (0.543, 0.717) 0.718 (0.582, 0.877) 0.700 (0.606, 0.853) 0.827 (0.690, 0.940)
Specificity 0.700 (0.611, 0.772) 0.633 (0.579, 0.713) 0.876 (0.798, 0.932) 0.878 (0.782, 0.979)

Table 4  Predictive performance 
of the combined model in 
predicting DFS at multiple time 
points

Parentheses indicate 95% confidence interval
DFS, disease-free survival; AUC , area under curve

Time AUC Accuracy Sensitivity Specificity

1-year
  Training set 0.808 (0.732, 0.871) 0.771 (0.659, 0.895) 0.833 (0.516, 0.979) 0.764 (0.679, 0.836)
  Validation set 0.853 (0.761, 0.892) 0.856 (0.737, 0.877) 0.875 (0.673, 0.997) 0.853 (0.757, 0.895)

1.5-year
  Training set 0.861 (0.791, 0.915) 0.789 (0.683, 0.903) 0.778 (0.577, 0.914) 0.833 (0.749, 0.898)
  Validation set 0.853 (0.761, 0.892) 0.856 (0.737, 0.877) 0.875 (0.673, 0.997) 0.853 (0.757, 0.895)

2-year
  Training set 0.843 (0.770, 0.900) 0.793 (0.683, 0.886) 0.700 (0.606, 0.853) 0.876 (0.798, 0.932)
  Validation set 0.871 (0.754, 0.945) 0.849 (0.721, 0.973) 0.827 (0.690, 0.940) 0.878 (0.782, 0.979)

2.5-year
  Training set 0.846 (0.774, 0.902) 0.807 (0.704, 0.907) 0.765 (0.588, 0.893) 0.822 (0.733, 0.913)
  Validation set 0.862 (0.743, 0.939) 0.846 (0.639, 0.937) 0.867 (0.595, 0.983) 0.805 (0.651, 0.912)

3-year
  Training set 0.838 (0.765, 0.896) 0.811 (0.707, 0.889) 0.743 (0.567, 0.875) 0.820 (0.731, 0.890)
  Validation set 0.866 (0.748, 0.942) 0.839 (0.653, 0.944) 0.875 (0.617, 0.984) 0.825 (0.672, 0.927)
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Discussion

In this study, we conducted multiparametric MRI-derived 
radiomics based on multi-scale tumor region to predict DFS 
in ESSCC patients. Encouragingly, the combined model, 
which incorporated radiomics features with clinicopatho-
logical characteristics, exhibited improved prognostic per-
formance and better clinical usefulness compared with the 
clinical model alone. The combined model presented as a 
nomogram can be easily used to predict survival, thereby 
facilitating the choice of initial surgery, postoperative 
adjuvant radiotherapy, and the intensity of postoperative 
observation.

Radiomics has been recognized as a useful imaging tech-
nology tool in predicting survival of patients with cervical 
cancer [16, 29]. Fang et al [16] verified an MRI-derived radi-
omics score as a prognostic biomarker in patients with early 
cervical cancer. Lucia et al confirmed PET/CT and MRI 
radiomics as independent predictors of recurrence in locally 
advanced cervical cancer treated with chemoradiotherapy 
[29]. However, previous studies have conducted tumor seg-
mentation using a completely manual approach which was 

limited by poor inter-reader reliability. Besides that, feature 
extraction was based on the entire volumetric tumor region, 
while peritumoral information was ignored. Instead of the 
manual approach, we performed tumor segmentation semi-
automatically using an integrated hybrid algorithm. This 
method was less affected by hand-related artifacts. Apart 
from the entire volumetric interest  (VOIentire) segmentation, 
the regions at a 5-mm distance outer  (VOI+5 mm) and inner 
 (VOI−5 mm) from the tumor surface were also reconstructed 
to obtain multi-scale tumor information. Consistent with 
other studies [16, 29], all of the three types of rad-scores all 
showed favorable performances in DFS prediction. These 
results indicate that radiomics may be a promising tool in 
assisting prediction of survival in ESSCC patients. Notably, 
rad-score  (VOI+5 mm) performed best both in the training set 
and in the validation set. Moreover, rad-score  (VOI+5 mm) 
was identified as an independent predictor of survival in 
multivariable Cox regression analysis. These results indicate 
that radiomics features from the peritumoral region reflect-
ing the biological properties associated with intratumor 
heterogeneities [17, 18] may provide more information in 
prediction of cervical cancer prognosis.

Fig. 5  The Kaplan–Meier cumulative event curves for survival in ESSCC stratified by age categorized by 55 (a), Figo stage (b), LVI (c), and 
rad-score  (VOI+5 mm) (d)
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Besides those from conventional structural images, radi-
omics features from DWI, ADC, and CET1WI were also 
analyzed in our study. In total, eight radiomics features 
(including one feature extracted from T2WI, two from 
DWI, one from ADC map, and four from CET1WI) were 
identified to be predictive of DFS in rad-score  (VOI+5 mm). 
Shape-based MajorAxisLength is a measurement of the 
largest axis length of the tumor enclosing ellipsoid [21]. 
A larger MajorAxisLength indicates a larger tumor size, 
which is consistent with previous studies that have shown 
that tumors with larger size have poor prognosis [5, 7]. 
Texture-based features (LargeAreaHighGrayLevelEm-
phasis, GrayLevelNonUniformity, DependenceNonUni-
formity, DependenceVariance, GrayLevelNonUniformity, 
LargeAreaHighGrayLevelEmphasis, and ZoneVariance) 
describe the distribution of voxel signal intensities, which 
correlates with tumor heterogeneity [21]. Our results are 
in agreement with previous studies that have reported that 
intratumor heterogeneity was tightly correlated with inva-
sion and metastasis of ESSCC [12, 16, 29]. Importantly, 
a half of the selected features (4 of 8) were derived from 
CET1WI; they indicate that intratumoral and peritumoral 
tumor enhancing features that are potentially associated 
with tumor perfusion and vascularization may provide 
more prognostic information for ESSCC patients [30, 31].

By combining the clinical risk factors and radiomics 
features, we finally established the radiomics nomogram 
containing age categorized by 55, Figo stage, LVI, and 
rad-score  (VOI+5 mm) to predict DFS in ESSCC patients. 
Consistent with previous studies [4–6], older age, higher 
Figo stage, and existence of LVI were regarded as adverse 
prognostic factors. Notably, the radiomics nomogram pos-
sessed favorable predictive ability and it added significant 
incremental performance to the clinical model. Hence, it 
indicated the prognostic value of multiparametric MRI-
derived radiomics in predicting DFS for ESSCC patients.

The current study had several limitations. First, this 
study was performed in a single center and the sample 
size was relatively small. Further multi-center studies with 
larger sample size are needed. Second, 32 of 191 patients 
received additional chemotherapy in addition to hysterec-
tomy, which may have influenced survival. Third, some 
acquisition parameters differed from the current recom-
mendations in Europe [7], which may cause potential bias. 
The slice thickness of T2WI and DWI was 5 mm, which 
was thicker than recommended (4 mm or less). Field of 
view of T2WI (240 × 240 mm) and DWI (380 × 380 mm) 
were not matched, which may have influenced side-by-side 
interpretation. Fourth, dynamic contrast-enhanced scan 
was not used; however, its derived parameters can poten-
tially be used to identify tumor hypoxia regions tightly 
correlated with tumor migration, invasion, and metastasis 
[31]. This may have influenced the generalizability of our 
results. Fifth, in-depth tumor biological behavior was not 
analyzed and correlated with radiomics features. Radiom-
ics feature explanation at a biological level should be con-
ducted in further radiogenomics studies. Sixth, deep learn-
ing method was not applied due to the limited sample size. 
In the future, studies combining the use of deep learning 
and radiomics method for better prediction of DFS for 
ESSCC patients are needed.

In conclusion, multiparametric MRI-derived radiomics 
based on multi-scale tumor region is useful in predict-
ing DFS in ESSCC patients, thereby facilitating clinical 
decision-making.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00330- 021- 08326-6.

Declarations 

Guarantor The scientific guarantor of this publication is Wen-Wei 
Tang.

Conflict of interest The authors declare that they have no conflict of 
interest.

Statistics and biometry No complex statistical methods were neces-
sary for this paper.

Fig. 6  Decision curve analysis for the clinical model and the com-
bined model in predicting DFS. The y-axis stands for the net bene-
fit, and the x-axis stands for the threshold probability. The decision 
curves indicated that if the threshold probability was over 0.103, the 
combined model (green line) added more benefit than the situation 
when all (gray line) or none (black line) of the patients had positive 
clinical outcome and more than the clinical model (red line)

2550 European Radiology  (2022) 32:2540–2551

1 3

https://doi.org/10.1007/s00330-021-08326-6


Informed consent Written informed consent was waived by the Insti-
tutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology  
• retrospective 
• diagnostic or prognostic study 
• performed at one institution

References

 1. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical can-
cer. Lancet 393:169–182

 2. Banerjee S (2017) Bevacizumab in cervical cancer: a step forward 
for survival. Lancet 390:1626–1628

 3. Vanichtantikul A, Tantbirojn P, Manchana T (2017) Parametrial 
involvement in women with low-risk, early-stage cervical cancer. 
Eur J Cancer Care (Engl) 26:1–5

 4. Bhatla N, Berek JS, Cuello Fredes M et al (2019) Natarajan J. 
Revised FIGO staging for carcinoma of the cervix uteri. Int J 
Gynaecol Obstet 145:129–135

 5. Biewenga P, van der Velden J, Mol BW et al (2011) Prognostic 
model for survival in patients with early stage cervical cancer. 
Cancer 117:768–776

 6. Weyl A, Illac C, Lusque A et al (2020) Prognostic value of lym-
phovascular space invasion in early-stage cervical cancer. Int J 
Gynecol Cancer 30:1493–1499

 7. Manganaro L, Lakhman Y, Bharwani N et  al (2021) Stag-
ing, recurrence and follow-up of uterine cervical cancer using 
MRI: updated guidelines of the European Society of Urogeni-
tal Radiology after revised FIGO staging 2018. Eur Radiol 
31(10):7802–7816

 8. Xiao M, Yan B, Li Y, Lu J, Qiang J (2020) Diagnostic perfor-
mance of MR imaging in evaluating prognostic factors in patients 
with cervical cancer: a meta-analysis. Eur Radiol 30:1405–1418

 9. Wang YT, Li YC, Yin LL, Pu H (2016) Can diffusion-weighted 
magnetic resonance imaging predict survival in patients with cer-
vical cancer? A meta-analysis. Eur J Radiol 85:2174–2181

 10. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jack-
son A (2015) Imaging intratumor heterogeneity: role in therapy 
response, resistance, and clinical outcome. Clin Cancer Res 
21:249–257

 11. Savadjiev P, Chong J, Dohan A et al (2019) Image-based biomark-
ers for solid tumor quantification. Eur Radiol 29:5431–5440

 12. Umutlu L, Nensa F, Demircioglu A et al (2020) Radiomics analy-
sis of multiparametric PET/MRI for N- and M-staging in patients 
with primary cervical cancer. Rofo 192:754–763

 13. Wang T, Gao T, Guo H et al (2020) Preoperative prediction of 
parametrial invasion in early-stage cervical cancer with MRI-
based radiomics nomogram. Eur Radiol 30:3585–3593

 14. Li Z, Li H, Wang S et al (2019) MR-based radiomics nomogram of 
cervical cancer in prediction of the lymph-vascular space invasion 
preoperatively. J Magn Reson Imaging 49:1420–1426

 15. Xiao M, Ma F, Li Y et al (2020) Multiparametric MRI-based 
radiomics nomogram for predicting lymph node metastasis in 
early-stage cervical cancer. J Magn Reson Imaging 52:885–896

 16. Fang J, Zhang B, Wang S et al (2020) Association of MRI-derived 
radiomic biomarker with disease-free survival in patients with 
early-stage cervical cancer. Theranostics 10:2284–2292

 17. Hu Y, Xie C, Yang H et al (2020) Assessment of intratumoral 
and peritumoral computed tomography radiomics for predicting 
pathological complete response to neoadjuvant chemoradiation in 
patients with esophageal squamous cell carcinoma. JAMA Netw 
Open 3:e2015927

 18. Xu X, Zhang HL, Liu QP et al (2019) Radiomic analysis of con-
trast-enhanced CT predicts microvascular invasion and outcome 
in hepatocellular carcinoma. J Hepatol 70:1133–1144

 19. Wels MG, Lades F, Muehlberg A, Suehling M (2019) General 
purpose radiomics for multi-modal clinical research. Proc SPIE 
1095046

 20. Moltz JH, Bornemann L, Kuhnigk JM et al (2009) Advanced 
segmentation techniques for lung nodules, liver metastases, and 
enlarged lymph nodes in CT scans. IEEE J Sel Top Sign Proces 
3:122–134

 21. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Compu-
tational radiomics system to decode the radiographic phenotype. 
Cancer Res 77:e104–e107

 22. Zhang Z (2016) Variable selection with stepwise and best subset 
approaches. Ann Transl Med 4:136

 23. O’brien RM, (2007) A caution regarding rules of thumb for vari-
ance inflation factors. Qual Quant 41:673–690

 24. Bland JM, Altman DG (1998) Survival probabilities (the Kaplan-
Meier method). BMJ 317:1572

 25. Schröder MS, Culhane AC, Quackenbush J, Haibe-Kains B 
(2011) survcomp: an R/Bioconductor package for performance 
assessment and comparison of survival models. Bioinformatics 
27:3206–3208

 26. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC 
curves for censored survival data and a diagnostic marker. Biom-
etrics 56:337–344

 27. Fitzgerald M, Saville BR, Lewis RJ (2015) Decision curve analy-
sis. JAMA 313:409–410

 28. Xie G, Wang R, Shang L et al (2020) Calculating the overall 
survival probability in patients with cervical cancer: a nomogram 
and decision curve analysis-based study. BMC Cancer 20:833

 29. Lucia F, Visvikis D, Desseroit MC et al (2018) Prediction of out-
come using pretreatment 18F-FDG PET/CT and MRI radiomics in 
locally advanced cervical cancer treated with chemoradiotherapy. 
Eur J Nucl Med Mol Imaging 45:768–786

 30. Willmott LJ, Monk BJ (2009) Cervical cancer therapy: current, 
future and anti-angiogensis targeted treatment. Expert Rev Anti-
cancer Ther 9:895–903

 31. Hauge A, Wegner CS, Gaustad JV, Simonsen TG, Andersen LMK, 
Rofstad EK (2017) DCE-MRI of patient-derived xenograft models 
of uterine cervix carcinoma: associations with parameters of the 
tumor microenvironment. J Transl Med 15:225

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

2551European Radiology  (2022) 32:2540–2551

1 3


	Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer
	Abstract
	Objective 
	Methods 
	Results 
	Conclusion 
	Key Points 

	Introduction
	Materials and methods
	Study population
	Postoperative follow-up
	MRI acquisitions and parameters
	Clinical and pathological information
	Multi-scale tumor segmentation and radiomics feature extraction
	Radiomics feature selection and three radiomics scores’ calculation
	Establishment, performance, and validation of clinical and combined models
	Clinical utility
	Statistical analysis

	Results
	Clinical characteristics
	Radiomics feature selection and three radiomics scores’ construction
	DFS prediction performance of the three radiomics scores
	Development, performance, and validation of clinical and combined model
	Kaplan–Meier analysis
	Clinical practice

	Discussion
	References


