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Abstract
Objective To investigate the influence of different volume of interest (VOI) delineation strategies on machine learning–
based predictive models for discrimination between low and high nuclear grade clear cell renal cell carcinoma (ccRCC) on 
dynamic contrast-enhanced CT.
Methods This study retrospectively collected 177 patients with pathologically proven ccRCC (124 low-grade; 53 high-grade). Tumor 
VOI was manually segmented, followed by artificially introducing uncertainties as: (i) contour-focused VOI, (ii) margin erosion of 2 
or 4 mm, and (iii) margin dilation (2, 4, or 6 mm) inclusive of perirenal fat, peritumoral renal parenchyma, or both. Radiomics features 
were extracted from four-phase CT images (unenhanced phase (UP), corticomedullary phase (CMP), nephrographic phase (NP), 
excretory phase (EP)). Different combinations of four-phasic features for each VOI delineation strategy were used to build 176 clas-
sification models. The best VOI delineation strategy and superior CT phase were identified and the top-ranked features were analyzed.
Results Features extracted from UP and EP outperformed features from other single/combined phase(s). Shape features and 
first-order statistics features exhibited superior discrimination. The best performance (ACC 81%, SEN 67%, SPE 87%, AUC 
0.87) was achieved with radiomics features extracted from UP and EP based on contour-focused VOI.
Conclusion Shape and first-order features extracted from UP + EP images are better feature representations. Contour-focused 
VOI erosion by 2 mm or dilation by 4 mm within peritumor renal parenchyma exerts limited impact on discriminative 
performance. It provides a reference for segmentation tolerance in radiomics-based modeling for ccRCC nuclear grading.
Key Points 
• Lesion delineation uncertainties are tolerated within a VOI erosion range of 2 mm or dilation range of 4 mm within peri-

tumor renal parenchyma for radiomics-based ccRCC nuclear grading.
• Radiomics features extracted from unenhanced phase and excretory phase are superior to other single/combined phase(s) 

at differentiating high vs low nuclear grade ccRCC .
• Shape features and first-order statistics features showed superior discriminative capability compared to texture features.
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ccRCC   Clear cell renal cell carcinoma
CECT  Contrast-enhanced computed tomography
CMP  Corticomedullary phase
CT  Computed tomography
EP  Excretory phase
NP  Nephrographic phase
PACS  Picture archiving and communication system
RCC   Renal cell carcinoma
ROC  Receiver operating characteristic
SEN  Sensitivity
SMOTE  Synthetic minority oversampling technique
SPE  Specificity
UP  Unenhanced phase
VOI  Volume of interest

Introduction

Renal cell carcinoma (RCC) is the most common kidney 
malignancy and accounts for almost 90% of renal cancers 
[1–4]. Clear cell renal cell carcinoma (ccRCC) makes up 
about 70% of RCCs and has poorer prognosis than other sub-
types [1–4]. Nuclear grade is established as an independent 
histological prognostic factor and is significant for the clini-
cal management of ccRCC [5]. Numerous grading systems 
have been applied in the pathological nuclear grading of 
ccRCC. Among them, the Fuhrman nuclear grading system 
is most widely used [6]. There are 4 nuclear grades (1–4) 
based on nuclear size, irregularity, and nucleolar prominence 
[6]. Grades 1 and 2 indicate low-grade tumors with better 
prognosis while grades 3 and 4 indicate high-grade tumors 
with poor prognosis [6, 7].

Preoperative prediction of nuclear grade is crucial for 
personalized treatments like partial nephrectomy, radical 
nephrectomy, or active surveillance [8–11]. Percutaneous 
renal tumor biopsy is an invasive procedure for preoperative 
determination of nuclear grade [12]. However, it is insensi-
tive in 2.5–22% of the cases [5, 13] and may cause com-
plications. Thus, novel noninvasive methods are needed to 
overcome this drawback.

Radiomics modeling is a promising tool for guiding 
clinical decisions through quantitative evaluation of medi-
cal images [14–16]. Various studies have sought to quantify 
radiomics features for stratification of low and high Fuhr-
man nuclear grades [17, 18]. However, this is hampered by 
a lack of standardized RCC lesion segmentation [19]. Vari-
ous tumor delineation strategies, like adhering to the vis-
ible lesion edge, shrinking the margin to a certain amount 
to account for partial volume effect or volume averaging, 
or dilating the margin to include peritumor perirenal fat, 
have been proposed [20–22]. The impact brought by using 
different definitions of tumor volume of interest (VOI) for 
nuclear grading is still unclear. Here, we comprehensively 

investigated the potential influence of different tumor VOI 
delineation methods on radiomics-based models to discrimi-
nate low- from high-grade ccRCC using dynamic contrast-
enhanced CT (CECT).

Materials and methods

Patients

The study was approved by our local institutional review 
board, and the requirement for informed patient consent was 
waived due to the study’s retrospective nature. Data were 
collected through an electronic search of the picture archiv-
ing and communication system (PACS) from January 2011 
to January 2019. Inclusion criteria were (1) pathologically 
proven ccRCC with defined Fuhrman grade and (2) preop-
erative examination with four-phase CECT scans. Exclusion 
criteria were (1) cases of purely cystic ccRCC, (2) ccRCC 
without Fuhrman grade, and (3) prominent CT artifacts. The 
study workflow is shown on Fig. 1.

Fuhrman stage and image acquisition

To ensure reproducibility of pathological diagnosis and 
reduce intra/inter-observer variability, the traditional 4-tier 
Fuhrman grading system was re-categorized into a simpli-
fied Fuhrman grading system with low grade (grades 1 and 
2) and high grade (grades 3 and 4). Fuhrman grading was 
done by a specialized genitourinary pathologist (W. S. Ding) 
with 9 years of experience.

Preoperative CECT images were acquired on Toshiba 
Aquilion One, Siemens Somatom Definition, GE HiS-
peed 16, and Philips Brilliance 64. Acquisition parameters 
were as follows: 120–140-kV tube voltage, automated tube 
current modulation, and varied milliampere-second set-
tings. All patients were injected with nonionic intravenous 
contrast material (1 mL/kg body weight, maximum vol-
ume = 150 mL) through the antecubital vein using mechan-
ical power injectors. All patients underwent preoperative 
four-phase CT scans—phase 1: unenhanced (UP); phase 2: 
postcontrast corticomedullary phase (CMP); phase 3: post-
contrast nephrographic phase (NP); and phase 4: postcon-
trast excretory phase (EP).

Segmentation

All retrieved CT images were stored in anonymized DICOM 
format. ITK-SNAP software (http:// www. itksn ap. org) was 
used to delineate target 3D VOI on the CT slice of the tumor 
in phases 1–4 for tumor segmentation. First, a contour-
focused lesion VOI was manually delineated on the NP and 
then applied to the other 3 phases with slight adjustments 
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tailoring VOIs to each phase. Next, a larger VOI containing 
perirenal fat and peritumoral renal parenchyma was gener-
ated by dilating the contour-focused original VOI by ~ 1 cm. 
This process was not entirely isotropic as the dilation would 
stop when encountering the bowel, liver, spleen, adrenal 
gland, vasculature, lymph nodes, adjacent visceral, or mus-
cular tissue. Subtraction of the 2 VOIs yielded a loop VOI 
(VOI_loop), which was automatically divided into 2 parts 
of perirenal fat (VOI_loop_fat) and peritumoral renal paren-
chyma (VOI_loop_margin) using a predefined Hounsfield 
unit (HU) threshold of − 20. The VOI_loop_fat (< − 20 HU) 
or the VOI_loop_margin (> − 20 HU) was post-processed by 
removing isolated parts and filling small cavities. Manual 
segmentation was done by 2 investigators without prior 
knowledge of the lesions’ pathology (S.W. Luo and R.L. 
Wei, with 4 and 5 years of experience in radiological diag-
nosis, respectively). Conformity of the delineated VOIs was 
measured using Dice similarity coefficient. For those CT 
slices with Dice indexes > 0.9, the unanimous segmenta-
tion was the intersection of the two individual segmenta-
tions, while for those slices with Dice < 0.9, discrepancies 
on lesion boundary were resolved by further discussions to 
reach consensus.

Different VOI delineation strategies

Based on the original contour-focused VOI and loop VOI, 
erosion and dilation procedures were done slice-by-slice 
on the aforementioned VOIs to simulate delineation uncer-
tainties. The VOI was dilated by 2, 4, and 6 mm but still 
within the scope of VOI + VOI_loop (yielding the VOI_
d2, VOI_d4, VOI_d6), VOI + VOI_loop_fat (yielding the 

Fat_d2, Fat_d4, Fat_d6), or VOI + VOI_loop_margin (yield-
ing the Margin_d2, Margin_d4, Margin_d6). Tumor VOI 
was eroded by 2 and 4 mm to yield VOI_e2 and VOI_e4. 
Together with the original contour-focused VOI, 12 types 
of VOI delineations were obtained for subsequent radiom-
ics analysis.

Feature extraction and representation

Texture feature extraction was done on each of the 12 VOIs 
in each phase using Pyradiomics [23]. The extracted features 
on each phase included 107 candidate features that can be 
categorized into 3 subtypes, including the shape, first-order 
statistics (histogram analysis), and second-order statistics 
(“texture features”). Features extracted on each of the 4 
phases included F1

pha
 , F2

pha
 , F3

pha
 , and F4

pha
 (each with 107 

features) and were termed group 1. Concatenation of fea-
tures of any 2 phases were termed as group 2, including F1,2

pha
 , 

F
1,3

pha
 , F1,4

pha
 , F2,3

pha
 , F2,4

pha
 , and F3,4

pha
 (each with 214 features). Con-

catenation of features of any 3 phases were termed group 3, 
including F1,2,3

pha
 , F1,2,4

pha
 , F1,3,4

pha
 , and F2,3,4

pha
 (each with 321 fea-

tures). Concatenated features of all 4 phases were termed as 
group 4, i.e., F1,2,3,4

pha
 (with 428 features). Discriminative 

capabilities were respectively compared using the above 180 
(12*15) types of features as input for a specific discrimina-
tion model.

Modeling and comparisons

We used 22 feature selection methods and 8 classification 
algorithms to build a total of 176 (22 × 8) discrimination 

Fig. 1  Study workflow. UP, unenhanced phase; CMP, corticomedullary phase; NP, nephrographic phase; EP, excretory phase
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models. The above 180 types of features were fed into 
each of the 176 discriminative models, resulting in 31,680 
(180 × 176) combinations for comparison. We evaluated 
each of these models with five fold cross-validation, in each 
of which an optimal subset of features (20, 40, 60, and 80 
features for groups 1–4, respectively) was first estimated by 
a specific feature selection method. The prescreened features 
were then fed into a classifier for discrimination modeling. 
To ease data imbalance of the patient cohort, the synthetic 
minority oversampling technique (SMOTE) [24] was used 
to oversample the minority high-grade ccRCC group by 
introducing synthetic feature samples. The discrimination 
powers of the models were quantified using area under the 
receiver operating characteristic (ROC) curve (AUC), accu-
racy (ACC), sensitivity (SEN), and specificity (SPE).

Statistical analysis

Continuous variables are reported as mean ± SD. Categorical 
variables are reported as numbers and proportions. Normal-
ity of the data distribution was assessed by the Kolmogo-
rov–Smirnov test. Comparisons between groups were done 

using the chi-square test for categorical variables, the inde-
pendent t-test for normally distributed continuous variables, 
and the Mann–Whitney U test for non-normally distributed 
continuous variables. Discriminative comparisons between 
the 15 types of features were done using the independent 
samples Kruskal–Wallis test with Bonferroni correction to 
adjust significance level in pairwise comparisons. All statis-
tical analyses were done on SPSS version 20 (IBM). Two-
tailed p < 0.05 was considered statistically significant.

Results

Demographics

The study cohort comprised of 124 low-grade (17 were 
grade 1 (9.6%) and 107 were grade 2 (60.5%)) and 53 high-
grade (40 were grade 3 (22.6%) and 13 were grade 4 (7.3%)) 
ccRCC patients who met the inclusion criteria (Table 1). The 
groups did not differ significantly with regard to age, sex, or 
lesion diameter (p > 0.05). Imaging and histological results 
from two representative patients are provided in Fig. 2.

Table 1  Demographics and 
characteristics of the study 
cohort

Data are presented as mean ± SD or frequency (%).a Independent t-test;b chi-square test. p < 0.05 was con-
sidered statistically significant

Characteristic Low-grade (n = 124) High-grade (n = 53) p value

Patient age (mean ± SD, year) 53.1 ± 12.4 56.3 ± 12.4 0.109
a

Sex
  Male (n/%) 93 (75) 39 (73.6) 0.843

b

  Female (n/%) 31 (25) 14 (26.4)
Lesion diameter (mean ± SD, cm) 5.00 ± 2.90 5.95 ± 3.24 0.054

a

Fig. 2  Representative examples of clear cell renal cell carcinoma 
(ccRCC). a–e Low-grade (Fuhrman nuclear grade 2) ccRCC in a 
49-year-old man. a–d Unenhanced phase (UP), corticomedullary 
phase (CMP), nephrographic phase (NP), and excretory phase (EP) 
CT images (red arrows point to the tumor in the left kidney). e Histo-

logic photomicrograph (hematoxylin–eosin, H & E stain). f–j High-
grade (Fuhrman nuclear grade 3) ccRCC in a 69-year-old man. f–i 
UP, CMP, NP, and EP CT images (red arrows point to the tumor in 
the right kidney). j H & E stain
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Discriminative capabilities of different feature types

The 12*15 feature types were compared by being fed to 
each of the 176 discrimination models. The running time 
of the established models ranged between 0.02 and approx-
imately 90 s, with a mean time of ~ 8.9 s. Figure 3a shows 
the boxplot of the AUC distributions achieved by the 176 
discriminative models for 15 phase-based feature types 
based on contour-focused VOI. Statistical comparisons 
revealed that F1

pha
 outperformed other single phases. The 

phase combinations including phase 1, e.g., F1,2

pha
 , F1,3

pha
 , 

F
1,4

pha
 , F1,2,3

pha
 , F1,3,4

pha
 , F1,2,4

pha
 , and F1,2,3,4

pha
 showed superior per-

formance than those without phase 1, e.g., F2,3

pha
 , F2,4

pha
 , F3,4

pha
 , 

and F2,3,4

pha
 (Table 2). The highest AUC (0.87) was obtained 

using F1,4

pha
 , with the discriminative models of combination 

of “Random Forest” and “CIFE”. Furthermore, F1,4

pha
 was 

the most frequent (36 times) feature type and was ranked 
as the best feature, followed by F1,2,4

pha
 (27 times) and F1,2,3,4

pha
 

(27 times). Figure 3b shows the boxplot of the AUC dis-
tributions for 12 VOI delineations based on F1

pha
 . There 

were no significant differences between the original con-
tour-focused VOI and VOI_e2, Margin_2, and Margin_4 
(Table 3). Significant inferior performances were seen in 
other VOIs relative to the original VOI. A summary of the 
highest performance within each of the 12 VOI types, 
including the specific phase the feature extracted from, and 
the classifier and feature selection method used is shown 
on Table 3. The model built with “Random Forest” and 
“CIFE” based on F1,4

pha
 and VOI performed best (ACC 81%, 

SEN 67%, SPE 87%, AUC 0.87), followed by the model 
built with “Random Forest” and “MIFS” based on F1,4

pha
 and 

Margin_d2 (ACC 78%, SEN 61%, SPE 86%, AUC 0.87).

Key feature analysis

AUC values obtained by all 176 discriminative models 
using features from F1

pha
 and F1,4

pha
 as feature input were 

visualized on a heatmap (Fig. 4). The highest AUCs for 
F1

pha
 and F1,4

pha
 were 0.83 and 0.87, respectively. For all dis-

criminative models with AUC > 0.80, we counted the num-
ber of times each feature in F1

pha
 had been selected in the 

top-20 features in the fivefold cross-validation (Fig. 5). 
The top-10 most frequently selected features in F1

pha
 are 

highlighted as blue in Fig. 5 (two features ranked  10th) and 
summarized in Table 4, including 7 shape features and 4 
first-order statistics features. No texture features were 
included. Of the top-10 features, all 4 first-order statistical 
features (2 with p <  10−3 and 2 with p <  10−5) and 3 shape 
features (least axis length with p = 0.0074, surface volume 
ratio with p = 0.0046, elongation with p = 0.0249) were 
statistically significant features.

We estimated the capability of using the mean of the 
mean feature values of the 2 groups (i.e., “M” in Table 4) 
as threshold to differentiate the 2 groups. It was observed 
that the first-order statistical features, i.e., the median, the 
 90th percentile, the  10th percentile, and root mean squared, 
demonstrated good discriminative capabilities in which 
about 70% of the high-grade group had larger feature values 
and about 65% of the low-grade group had smaller feature 
values.

Fig. 3  Boxplots of the AUC distributions achieved by the 176 dis-
criminative models, categorized by a 15 phases (features extracted on 
VOI) or b 12 VOIs (features extracted on F1

pha
 ). The boxes run from 

the 25th to 75th percentile; the two ends of the whiskers represent the 
5% and 95% percentiles of the data; the horizontal line and the square 
in the box represent the median and mean values, respectively. Dia-
monds represent outliers. Letters above each box in a indicate statisti-
cal significance (Kruskal–Wallis test with the Bonferroni correction) 
between any two features types. No common letters indicate that the 
two feature types are significantly different
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Discussion

In this retrospective study, we explored the influence of dif-
ferent VOI delineation strategies on radiomics modeling for 
the discrimination of low and high nuclear grade ccRCC 
with dynamic CECT. Experimental results demonstrated that 
the F1,4

pha
-based model achieved the best performance com-

pared with other phasic combinations. The discrimination 
model based on “Random Forest” and “CIFE” yielded sat-
isfactory performance (ACC 81%, SEN 67%, SPE 87%, 
AUC = 0.87) with radiomics features extracted from F1,4

pha
 

based on tumor contour-focused VOI. Furthermore, VOI, 
VOI_e2, Margin_d2, and Margin_d4 exhibited similar per-
formances and could act as references for tumor segmenta-
tion (manual or automatic) to minimize the influence of 
segmentation uncertainties on performance variations in 
nuclear grade stratifications of ccRCC.

Currently, radiomics analysis is used to help distinguish 
high-grade from low-grade ccRCC. However, most studies 

have analyzed features from a single phase or incomplete 
contrast-enhanced phases. For example, Betkas et al.[17] 
evaluated the performance of 2D portal-phase CT texture 
features combined with different ML-based classification 
schemes in discriminating low and high nuclear grade 
ccRCCs. The best model was created using SVM with over-
all ACC, SEN, SPE, and AUC (for detecting high-grade 
ccRCCs) of 85.1%, 91.3%, 80.6%, and 0.860, respectively. 
Lin et al.[25] established machine learning models based on 
single- or three-phases (pre-contrast phase, corticomedullary 
phase and nephrographic phase) CT images to differentiate 
low- and high-grade ccRCC. The best diagnostic perfor-
mance was observed when using all three-phase CT images 
(AUC = 0.87), followed by single-phase NP (AUC = 0.84), 
CMP (AUC = 0.80), and PCP (AUC = 0.82) images. How-
ever, some valuable information might have been missed 
since unenhanced phase or excretory phase was not consid-
ered in that study. In our study, EP ( F4

pha
 ) exhibited good 

performance that was only slightly inferior to the UP ( F1

pha
 ) 

Table 2  The best performances 
achieved in 15 phases (features 
extracted on the contour-
focused VOI)

Feature type Best performance Number of times being 
ranked as the best feature 
typeHighest AUC 

(ACC/SEN/SPE)
Classifier Feature selec-

tion method

Group 1 F1

pha
0.83
(0.74/0.59/0.81)

Random Forest CIFE 23

F2

pha
0.70
(0.75/0.49/0.85)

Random Forest NDFS 0

F3

pha
0.77
(0.75/0.62/0.80)

AdaBoosting CMIM 0

F4

pha
0.77
(0.75/0.62/0.80)

AdaBoosting ICAP 0

Group 2 F
1,2

pha
0.84
(0.75/0.67/0.78)

Random Forest MIFS 23

F
1,3

pha
0.86
(0.80/0.68/0.86)

Random Forest CIFE 7

F
1,4

pha
0.87
(0.81/0.67/0.87)

Random Forest CIFE 36

F
2,3

pha
0.74
(0.78/0.56/0.87)

Random Forest ls_l21 0

F
2,4

pha
0.73
(0.72/0.43/0.84)

Random Forest NDFS 1

F
3,4

pha
0.77
(0.75/0.62/0.80)

AdaBoosting CMIM 0

Group 3 F
1,2,3

pha
0.84
(0.79/0.67/0.84)

Random Forest MRMR 8

F
1,2,4

pha
0.84
(0.77/0.57/0.85)

Random Forest ICAP 27

F
1,3,4

pha
0.84
(0.76/0.63/0.81)

Random Forest CMIM 24

F
2,3,4

pha
0.73
(0.76/0.56/0.84)

SVM MCFS 0

Group 4 F
1,2,3,4

pha
0.84
(0.79/0.59/0.87)

Random Forest CMIM 27
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among single phases, and their combination into F1,4

pha
 

achieved the best performance over all phasic combinations. 
The findings by Kocak et al.[18] on the role of unenhanced 
CT in differentiating nuclear grade are consistent with ours. 
The possible explanation might be that the Fuhrman nuclear 
grade (nuclear size, irregularity, and nucleolar prominence) 
correlated more with heterogeneity of the tumor itself rather 
than tumor perfusion or vascularity.

Lesion segmentation is a critical procedure that might 
have substantial impact on the performance of radiom-
ics analysis. [19] Kocak et al. [26] used 47 cases to assess 
the influence of segmentation margin on radiomics per-
formance and found that contour-focused segmentation 
(AUC = 0.865–0.984) performed better than models with 
a lesion margin shrinkage of 2 mm (AUC: 0.745–0.887, 
p < 0.05). The finding was inspiring but this analysis was 
conducted only on the CMP. Gill et al.[22] assessed if juxta-
tumoral perinephric fat (JPF) may aid in machine learn-
ing–based nuclear grading of RCC. The CT-based texture 
analysis of ccRCC showed statistically significant differ-
ences in JPF adjacent to high- versus low-grade ccRCC. 
Here, we carried out a more thorough investigation to 

determine the impact of different VOI delineation strate-
gies on pathological nuclear grading, including dilation and 
erosion of contour-focused VOI. For a better understanding 
of the role of the peritumor components in nuclear grad-
ing, we divided peritumor components into peritumor renal 
parenchyma and peritumor perirenal fat. Our results showed 
no significant differences between the original VOI and the 
2-mm erosive VOI, as well as the 2- or 4-mm margin dilated 
VOI. In particular, the 2-mm erosive VOI exhibited similar 
performance with the contour-focused VOI, which differs 
from past findings [26]. The peritumor renal parenchyma 
did not interfere with the discriminative performance within 
the range of 4-mm extension from original VOI, probably 
because higher grade ccRCCs tend to invade adjacent renal 
parenchyma and tumor-renal parenchyma interface within a 
certain range may reflect the biological behavior of tumors. 
However, relative to original VOI, VOI delineations inclu-
sive of the perirenal fat showed inferior performance, 
suggesting that peritumor perirenal fat might not provide 
additional information compared to the tumor itself and 
conversely may weaken a model’s differentiation capabil-
ity. These findings may serve as references for determining 
RCC lesion segmentation tolerance for radiomics analysis.

Table 3  Best performances in each of the 12 VOIs (achieved with the associated phases, classifier, and feature selection), and the number of 
times they ranked as best feature. p < 0.05 was considered statistically significant (Mann–Whitney U test)

The Mann–Whitney U test is used for all p values. A p value less than 0.05 was considered statistically significant

Best feature type Best performance p value Number of times being 
ranked as the best feature 
typeHighest AUC 

(ACC/SEN/SPE)
Classifier Feature selec-

tion method

VOI F
1,4

pha
0.87
(0.81/0.67/0.87)

Random Forest CIFE 36

VOI_e2 F
1,4

pha
0.85
(0.79/0.66/0.84)

Random Forest Gini_index 0.8243 37

VOI_e4 F
1,3

pha
0.84
(0.80/0.77/0.81)

Logistic Regression RFS < 10
−5 12

VOI_d2 F
1,2

pha
0.84
(0.77/0.65/0.82)

AdaBoosting Gini_index < 10
−9 27

VOI_d4 F
1,2,3,4

pha
0.83
(0.79/0.64/0.85)

Bagging CIFE < 10
−12 35

VOI_d6 F
1,2,4

pha
0.84
(0.79/0.57/0.89)

Bagging T_score < 10
−20 24

Fat_d2 F
1,2

pha
0.86
(0.77/0.63/0.84)

Random Forest MIFS 0.0029 21

Fat_d4 F
1,3

pha
0.84
(0.80/0.65/0.86)

Random Forest MRMR < 10
−13 13

Fat_d6 F
1,2,4

pha
0.86
(0.79/0.60/0.87)

AdaBoosting Ll_l21 < 10
−12 21

Margin_d2 F
1,3

pha
0.86
(0.82/0.68/0.88)

Random Forest CIFE 0.0861 14

Margin_d4 F
1,4

pha
0.87
(0.78/0.61/0.86)

Random Forest MIFS 0.2132 33

Margin_d6 F
1,4

pha
0.84
(0.77/0.57/0.86)

Random Forest CIFE 0.0013 18
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Fig. 4  Heatmap of the AUC values obtained by the 176 discriminative models (a, F1

pha
 as feature input; b,F1,4

pha
 as feature input) built with differ-

ent combinations of classifiers and feature selection methods (features extracted on VOI)

Fig. 5  Histogram showing the 
number of times of each feature 
in F1

pha
 being selected as the top 

20 features (features extracted 
on VOI)
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It is interesting to find that the top-10 features were 
shape-based features (n = 7) and first-order features (n = 4) 
and that no texture features were significant. Of the 7 
shape-based features, the least axis length, the surface 
volume ratio, and the elongation exhibited statistically 
significant differences (p < 0.05) between the 2 groups. 
The low-grade group had lower values of least axis length 
but higher values of surface volume ratio and elongation 
relative to the high-grade group, indicating that low-grade 
tumors are more inclined to be round. Yap et al.[27] com-
pared the relative contributions of shape and texture met-
rics in differentiating benign from malignant renal masses 
and found that shape metrics alone have high prediction 
performance (AUC 0.64–0.68). Our data also reveal a pos-
itive role of shape features in ccRCC nuclear grading. The 
four top first-order features (median,  90th percentile,  10th 
percentile, and root mean squared) showed significantly 
higher values in the high-grade group (p <  10−3). This is 
attributable to larger nuclear sizes and more prominent 
nucleolar appearances in high-grade tumors.

This study is limited by the relatively small sam-
ple size and lack of an external validation set. This is 

attributable to our strict inclusion criteria that required 
that all 4 phases of contrast-enhanced CT to be avail-
able for all patients. However, we have to admit that 
radiomics applications continue to suffer from poor 
external validation due to inter-institutional variations 
in CT protocoling and workflow—both of which have 
shown strong implications in affecting the overall gener-
alizability. In our study, we employed patient data from 
four different CT scanners, and such data heterogeneity, 
to some extent, has compensated for the limitation of 
no external validation. Another limitation is the use of 
Fuhrman nuclear grading system instead of the latest 
WHO/ISUP grading system [28–33]. This is because the 
included cases date back from 2011 when the Fuhrman 
grading system was widely used. Furthermore, the use of 
manual segmentation is time-consuming and automatic 
segmentation is necessary.

In conclusion, machine learning–based radiomics analy-
sis on UP and NP outperformed other phases. There were 
no statistically significant performance differences between 
tumor VOI and VOI eroded by 2 mm or dilated by 2 or 
4 mm within peritumor renal parenchyma, which may act 

Table 4  The top-10 most frequently selected features in F1

pha
 . Their corresponding mean (± SD) values (or median (IQR)) and p values between 

low and high Fuhrman grades are shown

†4 M, the mean of the mean feature value of the high-grade group and the mean feature value of the low-grade group
†5 M, percentage of patients in high-grade and low-grade groups with feature values less than or larger than the “M” value
a Independent t-test
b Mann-Whitney U test
The values in italics indicate satisfactory discriminative capability such that about 70% of the high group had smaller feature values and com-
paratively, about 70% of the low-grade group had larger feature values

Feature category Top-ranked features High grade Low grade p value M†4 (< M| > M)†5

Shape-based (n = 7) Least axis length (1st) 24.37 (2.96, 78.71) 16.18 (1.94, 35.87) 0.0074
b 20.27 High (49.1%| 50.9%)

Low (68.5%| 31.5%)
Minor axis length (4th) 55.52 (16.02, 152.18) 54.03 (15.03, 152.92) 0.4411

b 54.78 High (60.4%| 39.6%)
Low (58.9%| 41.1%)

Surface volume ratio (6th) 0.30 (0.09, 0.98) 0.35 (0.15, 1.24) 0.0046
b 0.33 High (69.8%| 30.2%)

Low (57.3%| 42.7%)
Flatness (7th) 0.45 (0.07, 0.90) 0.39 (0.05, 0.91) 0.5354

b 0.42 High (45.3%| 54.7%)
Low (57.3%| 42.7%)

Sphericity (8th) 0.59 (0.29, 0.79) 0.56 (0.26, 0.81) 0.8489
b 0.58 High (45.3%| 54.7%)

Low (57.3%| 42.7%)
Elongation (9th) 0.82 (0.60, 0.98) 0.85 (0.60, 0.99) 0.0249

b 0.84 High (56.6%| 43.4%)
Low (34.7%| 65.3%)

Maximum 3D diameter (10th) 81.21 (25.00, 229.85) 76.34 (23.62, 242.09) 0.2755
b 78.78 High (60.4%| 39.6%)

Low (63.7%| 36.3%)
First-order-based (n = 4) Median (2nd) 34.11 ± 3.72 28.47 ± 6.52 < 10

−5, a 31.29 High (22.6%| 77.4%)
Low (67.0%| 33.0%)

90th percentile (3rd) 48.32 (41.00, 62.00) 42.49 (24.00, 61.00) < 10
−3, b 45.41 High (32.1%| 67.9%)

Low (69.4%| 30.6%)
10th percentile (5th) 15.72 (2.00, 29.00) 10.30 (-19.00, 29.00) < 10

−3, b 13.01 High (30.2%| 69.8%)
Low (58.1%| 41.9%)

Root mean squared (10th) 35.79 ± 3.47 30.91 ± 5.89 < 10
−5, a 33.36 High (20.7%| 79.2%)

Low (68.5%| 31.5%)
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as reference for manual or automatic segmentation tolerance 
for radiomics-based modeling of ccRCC nuclear grading.
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