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Abstract
Objectives To compare multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion 
(EMVI) in rectal cancer using different machine learning algorithms and to develop and validate the best diagnostic model.
Methods We retrospectively analyzed 317 patients with rectal cancer. Of these, 114 were EMVI positive and 203 were EMVI 
negative. Radiomics features were extracted from  T2-weighted imaging,  T1-weighted imaging, diffusion-weighted imaging, 
and enhanced  T1-weighted imaging of rectal cancer, followed by the dimension reduction of the features. Logistic regres-
sion, support vector machine, Bayes, K-nearest neighbor, and random forests algorithms were trained to obtain the radiomics 
signatures. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each 
radiomics signature. The best radiomics signature was selected and combined with clinical and radiological characteristics 
to construct a joint model for predicting EMVI. Finally, the predictive performance of the joint model was assessed.
Results The Bayes-based radiomics signature performed well in both the training set and the test set, with the AUCs of 0.744 
and 0.738, sensitivities of 0.754 and 0.728, and specificities of 0.887 and 0.918, respectively. The joint model performed best 
in both the training set and the test set, with the AUCs of 0.839 and 0.835, sensitivities of 0.633 and 0.714, and specificities 
of 0.901 and 0.885, respectively.
Conclusions The joint model demonstrated the best diagnostic performance for the preoperative prediction of 
EMVI in patients with rectal cancer. Hence, it can be used as a key tool for clinical individualized EMVI prediction. 

Key Points  
• Radiomics features from magnetic resonance imaging can be used to predict extramural venous invasion (EMVI) in rectal cancer.
• Machine learning can improve the accuracy of predicting EMVI in rectal cancer.
• Radiomics can serve as a noninvasive biomarker to monitor the status of EMVI.
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Abbreviations
ACI  Anal canal invasion
ADC  Apparent diffusion coefficient
AIC  Akaike’s information criterion

AUC   Area under the curve
CC  Correlation coefficient
CEA  Carcinoembryonic antigen
CRM  Circumferential resection margin
CT  Computed tomography
DIS  Distance from the end of the convex edge of 

the tumor to the edge of the anus
DWI  Diffusion-weighted imaging
EMVI  Extramural venous invasion
IMV  Inferior mesenteric vein
KNN  K-nearest neighbor
LR  Logistic regression
mpMRI  Multiparameter magnetic resonance imaging
mrEMVI  MpMRI-based extramural venous invasion
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PACS  Picture archiving and communication system
RF  Random forests
ROC  Receiver operating characteristic curve
RSD  Relative standard deviation
SRV  Superior rectal vein
SVM  Support vector machine
T1WI  T1-weighted imaging
T2WI  T2-weighted imaging
VOI  Volume of interest

Introduction

Colorectal cancer is the second leading cause of cancer-
related deaths globally, with rectal cancer alone accounting 
for one-third of these cases [1]. Extramural venous inva-
sion (EMVI) is defined as the presence of tumor cells in 
blood vessels located beyond the muscularis propria in the 
mesorectal fat. Interstitial adipose tissue around the tumor 
is at an increased risk of vascular invasion, which, in turn, 
significantly increases the risk of distant metastasis. Hence, 
EMVI can be considered a significant predictor of both the 
local recurrence and distant metastasis in rectal cancer [2, 
3]. Therefore, EMVI is used for routine assessment and to 
identify risk stratification indicators in rectal cancer [4]. 
Accurate identification of the EMVI status is crucial for 
treatment decisions and prognosis.

Multiparameter magnetic resonance imaging (mpMRI) 
is the first choice for early noninvasive assessment of rectal 
cancer and detection of EMVI [5]. However, mpMRI has 
limited spatial resolution. It cannot be used to accurately 
diagnose the invasion of vessels smaller than 3 mm [6]. It 
is also sometimes difficult to distinguish such small blood 
vessels from small lymphatic vessels and peritoneal reverse 
folds [7]. In addition, inflammation, edema, and fibrosis may 
also adversely affect the mrEMVI evaluation [8]. Therefore, 
visual assessment based on mpMRI alone may not be suffi-
cient to accurately identify EMVI. Hence, there is an urgent 
need to develop an objective, noninvasive, and accurate 
method for the preoperative evaluation of EMVI.

Radiomics uses big data mining techniques to analyze 
the correlation between radiological characteristics and 
pathological data. Hence, it is a powerful tool to provide 
decision support in oncology [9, 10]. Radiomics has been 
successfully used for the diagnosis, treatment, and prog-
nosis of rectal cancer [11]. A recent study has also shown 
that radiomics is a superior tool to predict the occurrence of 
EMVI in rectal cancer [12]. However, such studies used only 
a single sequence. In contrast, mpMRI can often provide 
more useful information [13]. Additionally, predictive and 
prognostic models are important in radiomics [14]. Highly 
accurate and reliable models are needed in clinical prac-
tice to improve the decision-making process, which can be 

achieved through machine learning algorithms [15]. Accord-
ingly, we hypothesize that more valuable radiomics features 
could be extracted using mpMRI and a new model can be 
constructed through machine learning for better prediction 
and stratification of the EMVI state.

The purpose of this study is to apply mpMRI-based radi-
omics to preoperatively predict the EMVI status of rectal 
cancer using different machine learning algorithms to build 
the best radiomics signature and to develop and validate the 
joint model by combining the radiomics signature and clini-
cal and radiological characteristics.

Materials and methods

Patients

The study design was approved by our institutional ethics 
committee and the need for informed consent was waived 
off (No. 2021QT211). For this retrospective study, 1123 
patients with rectal cancer confirmed between January 2017 
and January 2021 were identified from a picture archiving 
and communication system (PACS). Among these patients, 
317 were finally selected for the study based on the follow-
ing inclusion criteria: (1) pathologically confirmed rectal 
cancer; (2) complete clinical and radiological data; (3) no 
history of other malignant tumors; and (4) no preoperative 
antitumor treatments. The exclusion criteria were as fol-
lows: (1) incomplete pathological data; and (2) poor imag-
ing quality of mpMRI. In addition, the patients diagnosed 
between January 2017 and December 2019 were grouped 
into a training set (n = 221). This training set was used to 
test the robust features of radiomics and construct a model. 
Those diagnosed between January 2020 and January 2021 
were grouped into a test set (n = 96) for validating the reli-
ability of the model. A flowchart for patient recruitment is 
shown in Fig. 1.

Clinical and radiological data

The clinical and radiological data of all patients were ret-
rospectively analyzed from our PACS, including data on 
age, gender, carcinoembryonic antigen (CEA) level, EMVI 
status, mpMRI-based radiological tumor (T) stage, lymph 
node (N) stage, tumor long diameter, transverse diameter, 
anteroposterior diameter, tumor volume, distance (DIS), 
circumferential resection margin (CRM), anal canal inva-
sion (ACI), and mrEMVI status [16]. The postoperative 
pathological tissue was used as the reference standard for 
EMVI status. These features were independently assessed by 
two experienced radiologists. For the purpose of this study, 
the quantitative measurements obtained by the two radi-
ologists were averaged for further analysis. For qualitative 
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parameters, these two radiologists carefully reviewed all the 
images until a consensus was reached. Detailed information 
can be found in the Supplementary Materials.

Image preprocessing and segmentation

All patients underwent mpMRI examination, which was 
performed using a 3.0-T MRI scanner (Skyra; Siemens 
Healthineers). The image protocols and detailed parameters 
are provided in Supplementary Materials and Table S1. 
Noncommercial A.K. Software (Analysis Kit, GE Health-
care) was used for image preprocessing and registration 
of  T2-weighted imaging  (T2WI),  T1-weighted imaging 
 (T1WI), diffusion-weighted imaging (DWI), and enhanced 
 T1-weighted imaging  (T1 + C) sequences before extracting 
the features in order to reduce the potential influence of the 
parameters of a scanning scheme. The  T2WI sequences on 
the axial plane were collected on an oblique-axial plane 
perpendicular to the rectum axis. Image preprocessing was 

performed by resampling the images with a resolution of 
1 × 1 × 1  mm3 through the linear interpolation method and 
by discretizing and normalizing the image gray level to order 
32. Then, the registration function of the A.K. Software was 
used to adopt  T2WI as the template for rigid registration of 
all sequences to ensure that the four sequences contained the 
same resolution, spacing, and origin. The standardized  T2WI 
images were imported into the ITK Software to segment the 
entire rectal tumor layer by layer to determine the volume 
of interest (VOI). Depending on the registration of different 
sequences,  T1WI, DWI, and  T1 + C can share the same VOI 
obtained from  T2WI. Finally, the VOIs were imported into 
A.K. Software for feature extraction.

Extraction and selection of radiomics features

We extracted 378 radiomics features from each sequence, 
including 42 histogram features, 10 Haralick features, 9 
form factor features, 126 Gray-level co-occurrence matrix 

Fig. 1  Flowchart for recruitment 
of patients in this study (Note. 
PACS, picture archiving and 
communication system; EMVI, 
extramural venous invasion; T 
stage, tumor stage)
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features, 180 run-length matrix features, and 11 Gray-level 
size zone matrix features. Four sequences were scanned in 
one patient, affording 1512 radiomics features per patient. In 
addition, tumor segmentation was manually delineated inde-
pendently by two radiologists (radiologist A and radiologist 
B) using ITK software to ensure the stability and accuracy 

of the radiomics features, and feature set A (from radiolo-
gist A) and feature set B (from radiologist B) were obtained. 
Spearman’s rank correlation test was used to calculate the 
correlation coefficient (CC) of each feature in sets A and B. 
Features with CC > 0.8 were considered robust.

Fig. 2  Construction and evaluation of different models

Table 1  Clinical and 
radiological characteristics of 
patients in the training and test 
sets

Note. CEA, carcinoembryonic antigen; DIS, distance from the end of the convex edge of the tumor to the 
edge of the anus; CRM, circumferential resection margin; mrEMVI, MRI-based extramural vascular inva-
sion; ACI, anal canal invasion. Data are presented as counts or means (standard deviations in parentheses)

Characteristics Training set (n = 221) Test set (n = 96) p value

Age (years, SD) 64.08 (10.52) 63.78 (10.32) 0.814
Gender (male, %) 157 (71.04) 67 (69.79) 0.822
CEA (abnormal, %) 97 (43.89) 34 (35.42) 0.159
Long diameter (cm, SD) 3.79 (1.39) 3.89 (1.53) 0.586
Transverse diameter (cm, SD) 2.97 (1.18) 2.96 (1.17) 0.904
Anteroposterior diameter (cm, SD) 1.31 (0.65) 1.23 (0.67) 0.353
Tumor volume  (cm3, SD) 19.19 (23.43) 18.49 (28.03) 0.817
DIS (cm, SD) 8.04 (3.69) 8.11 (4.07) 0.880
CRM status (positive, %) 54 (24.43) 22 (22.92) 0.771
mrEMVI status (positive, %) 53 (23.98) 28 (29.17) 0.331
ACI status (positive, %) 13 (5.88) 4 (4.17) 0.533
Lymph node (metastasis, %) 139 (62.90) 62 (64.58) 0.774
Radiological tumor stage (N, %) T1-2 59 (26.70) 27 (28.12) 0.793

T3-4 162 (73.30) 69 (71.88)
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Construction and validation of radiomics signatures

Dimension reduction of the robust features selected was 
performed using the training set. More information can be 
found in the Supplementary Materials. On the basis of the 
retained features, we selected five machine learning algo-
rithms—logistic regression (LR), support vector machine 
(SVM), Bayes, k-nearest neighbor (KNN), and random 
forests (RF)—to construct radiomics signatures. To select 
the best machine learning algorithm, we used the relative 
standard deviation (RSD) and Bootstrap method to quan-
tify the stability of the five algorithms. The machine learn-
ing algorithm with the minimum RSD value was selected 
as the best algorithm to construct the radiomics signature. 
Detailed information about the RSD can be found in the 
Supplementary Materials. Finally, to quantify the signature 
discriminability, a machine learning score of each patient 
was calculated using the radiomics signature model. This 
result reflected the possibility of EMVI and was defined as 
the RAD score.

Model construction and evaluation

Multivariate logistic regression analysis and backward 
stepwise selection method with the stopping rule based on 
Akaike’s information criterion (AIC) were conducted to 
select independent predictors from clinical and radiologi-
cal variables, based on which a joint model was built. To 

verify the improvement in the performance of the model 
after including the radiomics signature, we used the selected 
independent predictors to construct different combined mod-
els. We used the area under the receiver operating charac-
teristic (ROC) curves (AUC) to evaluate the performance 
of different models. In addition, we used the DeLong test to 
determine the difference between the joint model and other 
combined models. To assess the clinical efficacy of the joint 
model, we developed a visual nomogram to calculate the 
probability of EMVI for each patient. Finally, we used the 
Hosmer–Lemeshow test to analyze the goodness-of-fit of 
the nomogram and employed the calibration curve to visu-
ally assess the consistency between the predicted and actual 
EMVI probabilities. We used the optimal cut-off value cor-
responding to the Youden index of the ROC curve as the 
threshold. Using the EMVI probability of each patient, we 
grouped patients with negative mrEMVI into high-risk and 
low-risk groups and compared their pathological EMVI 
results. The construction and evaluation of different models 
are shown in Fig. 2.

Statistical analysis

Statistical analyses were performed with SPSS software 
(version 24.0), MedCalc software (version 11.2), and Python 
(version 3.5). The continuous variables were compared by 
performing a two-sample t-test or the Mann–Whitney U test, 

Table 2  Characteristics of patients in the EMVI and non-EMVI groups in the training and test sets

Note. EMVI, patients with pathologic extramural venous invasion; Non-EMVI, patients without pathologic extramural venous invasion; CEA, 
carcinoembryonic antigen; DIS, distance from the end of the convex edge of the tumor to the edge of the anus; CRM, circumferential resection 
margin; mrEMVI, MRI-based extramural vascular invasion; ACI, anal canal invasion. Data are presented as counts or means (standard deviations 
in parentheses)

Characteristics Training set (n = 221) Test set (n = 96)

Non-EMVI
(n = 142)

EMVI
(n = 79)

p value Non-EMVI
(n = 61)

EMVI
(n = 35)

p value

Age (years, SD)   63.8 (10.7) 64.58 (10.23) 0.599   64.11 (8.6)   63.2 (12.89) 0.709
Gender (male, %)    102 (71.83)      55 (69.62) 0.729      44 (72.13)      23 (65.71) 0.512
CEA (abnormal, %)     52 (36.62)      45 (56.96) 0.003*      17 (27.88)      17 (48.57) 0.041*
Long diameter (cm, SD)    3.90 (1.42)     3.59 (1.32) 0.112     3.79 (1.49)     4.05 (1.61) 0.416
Transverse diameter (cm, SD)    3.09 (1.2)     2.77 (1.13) 0.056     2.95 (1.1)     2.96 (1.31) 0.972
Anteroposterior diameter (cm, SD)    1.35 (0.66)     1.23 (0.64) 0.215     1.25 (0.7)     1.21 (0.62) 0.779
Tumor volume  (cm3, SD) 21.13 (23.95) 15.72 (22.19) 0.100 18.59 (30.5) 18.31 (23.53) 0.962
DIS (cm, SD)     8.01 (3.4)     8.09 (4.17) 0.881       6.6 (4.4)       6.1 (2.3) 0.365
CRM status (positive, %)      31 (21.83)      23 (29.11) 0.227      7 (11.48)      15 (42.86)  < 0.001*
mrEMVI status (positive, %)      25 (17.61)      28 (35.44) 0.003*    10 (16.39)      18 (51.43)  < 0.001*
ACI status (positive, %)          8 (5.63)          5 (6.33) 0.930        1 (1.64)          3 (8.57) 0.269
Lymph node (metastasis, %)      83 (58.45)      56 (70.89) 0.067    34 (55.74)           28 (80) 0.017*
Radiological tumor stage (N, %) T1-2      46 (32.39)      13 (16.46) 0.010*    25 (40.98)          2 (5.71)  < 0.001*

T3-4      96 (67.61)      66 (83.54)    36 (59.02) 33 (94.29)
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and the categorical variables were compared by a chi-square 
test. The ROC curves were used to evaluate the predictive 
performance of different models. The metrics included AUC, 

sensitivity, and specificity. All statistics were two-way, and 
the statistical significance was set at p < 0.05.

Results

Characteristics of the patients

No statistical differences were noted between the clinical 
and radiological characteristics of the training and test sets 
(p = 0.159–0.904), as shown in Table 1. In contrast, statistical 
differences were observed in CEA, mrEMVI, and tumor stage 
of both the EMVI and non-EMVI groups in the training and 
test sets (p < 0.05). In addition, we observed statistical differ-
ences between the EMVI and non-EMVI groups in terms of 
the lymph node (p = 0.017) and CRM (p < 0.001) status in the 
test set. The characteristics of the patients in the EMVI and non-
EMVI groups in the training and test sets are detailed in Table 2.

Performance of radiomics signatures

Of the 1512 radiomics features in the training set, we selected 
793 as robust features and used them for dimension reduction. 
Finally, 20 features were retained from the four sequences—
T2WI (n = 4),  T1WI (n = 6), DWI (n = 7), and  T1 + C (n = 3)—
to construct the radiomics signatures. These features have 
been detailed in the Supplementary Materials. The RSD val-
ues of the radiomics signatures based on LR, SVM, Bayes, 
KNN, and RF were 2.72, 8.13, 2.43, 7.46, and 11.01, respec-
tively. Therefore, Bayes was chosen as the machine learn-
ing algorithm for constructing the radiomics signature in this 
study. The Bayes-based radiomics signature performed well 
in both the training and test sets, with the AUCs of 0.744 and 
0.738, sensitivities of 0.754 and 0.728, and specificities of 
0.887 and 0.918, respectively, as shown in Fig. 3.

Model construction and comparison

CEA (p = 0.043), mrEMVI (p = 0.039), transverse diameter 
(p = 0.003), and radiomics signature (p < 0.001) were deter-
mined using multivariate logistic regression analysis and 
selected as independent predictors (Table 3) to construct 
the joint model and develop the visual nomogram (Fig. 4a). 
Calibration curves of the joint model for predicting the 
EMVI demonstrated good agreement with the ideal curve 
in both the training set (Fig. 4b) and the test set (Fig. 4c). 
The Hosmer–Lemeshow test yielded no significant differ-
ence between the predictive calibration curve and the ideal 
curve for EMVI prediction in the training set (p = 0.745). 
In addition, the joint model performed better than MRI in 
predicting the EMVI, as shown in Fig. 5.

Fig. 3  Density distribution of the area under the receiver operating 
characteristic (AUC) curve of radiomics signatures constructed by 
five machine learning algorithms (a) and diagnostic efficiency of the 
Bayes-based radiomics signature for predicting extramural venous 
invasion in the training set (b) and the test set (c)
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The radiological model was constructed using mrEMVI 
and transverse diameter; the clinicoradiological model was 
constructed using CEA, mrEMVI, and transverse diameter; 
and the clinicoradiomic model was constructed using CEA 
and radiomics signature. Among the four different models, 
the joint model performed best with the AUCs of 0.839 and 
0.835, sensitivities of 0.633 and 0.714, and specificities of 
0.901 and 0.885 in the training and test sets, respectively. 
The DeLong test showed that the joint model was statisti-
cally different from the other three combined models in 
both the training and test sets (p < 0.05), highlighting the 
improved predictive performance of the radiomics signa-
ture, as shown in Table 4 and Fig. 6a, b.

The optimal threshold of 0.5545 was selected in the 
ROC analysis based on the Youden Index of the joint 
model for patients with negative mrEMVI. Patients with 
model scores of > 0.5545 were predicted as high-risk 
cases, while those with scores of < 0.5545 were predicted 
as low-risk cases. The number of patients with a positive 
pathological EMVI status in the low-risk and high-risk 
groups in both the training and test sets was significantly 
different, indicating the clinical applicability of the nom-
ogram, as shown in Fig. 6c, d.

Discussion

We compared mpMRI-based radiomics for preoperatively 
predicting the EMVI status of rectal cancer using five 
machine learning algorithms and observed that the Bayes-
based radiomics signature performed well. Our results 

showed that radiomics can be used for predictions, which 
further validated Zech et al.’s proposal that the EMVI can 
be used as a new imaging biomarker for the prognosis 
of rectal cancer [3]. In addition, the joint model showed 
significantly improved prediction performance for EMVI. 
The nomogram can also provide good classification and 
recognition for patients with the negative mrEMVI status, 
which may be used as a convenient and accurate tool to 
identify and predict the EMVI.

The mrEMVI assessment mainly depended on the 
scanning technique and subjective imaging analysis [17]. 
However, radiologists often find it difficult to use, which 
may lead to misdiagnosed prediction of EMVI [18]. Our 
study also confirmed this phenomenon. The radiologi-
cal model based on mrEMVI showed poor performance 
in the preoperative prediction of EMVI. In contrast, the 
joint model demonstrated the best diagnostic perfor-
mance in both the training set (AUC = 0.839) and the test 
set (AUC = 0.835). Encouragingly, the joint model can 
also afford good classification and recognition in patients 
with negative mrEMVI, further demonstrating its supe-
riority, which may also be due to its high specificities 
(90.1% and 88.5% in the training and test sets, respec-
tively). Of course, the joint model showed such a superior 
performance because of the inclusion of the radiomics 
signature. In fact, the radiomics signature itself outper-
formed the radiological model in the test set (AUC: 0.738 
vs 0.647). The application of machine learning algorithm 
and multiparameter radiomics features was the main rea-
son for the better diagnostic performance of the radiom-
ics signature.

Table 3  Results of univariate 
and multivariate logistic 
regression analyses

Note. CEA, carcinoembryonic antigen; DIS, distance from the end of the convex edge of the tumor to the 
edge of the anus; CRM, circumferential resection margin; mrEMVI, MRI-based extramural vascular inva-
sion; ACI, anal canal invasion; OR, odds ratio

Variables Univariate logistic regression Multivariate logistic regression

OR(95%CI) p value OR(95%CI) p value

Age 1.007 (0.981,1.034) 0.597 NA NA
Gender 1.113 (0.609, 2.034) 0.728 NA NA
CEA 2.291 (1.307, 4.015) 0.004* 1.868 (0.997, 3.500) 0.043*
Long diameter 0.846 (0.687, 1.041) 0.114 NA NA
Transverse diameter 0.788 (0.615, 1.008) 0.007* 0.64 (0.476,0.859) 0.003*
Anteroposterior diameter 0.752 (0.479, 1.181) 0.216 NA NA
Tumor volume 0.988 (0.974, 1.003) 0.110 NA NA
DIS 1.006 (0.934, 1.084) 0.873 NA NA
CRM status 1.471 (0.785, 2.755) 0.229 NA NA
mrEMVI status 2.569 (1.366, 4.832) 0.003* 2.071 (1.038, 4.131) 0.039*
ACI status 1.132 (0.357, 3.585) 0.833 NA NA
Lymph node 1.731 (0.960, 3.119) 0.068 NA NA
Radiological tumor stage 2.433 (1.219, 4.854) 0.012* NA NA
Radiomics signature 2.718 (1.892, 3.905)  < 0.001* 2.611 (1.815, 3.757)  < 0.001*
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Machine learning algorithms have been widely applied 
in the field of radiomics, which greatly improve diagnos-
tic performance [19]. The LR is currently the most widely 
used machine learning algorithm because of its simplicity. 
Although the diagnostic efficiency of the LR is higher than 
that of the Bayes, the latter was more stable than the for-
mer in our study. The stability of the radiomics model is 
also highly important for its clinical application. Therefore, 
we chose the Bayes to construct the radiomics signature. In 
addition, multiparameter features may contain more infor-
mation, which allows for a more comprehensive characteri-
zation of the tumor [20]. The sensitivity and specificity of 
the radiomics signature for EMVI prediction as observed 
in our study are significantly higher than those reported by 
Roberto et al. using DWI and  T2WI [21], which further dem-
onstrated the great potential of the multiparameter radiomics 
features.

Previous studies have identified the tumor size, location, 
T staging, and N staging as the risk factors for EMVI [22, 
23]. In contrast, our study showed that only the transverse 
diameter, which is related to the tumor size, can be used as 
an independent predictor of EMVI. This result indirectly 
showed that the transverse diameter may help in determin-
ing the impact of tumor size on prognosis, further validating 
the findings of Yoshimoto et al. that the tumor diameter can 
be used as a prognostic indicator of colorectal cancer [24]. 
Our study also showed that CEA is an independent predic-
tor of EMVI. CEA, a large glycoprotein, has been proposed 
as a prognostic biomarker that can be used to determine the 
prognosis and stage of colorectal cancer [25, 26]. Although 
mrEMVI is still the most favorable independent predictor, 
it is important to note that the radiological model based on 
mrEMVI and transverse diameter performed poorly in pre-
dicting EMVI, perhaps owing to the inherent defects of the 
visual subjective imaging analysis. Despite this drawback, it 
cannot be denied that mrEMVI is still one of the important 
contents routinely used in mpMRI-based imaging analysis 
[27].

A previous study [28] has reported that the computed 
tomography (CT)–based superior hemorrhoidal vein diame-
ter had a better discrimination power in predicting the EMVI 
(AUC = 0.83, sensitivity = 88.2%, specificity = 94.6%) than 
our joint model. However, our model may be more suitable 
for clinical practice than CT, because the latter causes radia-
tion damage. Aysegul et al. used changes in the diameters of 
the superior rectal vein (SRV) and inferior mesenteric vein 
(IMV), and apparent diffusion coefficient (ADC) values for 
EMVI prediction [29]; their AUC values were 0.851, 0.893, 
and 0.664, respectively. Although the AUCs of CT-based 
SRV and IMV were higher than those of our joint model, the 
AUC of the MRI-based ADC value was significantly lower 
than that of our model. In addition, the specificities of our 
joint model (90.1% and 88.5% in the training and test sets, 

Fig. 4  Visual nomogram based on the joint model (a). Calibration 
curves of the joint model for predicting extramural venous invasion 
in the training set (b) and the test set (c), which demonstrated good 
agreement with the ideal curve (Note. mrEMVI, MRI-based extramu-
ral vascular invasion; CEA, carcinoembryonic antigen)
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respectively) are significantly higher than those reported 
by Aysegul et al. (67.9%, 71.4%, and 57.1% for SRV, IMV, 
and ADC, respectively). A previous study showed that 
functional imaging such as DWI cannot improve the effi-
ciency of EMVI detection [30]. Yu et al. combined DCE 
and clinical-pathological factors to construct a radiomics 
model to predict EMVI with an AUC of 0.904, sensitivity 
of 90.5%, and specificity of 79.2% [12]. Although this result 

was significantly higher than that reported in the present 
study, it should be noted that the AUC was only 0.812 in 
the test set, indicating the poor stability of the model used 
by Yu et al. The AUC of our joint model reached 0.835 
in the test set, probably because of its higher stability. In 
fact, the radiomics signature showed greater variability than 
the clinical characteristics [31]. We used a stable machine 
learning algorithm and multiparameter radiomics features to 

Fig. 5  Two cases with rectal cancer and positive extramural venous 
invasion (EMVI) at histopathologic examination. a–d One case had 
obvious EMVI on MRI, which could also be detected by the joint 

model. e–h The other was EMVI detected by the joint model, which 
was not apparent on MRI
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Table 4  Predictive performance of different models in the training and test sets

Note. AUC , area under the receiver operating characteristic curve

Models Training set Test set

AUC (95%CI) Sensitivity Specificity AUC (95%CI) Sensitivity Specificity

Joint model 0.839
(0.784–0.885)

0.633 0.901 0.835
(0.745–0.903)

0.714 0.885

Clinicoradiological model 0.683
(0.617–0.744)

0.772 0.514 0.675
(0.572–0.767)

0.713 0.639

Clinicoradiomic model 0.761
(0.699–0.816)

0.873 0.528 0.726
(0.626–0.813)

0.657 0.754

Radiological model 0.649
(0.582–0.712)

0.506 0.732 0.647
(0.543–0.742)

0.571 0.732

Fig. 6  Diagnostic performance for extramural venous invasion pre-
diction of different models in the training (a) and test (b) sets. Nega-
tive mrEMVI patients were divided into high-risk and low-risk cases 
according to the nomogram. The probability of pathological EMVI 

in the high-risk group was significantly higher than that in the low-
risk group in both the training (C) and test (D) sets. (Note. * means 
p < .05; EMVI, extramural venous invasion; mrEMVI, MRI-based 
extramural vascular invasion)
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overcome the variability in the radiomics signature of our 
study, which may provide a new idea for conducting future 
radiomics research in clinical practice.

In addition, our joint model has good clinical applica-
bility, because the model construction is mainly based on 
noninvasive mpMRI examination and image analysis. The 
measurement of another construction feature, CEA, depends 
on the routine test item for each hospitalized patient. As the 
test cost is low, it is suitable for clinical development. We 
also built a nomogram based on the joint model, which ena-
bles clinicians to more conveniently and quickly quantifies 
the EMVI status of patients. Therefore, our study provides 
a reliable, convenient, and rapid tool to predict the EMVI 
status in clinical practice.

Our research has some limitations as well. Firstly, it is 
a retrospective study. However, the eligible patients were 
consecutively retrieved from a prospective database that 
included all patients with rectal cancer in our hospital. Sec-
ondly, the pathological evaluation could not be checked 
for consistency because of the retrospective design. Nev-
ertheless, the pathologic EMVI status used for training the 
radiologist was basically reliable, although it was difficult 
to ensure that the pathologic EMVI status was correct for 
every patient. Thirdly, this research lacks external valida-
tion because of data confidentiality, which we aim to resolve 
in our future work. Finally, there is a discrepancy between 
the number of EMVI-positive and EMVI-negative patients. 
However, it did not have any effect on our results, because 
the proportion of EMVI-positive and EMVI-negative 
patients is approximately the same in both groups.

Conclusion

This study showed that mpMRI-based radiomics can 
improve the diagnostic performance of preoperative EMVI 
prediction in patients with rectal cancer, especially for inex-
perienced radiologists and residents. The visual nomogram 
based on the radiomics signature is a useful tool to avoid 
misdiagnosis to a great extent caused by the inexperience 
of radiologists. The study results also provided important 
evidence for the potential use of the joint model for risk 
stratification of rectal cancer in the future.
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