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Abstract
Objectives To evaluate the feasibility of high b-value diffusion-weighted imaging (DWI) for distinguishing non-muscle-invasive
bladder cancer (NMIBC) from muscle-invasive bladder cancer (MIBC) and low- from high-grade bladder urothelial carcinoma
using a fractional-order calculus (FROC) model as well as a combination of FROC DWI and bi-parametric Vesical Imaging-
Reporting and Data System (VI-RADS).
Methods Fifty-eight participants with bladder urothelial carcinoma were included in this IRB-approved prospective study.
Diffusion-weighted images, acquired with 16 b-values (0–3600 s/mm2), were analyzed using the FROC model. Three FROC
parameters,D, β, and μ, were used for delineating NMIBC fromMIBC and for tumor grading. A receiver operating characteristic
(ROC) analysis was performed based on the individual FROC parameters and their combinations, followed by comparisons with
apparent diffusion coefficient (ADC) and bi-parametric VI-RADS based on T2-weighted images and DWI.
Results D and μ were significantly lower in the MIBC group than in the NMIBC group (p = 0.001 for each), and D, β, and μ all
exhibited significantly lower values in the high- than in the low-grade tumors (p ≤ 0.011). The combination of D, β, and μ
produced the highest specificity (85%), accuracy (78%), and the area under the ROC curve (AUC, 0.782) for distinguishing
NMIBC andMIBC, and the best sensitivity (89%), specificity (86%), accuracy (88%), and AUC (0.892) for tumor grading, all of
which outperformed the ADC. The combination of FROC parameters with bi-parametric VI-RADS improved the AUC from
0.859 to 0.931.
Conclusions High b-value DWI with a FROCmodel is useful in distinguishing NMIBC fromMIBC and grading bladder tumors.
Key Points
• Diffusion parameters derived from a FROC diffusion model may differentiate NMIBC from MIBC and low- from high-grade
bladder urothelial carcinomas.

•Under the condition of a moderate sample size, higher AUCs were achieved by the FROC parameters D (0.842) and μ (0.857)
than ADC (0.804) for bladder tumor grading with p ≤ 0.046.

• The combination of the three diffusion parameters from the FROC model can improve the specificity over ADC (85% versus
67%, p = 0.031) for distinguishing NMIBC and MIBC and enhance the performance of bi-parametric VI-RADS.
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Abbreviations
ADC Apparent diffusion coefficient
AUC Area under the curve
BC Bladder cancer
DCE Dynamic contrast-enhanced
DWI Diffusion-weighted imaging
FOV Field of view
FROC Fractional-order calculus
FSE Fast spin-echo
MIBC Muscle-invasive bladder cancer
NMIBC Non-muscle-invasive bladder cancer
ROC Receiver operating characteristic
TURBT Transurethral resection of bladder tumor
VI-RADS Vesical Imaging Reporting and Data System

Introduction

Bladder cancer is the tenth most common cancer worldwide,
with 549,000 new cases and approximately 200,000 deaths in
2018 [1]. The majority of bladder cancer is histologically clas-
sified as urothelial carcinoma whose management strategy is
determined mainly based on the depth of invasion and histo-
logic grade [2, 3]. For patients with non-muscle-invasive blad-
der cancer (NMIBC; stage T1 or lower), transurethral resec-
tion of bladder tumor (TURBT) is typically recommended [2],
while more aggressive muscle-invasive bladder cancers
(MIBC; stage T2 or higher) frequently require radical
cystectomy, adjuvant chemotherapy, or both [3]. Accurate
assessment of the presence or absence of muscular invasion
and the degree of tumor cell differentiation is essential not
only for selecting the best treatment options but also for spar-
ing patients with low-risk NMIBC from unnecessary invasive
treatment.

Clinically, TURBT is a standard method to determine
muscle-invasiveness and histologic grade [2, 3]. It was report-
ed, however, that tumors can be under-staged in up to 25% of
muscle-invasive bladder cancers, and inaccurate grading oc-
curs in up to 15% of tumors due to sampling errors [4, 5].
These limitations, as well as the high cost and invasiveness
of TURBT procedures, indicate that a noninvasive and a more
accurate imaging technique is highly desirable to assist in
staging and/or grading bladder urothelial carcinomas.

Diffusion-weighted imaging (DWI) can reveal tissue mi-
crostructural alterations in vivo, particularly in cancer [6, 7].
Among many quantitative parameters that DWI offers, appar-
ent diffusion coefficient (ADC) has been increasingly used for
characterizing bladder urothelial carcinoma [8–11], as evi-
denced by the recently developed Vesical Imaging-
Reporting and Data System (VI-RADS) [12, 13].
Considering the varying degrees of structural complexity in
cancer tissues, sophisticated non-Gaussian diffusion models

[14, 15] may provide a more comprehensive characterization
of bladder urothelial carcinoma. Among these, a fractional-
order calculus (FROC) model [16] is of particular interest
because it has been found useful for grading pediatric brain
tumors [17, 18], correlating with Lauren classification in gas-
tric cancer [19], and assessing treatment response of gastroin-
testinal stroma tumors [20]. The FROC model offers three
parameters: diffusion coefficient D (in μm2/ms), fractional-
order derivative in space β (dimensionless), and a spatial pa-
rameter μ (in μm). These parameters, individually or conjoint-
ly, can provide a multi-faceted characterization of tissues
based on not only cellularity but also structural heterogeneity.
When combined with VI-RADS, they may also enhance the
diagnostic performance. In this study, we investigated the fea-
sibility of using DWI with the FROC model at high b-values
for staging and grading urothelial carcinoma, compared the
performance of FROC parameters with that of ADC, and in-
vestigated the possible improvement in diagnostic perfor-
mance when the FROC parameters are combined with a sim-
plified version of VI-RADS.

Materials and methods

Patient characteristics

This prospective study was approved by the Institutional
Review Board of Tongji Hospital, and written informed con-
sent was obtained from all participants. Eighty-seven patients
with suspected or confirmed bladder lesions (e.g., by ultraso-
nography or CT) were enrolled and underwent MRI between
July 2014 and August 2019. Additional inclusion criteria were
(i) no therapy performed on the newly suspected or detected
lesions prior to the MRI examination and (ii) no contraindica-
tions to MRI (e.g., claustrophobia, metal objects in or on the
body). The exclusion criteria consisted of (i) unavailability of
histopathological confirmation through TURBT or
cystectomy after the MRI examination (n = 8), (ii) confirmed
non-urothelial carcinoma (n = 17), (iii) poor image quality due
to excessive motion artifacts (n = 1), or (iv) insufficient tumor
area (less than 50 mm2) for reliably placing regions of interest
(ROIs) (n = 3). With these criteria, a total of fifty-eight partic-
ipants (51 men and 7 women; mean age = 60 ± 10 years; age
range = 37–79 years) were included in the analysis. Two out
of the fifty-eight participants had recurrent tumors. However,
the time relapsed between the previous treatment and the MRI
examination of the recurrent tumors was 1 and 9 years, respec-
tively. Hence, the prior treatment was not expected to affect
the MRI scans as supported by the literature [12]. After the
MRI examination, patients underwent TURBT alone,
TURBT followed by partial or radical cystectomy, or
cystectomy directly. TURBT was performed within 1 to 22
days (mean, 4 days) of the MRI examination, and direct
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cystectomy within 2 weeks (mean, 7 days). For the patients
who underwent cystectomy after TURBT, the interval be-
tween the two procedures was typically less than one week.
A flowchart of the study population is given in Fig. 1.

Image acquisition

All participants underwent MR examinations on a 3-T scanner
(Discovery MR750; GE Healthcare) in the supine position
with a 32-channel torso phased-array coil. The imaging pro-
tocol included axial fast spin-echo (FSE) T1-weighted, axial
fast-recovery FSE T2-weighted, sagittal FSE T2-weighted,
and multi-b-value diffusion-weighted sequences. The acquisi-
tion parameters of each non-diffusion imaging sequence were
as follows: (i) axial T1-weighted imaging: repetition time
(TR)/echo time (TE) = 528/6.8 ms, field of view = 340 ×
340 mm2, matrix size = 320 × 256, and echo train length =
4; (ii) axial fast recovery T2-weighted imaging: TR/TE =
3780/75 ms, field of view = 340 × 340 mm2, matrix size =
320 × 256, and echo train length = 16; (iii) sagittal T2-
weighted imaging: TR/TE = 5500/75 ms, field of view =
240 × 240mm2, matrix size = 320 × 320, and echo train length
= 24. In all sequences above, a slice thickness of 4 mmwith an
inter-slice gap of 1 mm was used with 2 averages. A series of
axial diffusion-weighted images were acquired using a single-
shot spin-echo echo-planar imaging sequence with 16 b-
values: 01, 501, 801, 1001, 1501, 2001, 3002, 5002, 8002,
10004, 13004, 17006, 18006, 24006, 30008, and 360010
s/mm2, where the subscript denotes the number of averages.
At each non-zero b-value, a Stejskal-Tanner diffusion gradient
was successively applied along the three orthogonal directions
to obtain trace-weighted images to mitigate the influence of
diffusion anisotropy. The other acquisition parameters for the
DWI sequence were: TR/TE = 2500/84 ms, field of view =
400 × 400 mm2, matrix size = 128 × 160, slice thickness = 4

mm, inter-slice gap = 1 mm, separation between the Stejskal-
Tanner gradient lobes (Δ) = 43.56 ms, duration of each dif-
fusion gradient lobe (δ) = 32.20 ms, and the scan time = 6–8
minutes depending on the number of slices to fully cover the
anatomy.

Image analysis

In the FROC model, the diffusion-weighted signal S is
expressed as:

S ¼ S0exp −Dμ2 β−1ð Þ γGdδð Þ2β Δ−
2β−1
2β þ 1

δ

� �� �
ð1Þ

where S0 is the signal intensity without diffusion
weighting, Gd is the diffusion gradient amplitude, Δ and δ
are the Stejskal-Tanner diffusion gradient parameters defined
above, D (in units of μm2/ms) is the anomalous diffusion
coefficient similar to ADC, β (dimensionless) is a spatial
fractional-order index that has been linked to intra-voxel tissue
heterogeneity, and μ (in units of μm) is a spatial parameter
related to tissue microstructures, as further explained in refer-
ence [16]. Based on Eq. (1), the three FROC parameter maps
(D, β, and μ) were generated voxel-by-voxel by fitting the
FROC model to the diffusion images acquired with the 16
b-values using a Levenberg-Marquardt nonlinear fitting algo-
rithm [16].

For comparison, the conventional ADC map was also ob-
tained by employing a mono-exponential function to fit to the
diffusion-weighted images. All fittings were performed using
customized software developed in MATLAB (MathWorks,
Inc).

For participants with multifocal lesions, only the tumor
with the largest diameter was analyzed. For the selected tu-
mor, region of interest (ROI) was manually drawn on the
diffusion-weighted image with b = 1000 s/mm2 for each

Fig. 1 Flowchart of the study population
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patient by two radiologists independently (C.F. and Y.C.W.,
with 11 and 7 years of experience in body MR diagnosis,
respectively). The tumor stalk that exhibited lower signal in-
tensity on diffusion-weighted images was excluded, as recom-
mended by Kobayashi et al [8]. In addition, a minimum ROI
threshold of 50 mm2 was used to reduce the statistical bias,
resulting in a median area of 181 mm2 with a range of 54–
3376 mm2 among all participants.

VI-RADS scoring

Because dynamic contrast-enhanced (DCE) MRI was not
available on the patients prior to the adoption of VI-RADS,
a “bi-parametric VI-RADS” using T2-weighted and diffusion-
weighted images was performed by two radiologists indepen-
dently (C.F. and Y.C.W.) without the knowledge of histopath-
ologic findings. Each selected tumor was scored with the 5-
point scoring system, as described in previous studies [12, 21].
Bi-parametric VI-RADS scores from representative partici-
pants are shown in Fig. 2.

Statistical analysis

Statistical analysis was performed by using SPSS (Version
23.0) and MedCalc software (Version 18.9). For each partic-
ipant, the mean value of each diffusion parameter (D, β, μ, and
ADC) over the ROI was computed, followed by comparisons
between the NMIBC and MIBC groups and between the low-
and high-grade groups using a Mann-Whitney U-test, and a
Bonferroni-Holm-adjusted significance level of α/4 = 0.0125.
The inter-observer reproducibility of ROI selection was eval-
uated by using a DICE index [22].

In addition to comparisons based on the individual param-
eters, different combinations of the FROC parameters (D, β,
and μ) were also investigated by using a multivariate logistic
regression, assuming that the possibility of being a high-grade
or muscle-invasive tumor (P0) follows a logistic model:

P0 ¼ exp a0 þ a1Dþ a2β þ a3μð Þ= 1þ exp a0 þ a1Dþ a2β þ a3μð Þ½ � ð2Þ

where a0 is a constant, and a1, a2, and a3 are the regression
coefficients for D, β, and μ, respectively [23]. Using Eq. (2),
four combinations of the FROC parameters were investigated:

Fig. 2 Upper row: a patient with NMIBC. Axial (a) and sagittal (b) T2-
weighted images illustrate an exophytic tumor on the left posterior wall
with a low-signal-intensity stalk (arrows) and uninterrupted muscularis
propria line, suggesting a T2-weighted imaging score of 2. A diffusion-
weighted image (c) with b = 1000 s/mm2 shows a high-signal-intensity
tumor with a low-signal-intensity stalk (arrow), suggesting a DWI score
of 2. A final bi-parametric VI-RADS score of 2 was determined. Lower

row: a patient with MIBC. Axial (d) and sagittal (e) T2-weighted images
illustrate a tumor on the left lateral wall with extension to extravesical fat
(arrows), indicating a T2-weighted imaging score of 5. A diffusion-
weighted image (f) with b = 1000 s/mm2 shows high-signal-intensity
tumor extending to the extravesical fat (arrow), suggesting a DWI score
of 5. A final bi-parametric VI-RADS score of 5 was determined
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(D, β), (β, μ), (D, μ), and (D, β, μ), by selectively nullifying
the non-contributing regression coefficients in the two-
parameter combinations.

For diffusion parameters individually or jointly, a receiver
operating characteristic (ROC) analysis was performed to de-
termine the best sensitivity, specificity, diagnostic accuracy,
and the area under the ROC curve (AUC) with its 95% con-
fidence interval (CI) for differentiating between the NMIBC
and MIBC groups, and between the low- and high-grade tu-
mor groups. The best cut-off sensitivity and specificity values
of the ROC curves were determined by using the point closest
to the upper left corner (i.e., sensitivity = 1, specificity = 1) in
the ROC plot [24]. The sensitivity, specificity, and accuracy
achieved by the individual FROC parameters and their com-
binations were compared with those by ADC by employing a
McNemar test [25] for paired binomial responses, while their
AUCs were compared by using a Hanley and McNeil test
[26].

The inter-observer reliability of the bi-parametric VI-RADS
ratings given by the two radiologists was evaluated by calcu-
lating the weighted kappa coefficient, followed by an ROC
analysis to evaluate the diagnostic accuracy and AUC of bi-
parametric VI-RADS. In addition, the three FROC parameters
(D, β, μ) were combined with the bi-parametric VI-RADS re-
sults in another ROC analysis to assess the added value of the
FROC parameters to bi-parametric VI-RADS.

Results

Clinical characteristics

The participants’ clinical characteristics are summarized in
Table 1. Among the 58 participants, 30 underwent TURBT,
1 TURBT followed by partial cystectomy, 3 TURBT follow-
ed by radical cystectomy, 3 partial cystectomy, and 21 radical
cystectomy. The pathological T stage was determined accord-
ing to the 2017 TNM system [27], yielding 10, 23, 16, 2, and 7
stage Ta, T1, T2, T3, and T4 tumors, respectively.
Subsequently, 33 participants with stage Ta–T1 were classi-
fied into the NMIBC group and 25 participants with stages
T2–T4 into the MIBC group [2]. The tumors were classified
as low-grade in 21 participants and high-grade in 37 partici-
pants according to the 2016 World Health Organization clas-
sification system [28].

Diffusion imaging results from representative
participants

Figure 3 displays a set of axial images from a representative
patient with a low-grade NMIBC (top row) and another rep-
resentative patient with a high-gradeMIBC (bottom row). The
columns show the T2-weighted images (Fig. 3 a and g), the

diffusion-weighted images at b-value of 1000 s/mm2 (Fig. 3 b
and h), the FROC parameter maps (Fig. 3 c–e and i–k), and the
ADC maps (Fig. 3 f and l). The D, β, μ, and ADC maps all
exhibited higher values in the patient with low-grade NMIBC
as compared to the patient with high-grade MIBC.

Comparison of diffusion parameters among different
histopathologic subgroups

In the inter-observer reproducibility analysis, acceptable ROI
selection consistency was achieved in all subjects with an
overall DICE index of 0.89 ± 0.06 (mean ± standard devia-
tion), in accordance with the literature [29]. Nearly 80% of

Table 1 Clinical characteristics

Variables Characteristics

Age (years)* 60 ± 10 (37–79)

Gender

Male 51 (87.9)

Female 7 (12.1)

No. of lesions

Unifocal 43 (74.1)

Multifocal 15 (25.9)

Primary or recurrent tumors

Primary 56 (96.6)

Recurrent 2 (3.4)

Tumor size (cm)* 3.1 ± 1.6 (1.0–10.1)

Pathologic stage

Ta 10 (17.2)

T1 23 (39.7)

T2 16 (27.6)

T3 2 (3.4)

T4 7 (12.1)

Histologic grade

Low 21 (36.2)

High 37 (63.8)

Lymph node metastasis

Yes 11 (19.0)

No 47 (81.0)

Treatment methods

TURBT 30 (51.7)

TURBT + partial cystectomy 1 (1.7)

TURBT + radical cystectomy 3 (5.2)

Partial cystectomy 3 (5.2)

Radical cystectomy 21 (36.2)

Numbers in parentheses are percentages except where otherwise
indicated

TURBT, transurethral resection of bladder tumor

*Numbers are means ± standard deviations, with ranges in parentheses
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DICE indices ranged from 0.83 to 0.95, demonstrating good
performance.

The mean and standard deviation of each individual diffu-
sion parameter for each patient group (i.e., the NMIBC,
MIBC, low- and high-grade groups) are listed in Table 2. The
values forD, μ, and ADC were significantly lower in the MIBC
than those in the NMIBC group (p = 0.001, p = 0.001, and p =
0.003, respectively), whereas there were no significant differ-
ences in β between the two groups (p = 0.126). All parameters
exhibited significantly lower values in the high- than in the low-
grade urothelial carcinomas (p < 0.001 for D, μ, and ADC; p =
0.011 for β). The difference in FROC parameters and ADC are
further illustrated in Fig. 4 as boxplots.

Performance of the diffusion parameters for tumor
characterization

Table 3 summarizes the diagnostic performance of the FROC
parameters and ADC for differentiating between the NMIBC
and MIBC and between the low- and high-grade groups. The

ROC curves of the diffusion parameters for delineating
NMIBC from MIBC and low- from high-grade groups are
shown in Fig. 5 a and b, respectively. Among the three
FROC model parameters, D exhibited a similar diagnostic
accuracy to μ for differentiating NMIBC from MIBC (D,
72%; μ, 74%) and for tumor grading (D, 79%; μ, 79%), both
of which outperformed β. In addition, the AUCs of D (0.842)
and μ (0.857) were significantly higher than that of ADC
(0.804; p ≤ 0.046) in discriminating low- from high-grade
tumors.

The performance for tumor characterization was further
analyzed by using combinations of the FROC parameters
(Table 3). For delineating NMIBC from MIBC, (D, β) and
(D, β, μ) offered identical diagnostic performance, both with
significantly higher specificity (85%) than that of μ (67%, p =
0.031) or ADC (67%, p = 0.031). For delineating low- from
high-grade tumors, all the four combinations improved the
diagnostic performance when compared with individual
FROC parameters, with the combination of all FROC param-
eters (D, β, μ) yielding the highest AUC (0.892), sensitivity

Fig. 3 Diffusion-weighted images andmaps of the FROC parameters and
ADC from a 64-year-old male with low-grade NMIBC (top row) and a
72-year-old male with high-grade MIBC (bottom row). The green con-
tours in (b) and (h) indicate the tumor ROIs on the diffusion-weighted
images with a b-value of 1000 s/mm2. The remaining columns display

T2-weighted images (a, g), the parameter maps of D (c, i), β (d, j), μ (e,
k), and ADC (f, l) within the tumor ROIs. All three FROC parameters and
ADC exhibited lower values in the high-grade MIBC (D: 0.86 μm2/ms,
β: 0.77, μ: 5.75 μm, and ADC: 0.95 μm2/ms) than those in the low-grade
NMIBC (D: 1.75 μm2/ms, β: 0.86, μ: 8.16 μm, and ADC: 1.72 μm2/ms)

Table 2 Comparison of FROC
parameters (D, β, and μ) and
ADC among different
histopathologic subgroups

NMIBC (n = 33) MIBC
(n = 25)

p value Low-grade
(n = 21)

High-grade
(n = 37)

p value

D (μm2/ms) 1.24 ± 0.37 0.93 ± 0.27 0.001* 1.38 ± 0.31 0.96 ± 0.29 < 0.001*

β 0.76 ± 0.07 0.72 ± 0.05 0.126 0.78 ± 0.07 0.72 ± 0.05 0.011*

μ (μm) 6.94 ± 1.27 5.99 ± 0.75 0.001* 7.45 ± 1.17 6.01 ± 0.79 < 0.001*

ADC (μm2/ms) 1.30 ± 0.31 1.06 ± 0.24 0.003* 1.40 ± 0.26 1.08 ± 0.27 < 0.001*

Data are expressed as mean ± standard deviation

ADC, apparent diffusion coefficient; FROC, fractional-order calculus; NMIBC, non-muscle-invasive bladder
cancer; MIBC, muscle-invasive bladder cancer

*Indicates statistically significant difference with p value < 0.0125 using Bonferroni-Holm-adjusted significance
level
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(89%), specificity (86%), and accuracy (88%). Significantly
higher sensitivity (89%, p = 0.031), accuracy (88%, p =
0.039), and AUC (0.892; p = 0.038) were observed in the
combination (D, β, μ) than in ADC for tumor grading.

For inter-observer reliability of bi-parametric VI-RADS
ratings between the two radiologists, a weighted kappa coef-
ficient of 0.846 was achieved, indicating good consistency.
The bi-parametric VI-RADS analysis yielded a diagnostic ac-
curacy of 88% and an AUC of 0.859 with a threshold score of
3 or greater for differentiating NMIBC from MIBC. When
combined with the FROC parameters (D, β, μ), the perfor-
mance of bi-parametric VI-RADS increased to 90% in diag-
nostic accuracy and 0.931 in AUC.

Discussion

We have observed that the FROC parameters D and μ
outperformed the conventional ADC in distinguishing low-
from high-grade tumors. Moreover, the combination of the
FROC parameters (D, β, μ) improved the diagnostic perfor-
mance over using individual FROC parameters for delineating
NMIBC from MIBC and low- from high-grade bladder
urothelial carcinomas. Importantly, incorporation of FROC
DWI into a simplified version of VI-RADS — bi-parametric
VI-RADS — enhanced the diagnostic accuracy of bi-
parametric VI-RADS. With these results, our study demon-
strated the feasibility of using the FROC diffusion model as a
potential non-invasive tool to complement assessments based
on histopathology and VI-RADS [12, 13].

Fig. 4 Box-and-whisker plots showing the comparisons of mean values
of the FROC parameters D (a, e), β (b, f), and μ (c, g), and ADC (d, h)
between the NMIBC and MIBC groups (top row), and between the low-
and high-grade tumor groups (bottom row). The boxes represent the
values from the 25th to the 75th percentiles, whereas the middle line

indicates the median value of the individual parameter. The solid dot
“●” denotes the outliers that are greater than the 90th percentile, or lower
than the 10th percentile. All parameters exhibited significant differences
(p ≤ 0.011) except for β in the upper row
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Table 3 Diagnostic performance of the FROC parameters (D, β, and μ) and ADC for delineating NMIBC from MIBC and low- from high-grade
urothelial carcinoma

Parameter NMIBC vs. MIBC Low-grade vs. high-grade

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC

D 76 (19/25)
[63, 86]

69 (23/33)
[56, 81]

72 (42/58)
[59, 83]

0.755
[0.624,

0.886]

76 (28/37)
[62, 86]

86 (18/21)
[73, 93]

79 (46/58)
[66, 89]

0.842
[0.741,

0.942]

β 76 (19/25)
[63, 86]

52 (17/33)
[38, 65]

62 (36/58)
[48, 74]

0.618
[0.468,

0.768]

78 (29/37)
[65, 88]

62 (13/21)
[48, 74]

72 (42/58)
[59, 83]

0.701
[0.565,

0.838]

μ 84 (21/25)
[72, 92]

67 (22/33)
[53, 78]

74 (43/58)
[61, 85]

0.745
[0.613,

0.878]

78 (29/37)
[65, 88]

81 (17/21)
[68, 90]

79 (46/58)
[66, 89]

0.857
[0.762,

0.952]

Combination (D, β) 68 (17/25)
[54, 79]

85 (28/33)
[72, 93]

78 (45/58)
[64, 87]

0.782
[0.657,

0.907]

84 (31/37)
[71, 92]

81 (17/21)
[68, 90]

83 (48/58)
[70, 91]

0.875
[0.787,

0.964]

Combination (D, μ) 84 (21/25)
[72, 92]

67 (22/33)
[53, 78]

74 (43/58)
[61, 85]

0.752
[0.620,

0.883]

81 (30/37)
[68, 90]

81 (17/21)
[68, 90]

81 (47/58)
[68, 90]

0.870
[0.779,

0.961]

Combination (β, μ) 72 (18/25)
[58, 83]

79 (26/33)
[66, 88]

76 (44/58)
[63, 86]

0.770
[0.642,

0.897]

84 (31/37)
[71, 92]

86 (18/21)
[73, 93]

84 (49/58)
[72, 93]

0.885
[0.801,

0.970]

Combination (D, β, μ) 68 (17/25)
[54, 79]

85 (28/33)
[72, 93]

78 (45/58)
[64, 87]

0.782
[0.657,

0.907]

89 (33/37)
[78, 96]

86 (18/21)
[73, 93]

88 (51/58)
[76, 95]

0.892
[0.810,

0.974]

ADC 72 (18/25)
[58, 83]

67 (22/33)
[53, 78]

69 (40/58)
[55, 80]

0.730
[0.594,

0.865]

73 (27/37)
[59, 84]

76 (16/21)
[63, 86]

74 (43/58)
[61, 85]

0.804
[0.692,

0.916]

Data in brackets are 95% confidence intervals

ADC, apparent diffusion coefficient; AUC, area under the receiver operating characteristic curve; FROC, fractional-order calculus; MIBC, muscle-
invasive bladder cancer; NMIBC, non-muscle-invasive bladder cancer

Fig. 5 ROC curves of the individual FROC parameters and the
combination of D, β, and μ, together with those from conventional
ADC, for differentiating between the NMIBC and MIBC groups (a)

and between the low- and high-grade tumors (b). The combination of
D, β, and μ yielded the highest AUCs for distinguishing NMIBC from
MIBC (AUC = 0.782) and for tumor grading (AUC = 0.892)
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Unlike the mono-exponential diffusion model used for
ADC calculation, the FROC model offers three parameters
D, β, and μ. Similar to diffusion coefficient in other diffusion
models, D in the FROC model is influenced by tumor cellu-
larity, cell membrane integrity, and other structural attributes
affecting water diffusion processes in tissues [6, 7, 30]. In our
study, the muscle-invasive or high-grade tumors exhibited
lower D values than their non-muscle-invasive or low-grade
counterparts. This can be associated with the increased cellu-
larity and decreased extracellular space tortuosity that occur in
many neoplastic processes [6, 7].

Parameter β has been increasingly related to intravoxel
structural heterogeneity [16–18, 20, 31, 32]—an important
tissue property that has not been extensively investigated by
diffusion imaging. In this study, a reduction in β value was
observed in the high-grade tumor group as compared with the
low-grade group. This is likely a reflection of a higher degree
of heterogeneous clusters of poorly differentiated cells accom-
panied by vascular hyperplasia, necrosis, and hemorrhage in
high-grade urothelial carcinoma [33]. This finding was con-
sistent with other studies on brain tumors [17, 18, 34–36]. Suo
et al [37] employed an alternative high b-value non-Gaussian
diffusion model—diffusion kurtosis model—to correlate dif-
fusion parameters with the histologic grade of bladder cancer.
They observed that a kurtosis-based heterogeneity index,
Kapp, was significantly higher in the high-grade than in the
low-grade tumors. Since a lower β value corresponds to a
higher degree of tissue heterogeneity [16, 18, 20], our results
are consistent with those reported in reference [37]. However,
we did not observe a significant change in β between non-
muscle-invasive and muscle-invasive urothelial carcinomas,
possibly due to the limited sample size. FROC parameter μ
has been related to the mean free diffusion length [32]. As
such, a strong correlation between μ and D is expected. This
correlation was indeed observed in our study both for differ-
entiating NMIBC from MIBC and for differentiating low-
from high-grade tumors as shown in Table 2 and Fig. 4.
Similar strong correlations between D and μ have also been
reported in brain tumor studies [17, 18].

We observed that the specificity for distinguishing NMIBC
fromMIBC was considerably improved by combing the mul-
tiple FROC parameters (D, β, μ), which also provided signif-
icantly higher sensitivity, accuracy, and AUC over ADC for
tumor grading. The improved diagnostic performance can be
attributed to their ability to characterize both diffusion restric-
tion and diffusion heterogeneity. Similar improvements have
been reported for characterizing other cancers [18–20].

Recent introduction of VI-RADS provides a systematic way
for MRI-based assessment of muscle-invasiveness of bladder
cancer [12, 13]. Wang et al [38] reported that VI-RADS score
can correlate well with muscle invasion in bladder cancer. The
present implementation of VI-RADS includes DWI with at
least two b-values from which an ADC map is produced by

employing a mono-exponential model. This approach, while
simple, does not take advantage of the rich information afforded
by high b-value DWI with more sophisticated non-Gaussian
diffusion models. Our study has provided preliminary evidence
suggesting that the combination of the FROC parameters and
VI-RADS can enhance the performance of VI-RADS by simul-
taneously probing multiple tissue properties including cellular-
ity, heterogeneity, and other aspects of microstructures.

Our study has limitations. First, the distribution of patho-
logic grades was unevenwith more high-grade than low-grade
and more NMBIC than MBIC tumors which may bias the
statistical analysis. Second, employing a logistic regression
algorithm with three predictors (D, β, and μ) is subject to
overfitting. The relatively small sample size compromised
our ability to perform cross-validation analysis with an inde-
pendent set of data to mitigate this potential overfitting prob-
lem. Third, although TURBT was employed as a reference
standard in this study for patients who did not undergo
cystectomy, it has its own limitations [4, 5]. Lastly, the present
study used only a simplified version of VI-RADS due to the
lack of DCE-MRI data. However, the simplified bi-parametric
VI-RADS has been reported to yield comparable diagnostic
performance to the full VI-RADS analysis [21]. Integration of
FROC diffusion imaging into a VI-RADS protocol, using
either a bi-parametric or a full multi-parametric approach, will
likely lead to further improvement for bladder cancer charac-
terizations, as suggested by our results.

Conclusions

We have demonstrated that the FROC model parameters, indi-
vidually or conjointly, can be useful for delineatingNMIBC from
MIBC and low- from high-grade bladder urothelial carcinomas.
The FROC model parameters can outperform the conventional
ADC and enhance the performance of bi-parametric VI-RADS.
With further validation, the FROC diffusion model may become
a potential imaging-based tool to aid histopathology and VI-
RADS for characterizing bladder urothelial carcinoma.
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