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Abstract
Objectives Stratification of microsatellite instability (MSI) status in patients with colorectal cancer (CRC) improves clinical
decision-making for cancer treatment. The present study aimed to develop a radiomics nomogram to predict the pre-treatment
MSI status in patients with CRC.
Methods A total of 762 patients with CRC confirmed by surgical pathology and MSI status determined with polymerase chain
reaction (PCR) method were retrospectively recruited between January 2013 and May 2019. Radiomics features were extracted
from routine pre-treatment abdominal pelvic computed tomography (CT) scans acquired as part of the patients’ clinical care. A
radiomics nomogram was constructed using multivariate logistic regression. The performance of the nomogram was evaluated
using discrimination, calibration, and decision curves.
Results The radiomics nomogram incorporating radiomics signatures, tumor location, patient age, high-density lipoprotein
expression, and platelet counts showed good discrimination between patients with non-MSI-H and MSI-H, with an area under
the curve (AUC) of 0.74 [95% CI, 0.68–0.80] in the training cohort and 0.77 [95% CI, 0.68–0.85] in the validation cohort.
Favorable clinical application was observed using decision curve analysis. The addition of pathological characteristics to the
nomogram failed to show incremental prognostic value.
Conclusions We developed a radiomics nomogram incorporating radiomics signatures and clinical indicators, which could
potentially be used to facilitate the individualized prediction of MSI status in patients with CRC.
Key Points
• There is an unmet need to non-invasively determine MSI status prior to treatment. However, the traditional radiological
evaluation of CT is limited for evaluating MSI status.

• Our non-invasive CT imaging-based radiomics method could efficiently distinguish patients with high MSI disease from those
with low MSI disease.

• Our radiomics approach demonstrated promising diagnostic efficiency for MSI status, similar to the commonly used IHC
method.
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Abbreviations
AUC Area under the curve
CRC Colorectal cancer
CT Computed tomography
dMMR Deficient MMR
FFPE Paraffin-embedded
HDL High-density lipoprotein
ICCs Inter-observer intraclass correlation coefficients
IHC Immunohistochemistry
LASSO Least absolute shrinkage and selection operator
MMR Mismatch repair
MSI Microsatellite instability
MSI-H High MSI
MSI-L Low MSI
MSS Microsatellite stability
NCI National Cancer Institute
PCR Polymerase chain reaction
PLT Platelet
pMMR Proficient MMR
ROC Receiver operating characteristic
ROI Regions of interest

Introduction

Colorectal cancer (CRC), ranking the third most common
cancer and second most common cause of cancer-related
death worldwide [1], is a highly heterogeneous disease driven
by a series of genetic and epigenetic events [2]. Microsatellite
instability (MSI), a consequence of a deficient DNAmismatch
repair (MMR) system, is characterized by the generalized in-
stability of short tandemly repeated DNA sequences known as
microsatellites [3]. As one of the three major mechanisms of
CRC carcinogenesis, MSI occurs in approximately 15% of
CRC [3]. MSI has gained attention due to its values in diag-
nosis, treatment response, and prognosis of CRC [3–5].

There are several lines of evidence to support the use of
pre-treatmentMSI in clinical decision-making. First,MSI test-
ing is recommended for the diagnosis of Lynch syndrome, the
most common hereditary colon cancer syndrome, which is
associated with germline mutations in one of the MMR genes
(MLH1, MSH2, MSH6, or PMS2) [6]. MSI status helps to
identify families with this syndrome and alerts the family
members and relatives about their risk for this disease.
Second, MSI is one of the key factors affecting the prognosis
of CRC, especially for the early-stage cases [7, 8]. Patients
with stage II CRC with high MSI (MSI-H)/deficient MMR
(dMMR) usually have a more favorable prognosis than pa-
tients with microsatellite stability (MSS) and low MSI (MSI-
L)/proficient MMR (pMMR) [8]. Third, MSI can be used to
assess response to treatment, including fluoropyrimidine-
based chemotherapy [9] and immunotherapy [10].
Fluoropyrimidine (5-FU or capecitabine) is the backbone of

the chemotherapeutic strategy for CRC, and it plays an impor-
tant role in not only neoadjuvant therapy but also conversion
therapy [11, 12]. However, patients with MSI-H status are
generally resistant to 5-FU-based chemotherapy [13].
Immunotherapy is an emerging and promising therapy for
CRC because MSI-H tumors have a large proportion of mu-
tant neoantigens, which makes them sensitive to immune
checkpoint inhibitors [14]. Therefore, MSI status is crucial
for selecting CRC treatment and for evaluating response to
treatment [15].

Currently, the diagnosis of MSI status relies on the collec-
tion of tissue specimens and molecular biology tests, such as
the polymerase chain reaction (PCR) [3, 16], which is time-
consuming and costly. In addition, tissue specimens for pre-
treatment MSI testing are usually obtained by endoscopic bi-
opsy, an invasive approach with potential risks for complica-
tions such as bleeding, bowel perfusion, and insufficient or
inappropriate tissue sampling due to tumor heterogeneity.
Therefore, there is an unmet need to non-invasively determine
MSI status prior to treatment.

Computed tomography (CT) is the most widely used im-
aging method for CRC. However, it is challenging to identify
MSI status based on the traditional radiological evaluation of
routine CT images [2, 17]. Radiomics refers to the high-
throughput computational extraction and analysis of imaging
features from routine, clinically acquired radiological images.
Radiomics can obtain potentially valuable high-dimensional
information on tumor heterogeneity beyond the limitations of
human eyes [18]. Prior studies [19, 20] have demonstrated the
value of radiomics features as imaging predictors of diagnosis,
treatment response, and prognosis in various cancers, includ-
ing CRC [21, 22]. Three previous studies have presented the
feasibility of using CT-based radiomics to predict MSI status
for CRC [23–25]. However, all three studies had modest
datasets (n = 102, or 119, or 198 respectively) and used the
results of MMR immunohistochemistry (IHC) to label MSI
status. IHC is a commonly used method to determine MSI
status because of its feasibility and low cost [16]. However,
compared to the gold standard PCR method, the IHC method
has a high false-positive rate for CRC [4, 16]. Therefore, a
non-invasive imaging-focused approach correlating with the
more accurate PCR method may be helpful for determination
of MSI status.

The current study aimed to assess radiomics features for
predictingMSI status in patients with CRCwho had their MSI
status previously determined with the gold standard PCR
method. We extracted radiomics features from clinically ac-
quired abdominal pelvic CT scans. Our objective was to in-
vestigate the potential value of radiomics features in
predicting MSI status for CRC patients before treatment.
Such predictive information will be helpful for stratifying pa-
tients according to MSI status and for optimizing decision-
making for personalized cancer treatment.
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Materials and methods

Patients and data collection

This retrospective study was approved by the institutional
review board at our hospital (IRB No. 201610070), and in-
formed consent was waived due to the respective nature of this
study.

We searched the database for consecutive patients with
CRC confirmed by surgical pathology at our hospital between
January 2013 and May 2019. The identification and selection
of the study cohort, as well as exclusion criteria, are presented
in Fig. 1.

Data regarding the demographics, clinical information,
laboratory values, treatment details, outcome information,
and CT scans were abstracted from medical records and
reviewed by two clinicians (Q.P. and F.T.). Any discrep-
ancy between the two clinicians was settled by a third
clinician (H.Z.).

Re-evaluation of pathology results

For each patient, all pathological slides for the CRC were re-
analyzed by two pathologists who were specialized in gastro-
intestinal tumors (G.G. and Q.L. with 10 and 5 years of expe-
rience, respectively). Both pathologists were blinded to clini-
copathological data. If any discrepancies arose, agreements
were reached by consensus.

MSI assessment

PCRmethod was used to determine MSI status with the DNA
extracted from frozen or formalin-fixed, paraffin-embedded
(FFPE) tumor tissue. The PCR determination was made ac-
cording to the National Cancer Institute (NCI) panel
consisting of two mononucleotide loci (BAT-25 and BAT-
26) and three dinucleotide loci (D2S123, D5S346, and
D17S250). Peripheral blood was analyzed as a positive con-
trol. The instability of two or more of these loci indicated
MSI-H status. Instability of only one locus (MSI-L) and a lack
of instability at any of the five loci were considered microsat-
ellite stability (MSS) [3, 16].

For the IHC method [26], the expression of MMR proteins
(MSH2, MSH6, MLH1, and PMS2) was identified using a
standard streptavidin–biotin–peroxidase procedure [26].
Tumors displaying loss of any of the fourMMR proteins upon
nuclear staining were identified as dMMR and were MSI-H.
Tumors with all four MMR proteins according to positive
nuclear staining were identified as pMMR or non-MSI-H.

CT image acquisition

Patients underwent routine CT scans of the abdomen and pel-
vis in one of the three CT scanners, i.e., a 16-MDCT
(Brilliance 16, Philipps), a 64-MDCT (SOMATOM
Definition, Siemens), and a 320-MDCT (Aquilion ONE,
Toshiba Medical Systems) scanner. After an unenhanced

Fig. 1 Flow-chart demonstrating
patients’ recruitment process for
the present study
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scan, a contrast-enhanced scan at the portal venous phase
(scan with a fixed delay time of 60–70 s) was acquired. CT
images including both the unenhanced images and the en-
hanced images at the portal venous phase were included in
the analysis. All CT images were reconstructed with an axial
thickness of 1 mm.

In order to remove the potential differences of CT images
acquired from three different CT scanners, normalization with
the final 256 bins was performed on all original CT images
using the gray-scale discretization method before extracting
the radiomics features (Analysis Kit software, version
V3.0.0.R, GE Healthcare) [27].

Radiomics feature extraction

CT images for each patient were reviewed independently by
two abdominal radiologists (reader 1 [C.C.] and reader 2
[L.G.W.], with 15 and 25 years of experience, respectively)
who were blinded to the patients’ information. Any disagree-
ments were resolved in a panel format with two additional
readers (Y.X.P. and C.C.Y.). For each colorectal tumor, man-
ual contouring and segmentation were performed on the axial
images by both radiologists (readers 1 and 2) to define the
tumor margins. The regions of interest (ROI) for tumor seg-
mentation were saved for subsequent radiomics feature extrac-
tion using texture analytical software (MaZda Version 4.6,
Institute of Electronics, Technical University of Lodz,
Poland) [28]. For each CT image, a total of 340 quantitative
texture features were automatically generated from each ROI
file using MaZda software. The features included a gray level
histogram, gradient, a run-length matrix, a co-occurrence ma-
trix, an autoregressive model, and a wavelet transform analy-
sis. The least absolute shrinkage and selection operator
(LASSO) method was used for radiomics feature selection.
Image analysis and prediction model construction are present-
ed in Fig. 2.

Reproducibility of radiomics feature extraction

The inter- and intra-observer reproducibility was initially
assessed using 50 randomly selected CT images evaluated
by two radiologists (reader 1 and reader 2). To assess intra-
observer reproducibility, reader 1 generated texture features
twice using the same procedure within a 2-week period.
Generally, an intraclass correlation coefficient (ICC) greater
than 0.75 is indicative of good agreement. Our inter- and intra-
observer reproducibility of the radiomics feature extraction
was satisfactory. The inter-observer ICC values of CT features
extracted by reader 1 and reader 2 in their first extraction
ranged from 0.772 to 0.864. The intra-observer ICC values
for both extractions performed by reader 1 ranged from 0.807
to 0.924. As a result, all remaining cases were segmented by

reader 1 and the radiomics features were extracted for use in
all subsequent calculations.

Development of individualized prediction model

Multivariate logistic regression analysis was used to identify
predictors of MSI. The nomogram for predicting MSI status
was constructed with and without pathological features.
Details can be found in the Supplementary Files.

Performance, validation, and preliminary clinical
application of the nomogram

Calibration curves (Hosmer-Lemeshow H test) were used to
evaluate the calibration of the nomogram, and receiver oper-
ating characteristic (ROC) curves were used to assess the di-
agnostic efficiency. To evaluate possible prediction errors
using the proposed model in both cohorts, a 1000-iteration
bootstrap analysis was conducted. The clinical usefulness of
the nomogram was evaluated with decision curve analysis in
the validation dataset.

To evaluate the diagnostic consistency between IHC
method and nomogram developed in the present study
(Fig. 3), the kappa consistency test was used. For the kappa
consistency test, excellent, good, moderate, fair, and poor
agreements were defined as kappa values of > 0.81, in the
range of 0.61–0.80, 0.41–0.60, 0.21–0.40, and < 0.20,
respectively.

Statistical analysis

All statistical analysis was conducted using R software (ver-
sion 3.5.2; http://www.Rproject.org). All statistical tests were
two-sided, with statistical significance set at 0.05.

Results

Patient characteristics

A total of 762 patients with CRC were included in this study,
including 128 with MSI-H status determined by the PCR
analysis. Each patient was randomly assigned to the training
cohort (n = 534) or the validation cohort (n = 228) at a ratio of
5:2 (Fig. 1).

Patient characteristics and a comparison between pa-
tients with MSI-H or no-MSI-H disease are presented in
Table 1. Significant differences between the cohorts were
found in patient age, presence of a comorbidity (hyper-
tension), tumor location, laboratory markers (routine
blood test and blood fat metabolism data), and pathology
(subtype and M stage) (Table 1). Briefly, when com-
pared to no-MSI-H patients, patients with MSI-H status
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were younger and had a higher incidence of concurrent
hypertension, higher platelet (PLT), and lower expression
of high-density lipoprotein (HDL). No variables were
statistically different between the training and the valida-
t ion cohorts (p > 0.05), ensuring a reasonable
classification.

Feature selection and radiomics signature

Of all the radiomics features, those with non-zero coef-
ficients in the least absolute shrinkage and selection
operator (LASSO) logistic regression model were select-
ed to build the differentiation model. After dimension-
ality reduction, a total of 16 potential predictors were
selected from the 352 features performed in the training
cohort (n = 634 patients, Supplementary Figure 1 and
Figure 2). An equation was developed to yield a new
radiomics signature termed Rad-score (Supplementary
Files).

Diagnostic performance of radiomics signature

The distribution of Rad-scores with regard to MSI status in the
training and validation cohorts is presented in Supplementary
Figure 3. In the training cohort, patients from the MSI-H group
generally had amuch higher Rad-score than thosewith no-MSI-
H status (p < 0.001), which was confirmed in the validation
cohort (p < 0.001). The Rad-score yielded a C-index of 0.70
(95% CI, 0.64–0.76) for the training cohort and 0.72 (95% CI,
0.63–0.82) for the validation cohort (Fig. 4a, b).

Development of individualized MSI prediction model

All parameters with p values less than 0.05 from the univariate
analysis were carried forward into the multivariate regression
analysis. The radiomics model was constructed using multi-
variate logistic regression analysis method. Backward step-
wise selection was applied by using the likelihood ratio test
with Akaike’s information criterion as the stopping rule to
select correlated factors of MSI-H.

Finally, the rad-score, PLT, HDL level, age, and tumor
location were identified as independent predictors of MSI sta-
tus. A nomogram was subsequently developed by incorporat-
ing the above independent predictors (Fig. 3).

Performance and validation of prediction models

The calibration curve of the nomogram about the two groups
for probabilities of MSI-H status demonstrated the predicted
values being in good agreement with the observed values (Fig.
4c, d). The Hosmer-Lemeshow H test showed that the statis-
tical results in the training group (p = 0.267) and the verifica-
tion group (p = 0.145) were not significant, indicating that
there was no deviation from the perfect fit. The radiomics
model achieved a moderate efficiency with an area under the

Fig. 3 Development of radiomics nomogram. Radiomics nomogramwas
developed in the training cohort incorporating the radiomics signature,
platelet (PLT) and high-density lipid (HDL) values, age, and tumor
location

Fig. 2 Workflow for radiomics data extraction, feature reduction, and
modeling performed for this study. (I) Tumor segmentation on CT im-
ages. Three representative cross-sectional images were selected for tumor
contouring. (II) Strategy for extracting radiomics data from CT images.
Radiomics features were extracted from the tumor contours for tumor
histogram, autoregressive model, GLCM, GLRLM, gradient, and wave-
let texture. (III) Least absolute shrinkage and selection operator (LASSO)

method used for radiomics feature reduction. (IV) Prediction model con-
structed with multivariate logistic regression based on radiomics, clinical,
and pathological features. Receiver operating characteristic (ROC) and
calibration curves applied to assess the model performance. Decision
curve analysis was performed to evaluate the clinical value of the predic-
tion models
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Table 1 Demographic, clinical, laboratory, pathologic, and radiomics characteristics of 762 patients with colorectal cancer (CRC) and their
microsatellite instability (MSI) status

Characteristic Total
(n = 762)

MSI-H
(n = 128)

Non-MSI-H
(n = 634)

p value Training cohort
(n = 534)

Validation cohort
(n = 228)

p value

Demographics and clinical characteristics
Gender, n (%)
Male 439 (57.61) 70 (54.69) 369 (58.20) 0.463 308 (57.68) 131 (57.46) 0.955
Female 323 (42.39) 58 (45.31) 265 (41.80) 226 (42.32) 97 (42.54)
Age (y) 57 (48–66) 52 (45–63) 59 (49–67) < 0.001*** 57.00 (48.75–66.00) 58.00 (48.25–67.00) 0.438
Smoking, n (%)
Yes 280 (36.75) 44 (34.38) 236 (37.22) 0.542 205 (38.39) 75 (32.89) 0.150
No 482 (63.25) 84 (65.63) 398 (62.780 329 (61.61) 153 (67.11)
Alcohol, n (%)
Yes 224 (29.40) 36 (28.13) 188 (39.65) 0.729 160 (29.96) 64 (28.07) 0.600
No 538 (70.60) 92 (71.88) 446 (70.35) 374 (70.04) 164 (71.93)
Family history of cancer, n (%)
Yes 76 (9.97) 18 (14.06) 58 (9.15) 0.091 51 (9.55) 25 (10.96) 0.551
No 686 (90.03) 110 (85.94) 576 (90.85) 483 (90.45) 203 (89.04)
Diabetes, n (%)
Yes 83 (10.89) 10 (7.81) 73 (11.51) 0.220 60 (11.24) 23 (10.09) 0.641
No 679 (89.11) 118 (92.19) 561 (88.49) 474 (88.76) 205 (89.91)
Hypertension, n (%)
Yes 182 (23.88) 18 (14.06) 164 (25.87) 0.004** 126 (23.60) 56 (24.56) 0.775
No 580 (76.12) 110 (85.94) 470 (74.13) 408 (76.40) 172 (75.44)
Infectious disease, n (%)
HBV 64 (8.40) 7 (5.47) 57 (8.99) 0.372 45 (8.43) 19 (8.33) 0.631
HCV 3 (0.39) 0 (0) 3 (0.47) 1 (0.19) 2 (0.88)
Syphilis 20 (2.62) 3 (2.34) 17 (2.68) 14 (2.62) 6 (2.63)
No 675 (88.58) 118 (92.19) 557 (87.85) 474 (88.76) 201 (88.16)
Tumor location, n (%)
Right colon 270 (35.43) 71 (55.47) 199 (31.39) < 0.001*** 193 (36.14) 77 (33.77) 0.246
Left colon 235 (30.84) 38 (29.69) 197 (31.07) 155 (29.03) 80 (35.09)
Rectum 257 (33.73) 19 (14.84) 238 (37.54) 186 (34.83) 71 (31.14)

Laboratory findings
Positive OB test of stool, n (%)
Yes 673 (88.32) 114 (89.06) 559 (88.17) 0.774 476 (89.14) 197 (86.40) 0.282
No 89 (11.68) 14 (10.94) 75 (11.83) 58 (10.86) 31 (13.60)
Blood routine test
WBC (109/L) 6.30 (5.10–7.60) 6.55 (5.10–8.20) 6.20 (5.10–7.50) 0.158 6.30 (5.20–7.60) 6.30 (5.03–7.50) 0.652
RBC (109/L) 4.32 ± 0.63 4.19 ± 0.64 4.34 ± 0.63 0.012* 4.34 ± 0.63 4.27 ± 0.62 0.168
HGB (g/L) 125 (107–139) 115 (92–134) 128 (110–140) < 0.001*** 125.50

(108.00–139.25)
125.00

(101.75–138.00)
0.377

PLT (109/L) 250 (203–311) 285.50 (227.25–355.50) 243.50 (200.75–303.00) < 0.001*** 252.00 (203.00–312.25) 243.00 (201.25–305.75) 0.498
Neutrophil
(109/L)

3.90 (3.10–4.90) 4.20 (3.10–5.60) 3.80 (3.00–4.80) 0.033* 3.90 (3.10–4.93) 3.80 (3.00–4.90) 0.727

Lymphocyte
(109/L)

1.60 (1.30–2.00) 1.50 (1.20–1.80) 1.60 (1.30–2.00) 0.230 1.60 (1.30–2.00) 1.50 (1.20–2.00) 0.061

Monocyte
(109/L)

0.50 (0.40–0.60) 0.50 (0.40–0.67) 0.50 (0.40–0.60) 0.085 0.50 (0.40–0.60) 0.50 (0.40–0.600 0.886

RDW (%) 13.50 (12.80–14.90) 13.80 (13.10–15.88) 13.45 (12.70–14.70) 0.007** 13.50 (12.70–14.80) 13.55 (12.80–15.20) 0.486
PCT (%) 0.25 (0.20–0.30) 0.28 (0.22–0.35) 0.24 (0.20–0.30) < 0.001*** 0.25 (0.20–0.31) 0.24 (0.20–0.30) 0.074
MPV (fl) 9.90 (8.88–10.90) 9.50 (8.52–10.77) 10.00 (8.90–10.90) 0.035 10.00 (8.91–11.00) 9.70 (8.70–10.53) 0.014*
NLR 2.33 (1.74–3.33) 2.61 (1.96–3.70) 2.29 (1.71–3.27) 0.007** 2.32 (1.73–3.23) 2.36 (1.77–3.53) 0.386
Liver function test
Albumin (g/L) 41.35

(38.18–44.20)
40.60 (37.10–43.68) 41.40 (38.40–44.53) 0.067 41.30 (38.40–44.10) 41.40 (37.73–44.68) 0.918

Globulin (g/L) 27.50
(24.70–30.20)

27.10 (24.50–30.15) 27.50 (24.80–30.20) 0.659 27.50 (24.80–30.53) 27.15 (24.50–29.80) 0.396

A/G ratio 1.52 ± 0.30 1.50 ± 0.32 1.53 ± 0.30 0.407 1.52 ± 0.30 1.54 ± 0.30 0.471
Blood glucose
(mmol/L)

5.23 (4.73–5.77) 5.16 (4.65–5.72) 5.24 (4.74–5.78) 0.682 5.21 (4.73–5.75) 5.27 (4.74–5.85) 0.358

Lipid metabolism in serum
TG (mmol/L) 1.38 (1.06–1.51) 1.37 (1.08–1.52) 1.43 (1.05–1.51) 0.384 1.38 (1.07–1.49) 1.38 (1.03–1.55) 0.963
Cholesterol
(mmol/L)

4.69 (4.20–5.04) 4.54 (4.08–4.87) 4.69 (4.20–5.11) 0.003** 4.69 (4.22–5.08) 4.69 (4.13–5.01) 0.704

HDL (mmol/L) 1.19 (1.02–1.30) 1.12 (1.00–1.25) 1.19 (1.02–1.30) 0.026* 1.19 (1.02–1.29) 1.19 (1.01–1.32) 0.674
LDL (mmol/L) 2.93 (2.53–3.20) 2.83 (2.50–3.08) 2.93 (2.54–3.22) 0.022* 2.93 (2.56–3.22) 2.92 (2.50–3.17) 0.320
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curve (AUC) of 0.74 (95% CI: 0.68–0.80) for the training
cohort, and 0.77 (95% CI: 0.68–0.85) for the validation co-
hort, respectively (Fig. 4a, b), as well as a good performance
of consistence (bootstrap for the training cohort: 0.75 ± 0.04;
for the validation cohort: 0.74 ± 0.03).

Predictive performance of radiomics nomogram with
addition of pathological characteristics

The differentiation nomogram after adding pathological char-
acteristics is shown in Supplementary Figure 4 (A). The cali-
bration curve for the probability of MSI-H status in the train-
ing and validation cohorts showed good agreement between
prediction and observation (Supplementary Figure 4B and
4C). A slightly higher AUC was observed for the new model
after integrating pathological characteristics both in the train-
ing cohort (0.79; 95% CI: 0.74 to 0.84) and in the validation
cohort (0.74; 95% CI: 0.65 to 0.83) (Fig. 4a, b). Nevertheless,
incorporation of the pathological characteristics into the pre-
diction model did not show significantly improved prediction
efficiency (p > 0.05).

Clinical application

The decision curve analysis of the nomogram is presented
in Fig. 5. The decision curve showed that if the threshold
probability of a user was greater than 10%, then using the
nomogram to predict MSI-H status in CRC patients may
add more benefit than using either the diagnose-all MSI-
patients scheme or the diagnose-none MSI scheme alone.
However, using the combined models showed no addition-
al clinical benefit compared to using the clinical model
alone.

Comparison of diagnostic performance between the
nomogram and IHC method

A total of 336 cases had MSI results determined by the
IHC method. Evaluation of diagnostic consistency showed
a fair consistency (kappa = 0.34) between the nomogram
and the IHC method. The IHC method in this cohort
showed a sensitivity of 60.29% (95% CI: 60.18–60.41%)
and a specificity of 94.78% (95% CI: 94.75–94.80%). On
the contrary, our nomogram demonstrated a much higher

Table 1 (continued)

Characteristic Total
(n = 762)

MSI-H
(n = 128)

Non-MSI-H
(n = 634)

p value Training cohort
(n = 534)

Validation cohort
(n = 228)

p value

Serum tumor markers
CEA (ng/mL) 2.62 (1.29–7.46) 2.29 (1.28–5.79) 2.72 (1.29–8.35) 0.133 2.53 (1.22–7.46) 2.75 (1.35–7.46) 0.333
CA199 (U/mL) 9.67 (5.23–23.10) 10.03 (5.11–25.45) 9.67 (5.25–21.83) 0.676 9.66 (5.14–23.44) 10.32 (5.51–22.17) 0.543
CA125 (U/mL) 6.63 (4.16–11.45) 6.81 (4.39–13.10) 6.63 (4.02–11.19) 0.178 6.47 (3.97–11.48) 6.94 (4.70–11.24) 0.286

Pathological characteristcs
Pathological type, n (%)
Well
differentiated
adenocarcinoma

551 (72.31) 68 (53.13) 483 (76.18) < 0.001*** 386 (72.28) 165 (72.37) 0.663

Poorly
differentiated
adenocarcinoma

99 (12.99) 26 (20.31) 73 (11.51) 73 (13.67) 26 (11.40)

Mucinous
carcinoma

22 (2.89) 6 (4.69) 16 (2.52) 16 (3.00) 6 (2.63)

Mixed carcinoma 90 (11.81) 28 (21.88) 62 (9.78) 59 (11.05) 31 (13.60)
T stage, n (%)
T1 17 (2.23) 2 (1.56) 15 (2.37) 0.528 8 (1.50) 9 (3.95) 0.186
T2 88 (11.55) 13 (10.16) 75 (11.83) 60 (11.24) 28 (12.28)
T3 596 (78.22) 106 (82.81) 490 (77.29) 424 (79.40) 172 (75.44)
T4 61 (8.01) 7 (5.47) 54 (8.52) 42 (7.87) 19 (8.33)
N stage, n (%)
N0 482 (63.25) 89 (69.53) 393 (61.99) 0.266 333 (62.36) 149 (65.35) 0.731
N1 175 (22.97) 25 (19.53) 150 (23.66) 126 (23.60) 49 (21.49)
N2 105 (13.78) 14 (10.94) 91 (14.35) 75 (14.04) 30 (13.16)
M stage, n (%)
M0 678 (88.98) 124 (96.88) 554 (87.38) 0.002** 474 (88.76) 204 (89.47) 0.775
M1 84 (11.02) 4 (3.13) 80 (12.62) 60 (11.24) 24 (10.53)

CT-based radiomics
Rad-score –0.42 (–3.04~1.66) 0.08 (–2.34~1.67) –0.49 (–3.04~1.47) < 0.001*** –0.46 (–3.04~1.67) –0.35 (–2.07~1.47) 0.061

Note.—Unless otherwise indicated, data are numbers of patients, and data in parentheses are percentages. *p < 0.05, **p < 0.01, and ***p < 0.001
suggest a significant difference between the characteriscs in the two cohorts. HDL, chronic obstructive pulmonary disease
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sensitivity (80.00%, 95% CI: 70.20–87.71%) but a lower
specificity (68.69%, 95% CI: 63.90–72.82%). A series of
parallel diagnostic experiments could not obviously im-
prove the sensitivity of the IHC method (57.35%, 95%
CI: 57.24–57.47%) or specificity of the nomogram
(67.91%, 95% CI: 67.86–67.97%).

Discussion

We developed a radiomics nomogram using clinically ac-
quired abdominal pelvic CT images from 762 patients with
CRC at a single center. Our study results indicated the poten-
tial of this radiomics method as a tool for evaluating MSI
status in clinical practice. Radiomics features derived from
pre-treatment CT images were found to be associated with

MSI status in patients with CRC. A model combining
radiomics features and clinical variables could efficiently sep-
arate those with MSI-H disease from those with MSS disease.
Our study emphasized the relevance of the computational
radiomics analysis of pre-treatment CT images for compre-
hensive evaluation of tumor heterogeneity in patients with
CRC before surgery. To the best of our knowledge, among
all the reported radiomics studies for predicting MSI status in
CRC, our study was the first to build prediction models cor-
relating the PCR results from untreated surgical specimen
with radiomics features.

The prediction efficiency of our model may appear to be
lower than that of the previous models judging by the AUC
value (our: 0.74 versus others’: 0.75, 0.80, 0.96, respectively)
[23–25]. However, it is challenging to directly compare the
predictive power of our approach to others. Although our

Fig. 4 Receiver operating characteristic (ROC) curves for training (a) and
independent validation (b) for three models: radiomics signature only
(Rad-score), and radiomics model incorporating without or with patho-
logical characteristics (combined). The area under the curve (AUC) for

three models was demonstrated on the corresponding figure respectively.
Calibration curves of the radiomics nomogram in the training cohort (c)
and the validation cohort (d). Calibration curves showed the calibration of
the predictive model for the risk of MSI-H disease
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study used CT-based radiomics to predict MSC status in CRC
in a similar way as the previous studies, we used the results
from the gold standard PCR method which should reflect
more accurate MSI status while the other studies used the
MMR immunohistochemistry (IHC) method. The shortcom-
ings of the IHC method include a high false-positive rate and
high dependence on the quality of specimens which typically
exhibit a gradual loss of nucleic acids or proteins over time [3,
16]. In addition, our study had a larger sample size with over
700 patients while the previous studies all had modest sample
size ranging from 102 to 198 patients. In our cohort, a subse-
quent diagnostic consistency test showed that there was satis-
fying performance when comparing the diagnostic perfor-
mance of the radiomics approach and the IHC method. This
suggested that our model may have the potential to be used as
a non-invasive method for testing MSI status.

Our results showed the potential value of CT radiomics
features for assessing genetic information for CRC [23, 24].
Although the underlying mechanism for radiomics reflecting
MSI status remains unclear, we speculate that radiomics may
represent tumor heterogeneity and thus predict genetic alter-
ations [18, 20, 29]. Tumor heterogeneity can be assessed at
histological level, which may be the result of potential genetic
changes [30], and has been reported to be associated withMSI
status in CRC. Previous studies have reported that CRC tu-
mors with MSI-H tend to be well or poorly differentiated,
being mucinous, having increased tumor-infiltrating lympho-
cytes, having a circumscribed or expansile growth pattern,
showing histologic heterogeneity, and having a prominent
Crohn-like reaction at the advancing edge of the tumor [31].
These pathological features suggest that the heterogeneity of
MSI-H tumors may be higher than that of no-MSI-H tumors
histologically, which could be captured on imaging using

radiomics. In our study, SumEntrp and SumOfSqs as co-
occurrence matrix features were ranked as the top two of all
radiomics features. It appeared as the larger values of
SumEntrp and SumOfSqs may reflect greater spatial hetero-
geneity of tumor on imaging. According to the equation for
the rad-score developed in this study, tumors with these fea-
tures tended to be MSI-H, which was consistent with the find-
ings of previous studies [24, 32]. Therefore, we should not be
surprised to see the association between radiomics features
and MSI status in our study.

The radiomics approach of utilizing existing clinical im-
ages to capture tumor heterogeneity may be used to develop
a non-invasive imaging biomarker to predict MSI status be-
fore treatment. Currently, clinical CT scans are routinely ob-
tained for diagnosis and staging but not for MSI identification
[2]. However, these routine CT images contain important in-
formation reflecting the characteristics of the entire tumor het-
erogeneity including the biological information determined by
the underlying protein, gene, and other micro-level compo-
nents of the tumor tissue [17, 19, 20]. Although these high-
dimensional imaging features are not discernable by the hu-
man eye, computational radiomics analysis can decipher them
in a meaningful way to potentially assist clinicians in decision-
making [18]. MSI status has been shown to be statistically
associatedwith pathological features such as tumor types (mu-
cinous carcinoma or not), differentiation, lymphatic invasion,
and tumor staging [3, 33]. Our study did not show significant
improvement of model performance after addition of patho-
logical features to the radiomics nomogram. Our study result
implicated the independent value of pre-treatment CT-based
radiomics in predicting MSI status for patients with CRC.

Our radiomics method has unique advantages. First, the
imaging data was stored and could be used repeatedly,
which was an advantage over using biological specimens.
Second, MSI prediction may be further improved over time
through trial and error of various advanced methods in-
cluding machine learning algorithms and artificial intelli-
gence. Moreover, without the additional cost for the PCR
and IHC methods, the radiomics method may improve the
cost-effectiveness ratio. Our study results suggested that
the pre-treatment CT image-based radiomics approach
has the potential to non-invasively predict tumor MSI sta-
tus with promising efficiency before treatment with sur-
gery, chemotherapy, or chemoradiotherapy. Nevertheless,
we should be cognizant of the disadvantages associated
with the radiomics method. For instance, manual tumor
segmentation step in the radiomics analysis could be
time-consuming and burdensome for busy clinicians. In
addition, the issues with CT tumor conspicuity may also
pose additional challenges for analyzing the imaging data.
Development of accurate automatic or semi-automatic seg-
mentation methods may help to ease the adaptation of
radiomics into clinical practice.

Fig. 5 Decision curve analysis for the Rad-score, radiomics nomogram,
and combined model. The y-axis measures the net benefit. The blue line
and the pink line represent the radiomics nomogram without or with the
pathological features, respectively. The black line represents the assump-
tion that no patients would develop MSI-H disease, and the green line
represents the assumption that all patients would develop MSI-H disease
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Among the four clinical indicators identified in the pres-
ent study, tumor location was the only one which has al-
ready been reported as a clinical indicator in literature [33].
We found that tumors located in the right-sided colon were
more likely to be MSI-H, whereas rectal cancer was in-
clined to be MSS. We also observed that younger CRC
patients usually had a higher incidence of MSI-H, which
was consistent with published literature [34]. We identified
two of peripheral blood parameters, PLT and HDL, as sig-
nificant indicators, which have not yet been reported.
Apart from their well-described crucial function in hemo-
stasis, platelets have been shown to play important roles in
cancer growth, metastasis, and immune evasion [35].
Activated platelets in the tumor microenvironment pro-
mote cancer cell escape from immune recognition. It has
been known that tumors including CRC with MSI-H exist
in a microenvironment of richly repressed immune cells
such as T-cells and NK cells [36]. It is plausible to specu-
late that MSI-H CRC cells may stimulate the production of
platelets, recruit the platelets to the tumor microenviron-
ment, and help to evade immune surveillance. HDL-related
lipids and proteins, which were first recognized as anti-
atherosclerotic based on their role in reverse cholesterol
transport, typically exhibit diverse functions in oxidative
stress, inflammation, immunity, and tumorigenesis [37].
However, the relationship between HDL, cancer incidence,
and mortality is not clear and may be tumor dependent. So
far, there has been limited research on the association be-
tween HDL and MSI status. Our study provided a new
research direction to explore since lipid metabolism and
lifestyle modifications have been known to be important
modifiable variables for CRC.

There were limitations to the study. First, the retrospective
nature of this single-center study may lead to inevitable case
selection bias, as well as limited generalizability. Second, al-
though a relatively large number of CRC patients (n=762)
were included in our study, this cohort was still small consid-
ering the high incidence of CRC, whichmay affect the general
applicability of our results. A large-scale, prospective, multi-
center study is needed to validate our results. Last, our study
was limited with potential overfitting issues. We used 16
radiomics features and 20 features in total when combined
with clinical features for modeling. The number of cases per
feature was far from ideal and there was a potential for the
model being over-fitted. This was especially serious for the
minority class of 90 with only 4.5 cases per feature, below the
10 patients required to test one feature optimally, which may
result in overfitting the models.”

In summary, we presented a non-invasive radiomics ap-
proach utilizing clinically acquired CT images to identify MSI
status in patients with CRC prior to treatment. The information
from the current study could potentially be used to assist clinical
decision-making for personalized treatment of CRC.
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