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Abstract
Objectives To investigate whether machine learning–based prediction models using 3-T multiparametric MRI (mpMRI) can
predict Ki-67 and histologic grade in stage I–II luminal cancer.
Methods Between 2013 and 2019, consecutive women with luminal cancers who underwent preoperative MRI with diffusion-
weighted imaging (DWI) and surgery were included. For prediction models, morphology, kinetic features using computer-aided
diagnosis (CAD), and apparent diffusion coefficient (ADC) at DWI were evaluated by two radiologists. Logistic regression
analysis was used to identify mpMRI features for predicting Ki-67 and grade. Diagnostic performance was assessed using eight
machine learning algorithms incorporating mpMRI features and compared using the DeLong method.
Results Of 300 women, 203 (67.7%) had low Ki-67 and 97 (32.3%) had high Ki-67; 242 (80.7%) had low grade and 58 (19.3%) had
high grade. Inmultivariate analysis, independent predictors for higherKi-67werewashout component > 13.5% (odds ratio [OR] = 4.16;
p < 0.001) and intratumoral high SI on T2-weighted image (OR = 1.89; p = 0.022). Those for higher grade were washout component >
15.5% (OR= 7.22; p < 0.001), rim enhancement (OR= 2.59; p = 0.022), andADCvalue < 0.945 × 10-3mm2/s (OR= 2.47; p = 0.015).
Among eight models using these predictors, six models showed the equivalent performance for Ki-67 (area under the receiver operating
characteristic curve [AUC]: 0.70) and Naive Bayes classifier showed the highest performance for grade (AUC: 0.79).
Conclusions A prediction model incorporating mpMRI features shows good diagnostic performance for predicting Ki-67 and
histologic grade in patients with luminal breast cancers.
Key Points
• Among multiparametric MRI features, kinetic feature of washout component >13.5% and intratumoral high signal intensity on
T2-weighted image were associated with higher Ki-67.
• Washout component >15.5%, rim enhancement, and mean apparent diffusion coefficient value < 0.945 × 10-3 mm2/s were
associated with higher histologic grade.
•Machine learning–based prediction models incorporating multiparametric MRI features showed good diagnostic performance
for Ki-67 and histologic grade in luminal breast cancers.
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Abbreviations
ADC Apparent diffusion coefficient
AJCC American Joint Committee on Cancer
AUC Area under receiver operating characteristic

curve
BI-RADS Breast Imaging Reporting and Data System
BPE Background parenchymal enhancement
CAD Computer-aided diagnosis
DWI Diffusion-weighted imaging
ER Estrogen receptor
ET Endocrine therapy
FGT Fibroglandular tissue
HER2 Human epidermal growth factor receptor2
HR Hormone receptor
IHC Immunohistochemical
LN Lymph node
mpMRI Multiparametric MRI
NAC Neoadjuvant chemotherapy
NME Non-mass enhancement
OR Odds ratio
PR Progesterone receptor
ROC Receiver operating characteristic
ROI Region of interest
SI Signal intensity
T2WI T2-weighted images

Introduction

The eighth edition of the cancer staging system of the
American Joint Committee on Cancer (AJCC), announced
in 2017, reported that the most important change in breast
cancer is the incorporation of biomarkers (histologic grade,
estrogen receptor [ER] or progesterone receptor [PR], human
epidermal growth factor receptor2 [HER2] expression), which
could affect survival into the anatomic staging tomake clinical
prognostic stages [1]. Additionally, the eighth edition iden-
tifies the division of breast cancer into four molecular sub-
types: luminal A (hormone receptor [HR] such as ER- or
PR-positive, HER2-negative, low Ki-67), luminal B (HR-pos-
itive, HER2-negative, high Ki-67), HER2 (HER2-positive re-
gardless of the HR status), and basal (both HR- and HER2-
negative) [1–3].

Luminal cancer accounts for 73.2% of all breast cancers [4].
Subgroups (A and B) are classified based on a cutoff value of
14% Ki-67 indicating tumor proliferation [5, 6]. Luminal A
subgroup accounts for 48.4% of all breast cancers and typically
presents with pT1 tumors, is lymph node (LN)–negative, and
responds best to endocrine therapy (ET). Luminal B subgroup
accounts for 24.8% and typically presents more commonly
with pT2 tumors and is LN-positive and resistant to ET; thus,
these cases benefit from combined chemotherapy and ET [4,

7–9]. Besides Ki-67, histologic grade is another important
prognostic factor in luminal cancer, which reflects tumor dif-
ferentiation. A study reported that patients with histologic grade
1 luminal cancers have a better prognosis than those with his-
tologic grade 3 [10]. Therefore, the AJCCmanual combines the
histologic grade with anatomic staging to determine the clinical
prognostic stage, in which luminal cancers with histologic
grade 3 are categorized one stage higher than their anatomic
stage [1, 11]. For example, in a patient with an anatomic stage
IIA luminal cancer, clinical prognostic stage is changed to stage
IIB when the histologic grade is 3; however, this case would
remain as stage IIA if the histologic grade is 1 or 2 [1, 11].

To efficiently select the luminal B cancer patients who
may benefit from chemotherapy, many studies have been
performed using preoperative MRI features including ap-
parent diffusion coefficient (ADC) at diffusion-weighted
imaging (DWI) [12, 13], texture features [14], and imaging
features extracted from computer vision algorithms [15].
However, not including partial imaging features but includ-
ing multiparametric MRI (mpMRI) features is essential for
developing elaborate prediction models; 3.0-T mpMRI can
provide detailed information about tumors such as mor-
phology, kinetic features related to angiogenesis, and func-
tion at the cellular levels via DWI [16]. In the present study,
we aimed to investigate whether prediction models based
on 8 machine learning algorithms using mpMRI features
can predict Ki-67 levels and histologic grade in cases of
stage I–II luminal cancer.

Materials and methods

This retrospective study was approved by our institutional
review board and the requirement for written informed con-
sent was waived.

Study population

A retrospective review of medical records at our institution
between November 2013 and April 2019 was performed, and
497 women were selected consecutively who meet the follow-
ing criteria: initially diagnosed with invasive breast cancers via
a core needle biopsy, confirmed immunohistochemically as
luminal cancers (ER- or PR-positive and HER-2 negative),
underwent preoperative MRI with DWI followed by surgery,
and staged as stage I–II. Among them, 197 patients were ex-
cluded, for the following reasons: received neoadjuvant che-
motherapy (NAC) before surgery (n = 49), no recorded Ki-67
proliferation index (n = 46), underwent previous vacuum-
assisted biopsy or vacuum-assisted excision or excisional biop-
sy before MRI examination (n = 36), cancer did not have
enhancement on CAD and was unable to acquire kinetic fea-
tures (n = 25), tumor size was too small to perform exact ADC
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measurements on DWI (n = 24), DWI was suboptimal for
analysis (n = 13), and no histologic grade recorded (n = 4).
Finally, 300women (mean age ± standard deviation, 56.6 years
± 12.0; age range, 32–93 years) were enrolled (Fig. 1). After an
initial diagnosis of breast cancer by imaging-guided biopsy,
MRI was performed. In all cases, no clip was inserted after
biopsy. The interval between biopsy and MRI ranged from 1
to 39 days (median: 13 days).

MRI examination

MRI was performed using a 3.0-T scanner (Achieva 3.0T
TX; Philips Healthcare) with a dedicated seven-channel
breast array coil in the axial orientation. All scans were
taken with the patients in the prone position. Bilateral axial
T2-weighted images (T2WI) with fat suppression were ac-
quired (repetition time ms/echo time ms, 5375/65; flip an-
gle, 90°, matrix, 620 × 303; field of view, 340 × 340 mm2;
section thickness, 3 mm; section gap, 0 mm) and DWI was
obtained using an echo-planar-imaging sequence with fat
suppression in the axial plane (5417/72; flip angle, 90°,
matrix, 96 × 126; field of view, 320×320 mm2; section
thickness, 3 mm; section gap, 0 mm; b values, 0 and 1000
s/mm2). One pre-contrast and five post-contrast dynamic
series were obtained using a three-dimensional T1-weight-
ed fast spoiled gradient-echo sequence with fat suppression
(5/2; matrix, 436 × 436; flip angle, 12°; field of view, 340 ×
340 mm2; section thickness, 1 mm; no gap) with intrave-
nous injection of a bolus of 0.1 mmol/kg gadoterate
(Dotarem; Guerbet).

MRI image analysis

For evaluation of tumor morphology, all MRI images were
independently reviewed by two breast radiologists (18 and 9
years of experience), blinded to the patient’s clinical history,

using the 2013 Breast Imaging Reporting and Data System
MR lexicon [17]. The amounts of fibroglandular tissue
(FGT), background parenchymal enhancement (BPE), and
the lesion type as mass or non-mass enhancement (NME)
were assessed. In patients with multiple lesions, the largest
lesion was evaluated. For mass observations, margin,
shape, internal enhancement patterns, and associated
NME were evaluated. The presence of intratumoral high
signal intensity (SI) and peritumoral edema was assessed
as absent or present on T2WI [18, 19]. High intratumoral SI
on T2WI was visually defined when SI of the lesion was
stronger than that of vessels or water or higher than that of
the surrounding parenchymal tissue [17–19]. Peritumoral
edema was also determined when high SI around the tumor
was observed on T2WI [18, 19]. Axillary LN enlargement
was defined when one or more following findings were
found: abnormal LN shape, increased cortical thickness,
irregular LN margins, or completely or partially effaced
fatty hilum [17].

Kinetic feature analysis

All T1-weighted images were transferred to a CAD system
(CADstream, version 6.0, Confirma) and processed for eval-
uation of kinetic features. As a threshold of 50–60% has been
reported as the most appropriate for the CAD system [20], we
used a 50% threshold to classify enhancement. A color over-
lay angio-map was generated at all enhancing lesions above
this threshold. After one radiologist selected the largest tumor
on the angio-map, the peak enhancement, angio-volume, and
early phase and delayed phase profiles were calculated.
Within the tumor, the early enhancement phase profiles were
described as either medium or rapid enhancement. The de-
layed enhancement phase profiles were described as persis-
tent, plateau, or washout.

Fig. 1 Flowchart of the study
population
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DWI analysis

All DWI images were transferred to a CAD system and the
ADC maps were constructed using b-values of 0 and 1000
s/mm2. On the ADC map, two radiologists independently
and manually outlined the regions of interest (ROIs) for each
lesion. By using T2WI and angio-map as references, measure-
ments were performed twice to cover the entire tumor in its
largest cross-sections and to avoid cystic areas (Fig. 2). The
minimum, mean, and maximum ADC values of each ROI
were measured. The average value of the first ADC measure-
ments by two reviewers was used for statistical analysis.

Histopathologic data analysis

Histopathologic data were determined based on the surgically
excised tissue. Using the labeled streptavidin-biotin method
for immunohistochemical (IHC) technique, ER and PR posi-
tivity were defined as the presence of positive staining in at
least 1% of the nuclei in ten high-power fields [21]. HER2
negativity was defined as an IHC score of 0 or 1+ or 2+
staining with negative HER2 gene amplification on fluores-
cence in situ hybridization. Ki-67 expression was graded as

low (< 14%) or high (≥ 14%) [5, 6] and histologic grade was
dichotomized as low (grade 1 or 2) or high (grade 3).

Statistical analysis

The MRI morphologic features, kinetic features, and ADC
values were compared between cancers with low Ki-67 and
high Ki-67 and in those with low histologic grade and high
grade. For categorical variables, the x2 test or Fisher exact test
was used. For continuous variables, a Student t test was used
for normally distributed variables and the Mann-Whitney U
test was used for non-normally distributed variables. To de-
termine the optimal cutoff values of kinetic features and ADC
parameters for predicting high Ki-67 and histologic grade,
receiver operating characteristic (ROC) curve analysis was
performed by using the maximum Youden index (i.e., sensi-
tivity + specificity −1).

To identify the mpMRI features associated with high Ki-67
and histologic grade, logistic regression analysis was used. For
multivariate analysis, we used covariates with p values < 0.05 in
the univariate analysis. To build a prediction model based on
significant mpMRI features from the univariate and multivariate
analysis, eight machine learning algorithms (random forest,
adaptive boosting, decision tree, k-nearest neighbor, linear

Fig. 2 Preoperative images of the
left breast in a 55-year-old woman
with breast cancer. a Axial T1-
weighted contrast-enhanced
subtraction MR image shows rim
enhancing mass in the left upper
breast. b Axial T2-weighted MR
image shows intratumoral high
signal intensity within the tumor.
c Auto-portfolio of CAD system
shows tumor enhancement
kinetics with 23% washout
component. d Apparent diffusion
coefficient (ADC) map shows
mass with low signal intensity. A
region of interest (green) was
manually drawn on the CAD
system to encompass an entire
cross-section of the lesion.
MaximumADC, mean ADC, and
minimum ADC were 1.29 × 10-3

mm2/s, 0.94 × 10-3 mm2/s, and
0.69 × 10-3 mm2/s, respectively.
Surgical histopathologic
examination revealed a 3-cm
invasive ductal carcinoma with a
histologic grade 3 and Ki-67
proliferation index of 37% (stage
II luminal B cancer)
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support vector machine, naive Bayes classifier, linear discrimi-
nant analysis, and logistic regression) were used. To train the
eight machine learning algorithms, repeated (n = 20) and 10-fold
cross-validation was applied. The DeLong method was used to
compare the AUCs of eight algorithms in independent data sets.

Interobserver reliability between two reviewers was
assessed using interclass correlation coefficient. An r value

of 1.0 was deemed to indicate perfect agreement; 0.81–0.99,
almost perfect agreement; 0.61–0.80, substantial agreement;
0.41–0.60, moderate agreement; 0.21–0.40, fair agreement;
and ≤ 0.20, slight agreement [22]. Statistical analyses were
performed using SPSS for Windows, version 20.0 (SPSS
Inc.), open-source R software (version 3.5.1; R Foundation
for Statistical Computing), and Python (Python Software

Table 1 Associations between multiparametric MRI features and Ki-67 and histologic grade

Features All (n = 300) Low Ki-67
(n = 203)

High Ki-67
(n = 97)

p value Low histologic
grade (n = 242)

High histologic
grade (n = 58)

p value

Patient age 56.6 ± 12.0 56.7 ± 12.0 56.4 ± 12.0 0.851 56.3 ± 11.9 57.9 ± 12.5 0.384

Morphologic features

Amount of fibroglandular tissue 0.856 0.138

Nondense 160 109 (53.7) 51 (52.6) 124 (51.2) 36 (62.1)

Dense 140 94 (46.3) 46 (47.4) 118 (48.8) 22 (37.9)

Background parenchymal enhancement 0.884 0.493

Minimal or mild 206 118 (80.3) 117 (79.6) 164 (67.8) 42 (72.4)

Moderate or marked 94 29 (19.7) 30 (20.4) 78 (32.2) 16 (27.6)

Lesion type 0.781 0.546

Mass* 285 192 (94.6) 93 (96.6) 229 (94.6) 56 (96.6)

Non-mass enhancement 15 11 (5.4) 4 (4.1) 13 (5.4) 2 (3.4)

Mass shape* 0.892 0.430
Round to oval 115 78 (40.6) 37 (39.8) 95 (41.5) 20 (35.7)

Irregular 170 114 (59.4) 56 (60.2) 134 (58.5) 36 (64.3)

Mass margin* 0.511 0.652

Circumscribed 55 35 (18.2) 20 (21.5) 43 (18.8) 12 (21.4)

Not circumscribed 230 157 (81.8) 73 (78.5) 186 (81.2) 44 (78.6)

Mass internal enhancement* 0.437 0.007

Homo- or heterogeneous 234 160 (83.3) 74 (79.6) 195 (85.2) 39 (69.6)

Rim 51 32 (16.7) 19 (20.4) 34 (14.8) 17 (30.4)

Associated non-mass enhancement 0.383 0.987

Absent 202 140 (69.0) 62 (63.9) 163 (67.4) 39 (67.2)

Present 98 63 (31.0) 35 (36.1) 79 (32.6) 19 (32.8)

Intratumoral high SI on T2WI 0.001 0.003

No 150 115 (56.7) 35 (36.1) 131 (54.1) 19 (32.8)

Yes 150 88 (43.3) 62 (63.9) 111 (45.9) 39 (67.2)

Peritumoral edema on T2WI 0.172 0.127

Absent 248 172 (84.7) 76 (78.4) 204 (84.3) 44 (75.9)

Present 52 31 (15.3) 21 (21.6) 38 (15.7) 14 (24.1)

Axillary lymph node enlargement 0.981 0.007
Absent 260 176 (86.7) 84 (86.6) 216 (89.3) 44 (75.9)

Present 40 27 (13.3) 13 (13.4) 26 (10.7) 14 (24.1)

Kinetic features on CAD

Tumor size (cm) † 1.89 ± 0.96 1.79 ± 0.95 2.08 ± 0.95 0.015 1.78 ± 0.90 2.32 ± 1.07 < 0.001

Angio-volume (cm3) † 2.24 ±3.40 1.83 ± 2.25 3.09 ± 4.94 0.019 1.79 ± 2.49 2.32 ± 5.49 < 0.001

Peak enhancement (%) † 246.11 ± 130.26 239.59 ± 121.91 259.75 ± 145.94 0.267 238.00 ± 126.86 279.00 ± 139.98 0.057

Early phase-medium component (%) † 36.94 ± 35.18 37.88 ± 35.22 34.96 ± 35.20 0.347 36.93 ± 34.84 36.96 ± 36.90 0.813

Early phase-rapid component (%) † 62.73 ± 35.40 61.63 ± 35.52 65.03 ± 35.21 0.302 62.66 ± 35.11 63.03 ± 36.90 0.760

Delayed phase-persistent component (%) † 49.69 ± 27.88 52.27 ± 28.54 44.30 ± 25.76 0.020 52.98 ± 28.57 35.96 ± 19.70 < 0.001

Delayed phase-plateau component (%) † 32.05 ± 18.12 31.83 ± 19.50 35.50 ± 14.91 0.408 31.35 ± 18.87 34.96 ± 14.33 0.111

Delayed phase-washout component (%) † 18.48 ± 20.40 16.00 ± 20.41 23.68 ± 19.48 0.002 15.82 ± 19.85 29.60 ± 19.02 < 0.001

ADC values on DWI

Mean ADC †

(× 10-3 mm2/s)

0.980 ± 0.275 0.988 ± 0.268 0.963 ± 0.289 0.246 0.999 ± 0.281 0.897 ± 0.234 0.011

Minimum ADC †

(× 10-3 mm2/s)

0.597 ± 0.299 0.587 ± 0.303 0.618 ± 0.290 0.542 0.611 ± 0.298 0.540 ± 0.300 0.102

Maximum ADC †

(× 10-3 mm2/s)

1.454 ± 0.344 1.460 ± 0.346 1.440 ± 0.342 0.799 1.457 ± 0.352 1.438 ± 0.314 0.791

Data are numbers of patients, with percentages in parentheses

*Mass shape, margin, and internal enhancement were calculated with a denominator of 285 masses
†Numbers are means ± standard deviations

T2WI T2-weighted image, CAD computer-aided diagnosis, ADC apparent diffusion coefficient, DWI diffusion-weighted imaging
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Foundation, version 3.7.4) with Scikit-learn package (https://
github.com/scikit-learn/scikit-learn).

Results

Patient characteristics and multiparametric MRI
features

Of the 300 women, 227 (75.6%) had undergone breast con-
servation surgery and 73 (24.4%) had undergone total mas-
tectomy. The median pathologic invasive tumor size was
1.5 cm (range, 0.6–4.7 cm) and axillary LN metastasis was
confirmed in 25.6% (77 of 300). The range of Ki-67 within
this group spanned from 0.1 to 56.6% (median, 12.0%); 203
(67.7%) had a Ki-67 of less than 14%; and 97 (32.3%) had a
Ki-67 of 14% or higher. Histologic grade 1 was observed in
91 patients, grade 2 in 151 patients, and grade 3 in 58 patients,
and 242 (80.7%) were histologic grade 1 or 2 while 58
(19.3%) were histologic grade 3.

Compared to luminal cancers with low Ki-67, those with
high Ki-67more frequently demonstrated intratumoral high SI
on T2WI, larger tumor size, larger angio-volume, smaller per-
sistent component, and larger washout component (all p <
.05). Compared to luminal cancers with low histologic grade,
those with high histologic grade more frequently

Table 2 Univariate and multivariate logistic regression analysis of
features associated with high Ki-67

Features Univariate analysis Multivariate analysis

Odds ratio p value Adjusted odds ratio p value

Intratumoral high SI on T2WI

Yes 2.31 (1.40 – 3.81) < 0.001 1.89 (1.11 – 3.20) 0.018

No Reference Reference

Tumor size on CAD

> 1.75 cm 1.78 (1.09 – 2.91) 0.020

≤ 1.75 cm Reference

Angio-volume on CAD

> 1.35 cm3 1.60 (0.98 – 2.61) 0.056

≤ 1.35 cm3 Reference

Persistent component on CAD

< 37.5 % 1.58 (1.04 – 2.79) 0.032

≥ 37.5 % Reference

Washout component on CAD

> 13.5 % 3.68 (2.21 – 6.13) < 0.001 4.16 (2.08 – 8.33) < 0.001

≤ 1 3.5 % Reference Reference

Numbers in parentheses are 95% confidence intervals

T2WI T2-weighted image, CAD computer-aided diagnosis, ADC appar-
ent diffusion coefficient

Table 3 Univariate and
multivariate logistic regression
analysis of features associated
with high histologic grade

Features Univariate analysis Multivariate analysis

Odds ratio p value Adjusted odds ratio p value

Intratumoral high SI on T2WI
Yes 2.42 (1.32 – 4.43) 0.004
No Reference
Mass internal enhancement
Rim 2.51 (1.27 – 4.94) 0.008 2.59 (1.14 – 5.81) 0.022
Homo- or heterogeneous Reference Reference
Axillary lymph node enlargement
Absent 2.64 (1.27 – 5.46) 0.009
Present Reference
Tumor size on CAD
> 1.85 cm 2.86 (1.58 – 5.17) < 0.001
≤ 1.85 cm Reference
Angio-volume on CAD
> 1.45 cm3 2.68 (1.47 – 4.85) 0.001
≤ 1.45 cm3 Reference
Persistent component on CAD
< 33.5 % 2.43 (1.35 – 4.35) 0.003
≥ 33.5 % Reference
Washout component on CAD
> 15.5 % 8.21 (4.11 – 16.38) < 0.001 7.22 (2.97 – 17.57) < 0.001
≤ 15.5 % Reference Reference
Mean ADC on DWI
< 0.945 × 10-3 mm2/s 2.42 (1.32 – 4.43) 0.004 2.47 (1.19 – 5.13) 0.015
≥ 0.945 × 10-3 mm2/s Reference Reference

Numbers in parentheses are 95% confidence intervals

CAD computer-aided diagnosis, ADC apparent diffusion coefficient
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demonstrated rim enhancement, intratumoral high SI on
T2WI, axillary LN enlargement, larger tumor size, larger
angio-volume, smaller persistent component, larger washout
component, and lower ADC values (all, p < .05) (Table 1).

The optimal cutoff values of kinetic and ADC
parameters

Based on the results of the ROC curve analysis, the optimal
cutoff values to assess association between high Ki-67 and (1)
tumor size was 1.75 cm (area under the curve [AUC], 0.60; p
= .005); (2) angio-volume, 1.35 cm3 (AUC, 0.58; p = .019);
(3) persistent component, 37.5% (AUC, 0.58; p = .019); and
(4) washout component, 13.5% (AUC, 0.64; p < .001). The
values to evaluate the association between high histologic
grade and (1) tumor size was 1.85 cm (AUC, 0.66; p <
.001); (2) angio-volume, 1.45 cm3 (AUC, 0.67; p < .001);
(3) persistent component, 33.5% (AUC, 0.67; p < .001); (4)
washout component, 15.5% (AUC, 0.73; p < .001); and (5)
mean ADC value, 0.945 × 10-3 mm2/s (AUC, 0.61; p = .008).

Features associated with high Ki-67 and histologic
grade

Univariate analysis demonstrated that high Ki-67 was associ-
ated with intratumoral high SI on T2WI, tumor size > 1.75 cm,

angio-volume >1.35 cm3, persistent component < 37.5%, and
washout component > 13.5%. In multivariate analysis, wash-
out component > 13.5% (odds ratio [OR] = 4.16; p < .001) and
intratumoral high SI on T2WI (OR = 1.89; p = .018) were each
associated with high Ki-67 (Table 2).

Univariate analysis was also conducted to determine if an
association existed between high histologic grade and certain
mpMRI features, and intratumoral high SI on T2WI, rim en-
hancement, axillary LN enlargement, tumor size > 1.85 cm,
angio-volume > 1.45 cm3, persistent component < 33.5%,
washout component > 15.5%, and mean ADC < 0.945 ×
10-3 mm2/s were associated with high histologic grade.
Multivariate analysis revealed that washout component >
15.5% (OR = 7.22; p < .001), rim enhancement (OR = 2.59;
p = .022), and mean ADC < 0.945 × 10-3 mm2/s (OR = 2.47; p
=.015) were each associated with high histologic grade
(Table 3).

Diagnostic performance of prediction models

The diagnostic performances of prediction models using
the eight machine learning algorithms are summarized in
Table 4. Among eight methods using significant features
from univariate analysis, two had the highest diagnostic
performance for predicting high Ki-67 (AUC: 0.71) and
k-nearest neighbor had the highest performance for

Table 4 AUCs of eight machine
learning models using significant
features acquired from univariate
and multivariate logistic
regression analysis for the
prediction of high Ki-67 and
histologic grade

Prediction for high Ki-67 Prediction for high histologic grade

AUC p value* AUC p value*

Machine learning models using significant features from univariate analysis

Random forest 0.66 (0.57, 0.75) 0.093 0.69 (0.60, 0.78) 1.752e-07

Adaptive boosting 0.70 (0.62, 0.78) 0.544 0.80 (0.72, 0.89) 0.135

Decision tree 0.65 (0.57, 0.72) 0.032 0.57 (0.47, 0.67) 1.767e-11

k-nearest neighbor 0.69 (0.62, 0.75) 0.394 0.83 (0.76, 0.89) Reference

Linear support vector machine 0.53 (0.43, 0.63) 0.003 0.72 (0.65, 0.80) < 0.001

Naive Bayes classifier 0.69 (0.63, 0.75) 0.309 0.79 (0.73, 0.85) 0.073

Linear discriminant analysis 0.71 (0.63, 0.78) 0.404 0.80 (0.73, 0.88) 0.127

Logistic regression 0.71 (0.63, 0.78) Reference 0.81 (0.72, 0.89) 0.140

Machine learning models using significant features from multivariate analysis

Random forest 0.70 (0.61, 0.79) 0.746 0.74 (0.63, 0.85) 0.005

Adaptive boosting 0.70 (0.61, 0.79) 0.544 0.78 (0.70, 0.86) 0.441

Decision tree 0.70 (0.61, 0.79) 0.777 0.73 (0.63, 0.85) 0.004

k-nearest neighbor 0.68 (0.60, 0.77) 0.812 0.77 (0.68, 0.85) 0.035

Linear support vector machine 0.56 (0.44, 0.69) < 0.001 0.50 (0.37, 0.62) 1.523e-05

Naive Bayes classifier 0.70 (0.61, 0.78) 0.294 0.79 (0.70, 0.88) Reference

Linear discriminant analysis 0.70 (0.61, 0.78) 0.280 0.78 (0.69, 0.87) 0.462

Logistic regression 0.70 (0.61, 0.78) Reference 0.78 (0.69, 0.87) 0.490

Numbers in parentheses are 95% confidence intervals

*P value was acquired from comparison with the reference standard by using the DeLong method
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predicting high histologic grade (AUC: 0.83), whereas
six had the highest performance for predicting high Ki-
67 (AUC: 0.70) and naive Bayes classifier had the
highest performance for predicting high histologic grade
(AUC: 0.79) when using significant features from mul-
tivariate analysis (Fig. 3). Figure 4 is a box plot showing
the diagnostic performance of eight machine learning
methods.

Interobserver agreement

The overall agreement for ADC values between two readers
was almost perfect (r = 0.96). For MRI morphologic imaging
features, the overall agreement for FGT (r = 0.62), BPE (r =
0.65), mass internal enhancement (r = 0.63), associate NME (r
= 0.61), intratumoral T2 high SI (r = 0.72), and axillary LN
enlargement (r = 0.78) was substantial, while that for mass
shape (r =0.53), mass margin (r = 0.57), and peritumoral
edema (r = 0.56) was moderate.

Discussion

Our study revealed that among various mpMRI features,
CAD-measured washout component is key for predicting both
higher Ki-67 and histologic grade in patients with stage I–II
luminal breast cancer. A machine learning–based prediction
model incorporating mpMRI features shows good diagnostic
performance for predicting Ki-67 and histologic grade with
AUCs of 70% and 79%, respectively.

Washout kinetics was the most important feature for this
detailed prediction model. The results of our study are con-
cordant with a prior study that indicated that the washout
curve shape may predict a higher level of Ki-67 and histologic
grade [23]. The impact of washout kinetics on poorer survival
outcomes has previously been reported [24, 25]. One study
found that a higher washout component was significantly as-
sociated with poorer disease-free survival [24], and another
showed that patients with a smaller reduction in washout com-
ponent after NAC had worse recurrence-free survival [25].
The most probable explanation for this is that hypervascular

Fig. 3 Graphs show areas under receiver operating characteristic curve
(AUCs) of eight machine learning algorithms using significant features
acquired from univariate analysis for the prediction of higher Ki-67 (a)
and higher histologic grade (b), and those using significant features
acquired from multivariate analysis for the prediction of higher Ki-67

(c) and higher histologic grade (d). RF random forest, AB adaptive
boosting, DT decision tree, kNN k-nearest neighbor, SVM linear
support vector machine, NB naive Bayes, LDA linear discriminant
analysis, LGR logistic regression
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tumors may have a higher washout component indicating rap-
id perfusion because they have higher angiogenic markers,
which could facilitate the spread of tumor cells into the body
[26, 27]. Our study suggests that higher washout component
could predict unfavorable prognosis due to its association with
higher Ki-67 and histologic grade in luminal cancer [4].

The second-most influential mpMRI feature for
predicting higher Ki-67 was the presence of intratumoral
high SI on T2WI, not the ADC value. This result is
similar to a recent study that found no correlation be-
tween mean ADC and Ki-67, while mean Ki-67 signif-
icantly increased with the amount of very high SI on
T2WI, indicating tumor necrosis [28]. A possible expla-
nation is that breast cancers with high proliferation (i.e.,
high Ki-67) may exceed the oxygen supply of their
vascular system, resulting in prolonged hypoxia and
subsequent necrosis with decreased cellularity [29].
Although controversy still remains regarding the corre-
lation between ADC values and Ki-67 [14, 30–32], our

results support that intratumoral high SI on T2WI may
be a more appropriate predictor for Ki-67 than the ADC
value.

Contrary to Ki-67, lower ADC value can be used to predict
higher histologic grade in luminal cancer. Previous studies
also reported the inverse correlation between ADC value
and histologic grade [31, 32]. However, another multicenter
analysis of 870 breast cancer patients suggested that ADC
cannot be used as a surrogate marker for Ki-67 and histologic
grade [30]. Whereas the prior study attempted to distinguish
grade 2 or 3 tumors from grade 1 tumors [30], we tried to
distinguish grade 3 tumors from grade 1 or 2 tumors, because
grade 3 luminal cancers are categorized one stage higher ac-
cording to the eighth edition AJCC guidelines. From our re-
sults, we can assume that a higher histologic grade which
means less tubule formation and higher mitotic activity could
reflect higher cellularity, which results in lower ADC in lumi-
nal cancer.

Fig. 4 Box and whisker plot illustrate diagnostic performances of eight
machine learning (ML) algorithms using significant features acquired
from univariate analysis for the prediction of higher Ki-67 (a) and
higher histologic grade (b), and those using significant features
acquired from multivariate analysis for the prediction of higher Ki-67

(c) and higher histologic grade (d). RF random forest, AB adaptive
boosting, DT decision tree, kNN k-nearest neighbor, SVM linear
support vector machine, NB naive Bayes, LDA linear discriminant
analysis, LGR logistic regression
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Rim enhancement is a significant predictor of higher histo-
logic grade [23, 32]. In luminal cancer subtype, the impact of
rim enhancement on poorer distant metastasis-free survival
has been reported [33]. In addition, a radiogenomic approach
reported that a high calculated score indicating rim enhance-
ment was correlated with early occurrence of metastasis and
certain RNA phenotypes [34].

To date, machine learning algorithms have been applied
to build a prediction model incorporating clinical or imag-
ing data for further improving accuracy [35, 36]. In breast
cancer patients, the integration of machine learning–based
prediction models using mpMRI features has the potential
to provide valuable information on predicting NAC treat-
ment outcomes or risk of recurrence, and predicting which
BI-RADS 3 and BI-RADS 4 lesions are benign [35–38].
Similar to the study of Eun et al [37], we used eight machine
learning algorithms in our study to provide the best model
to fit the input data and to predict correctly. Through com-
parison of the diagnostic performance of eight machine
learning algorithms, we found that diagnostic performance
using two or three significant features from multivariate
analysis achieved the similar performance when using five
or eight significant features from univariate analysis for
predicting Ki-67 and histologic grade.

Our study had several limitations. First, this was a ret-
rospective study from a single tertiary academic institu-
tion. Second, we excluded 25 lesions without enhance-
ment on CAD and 24 lesions whose lesion visibility on
DWI was too poor to acquire exact ADC measurements.
Because the DWI acquisition resolution was low, it was
difficult to measure ADC values in some subcentimeter
lesions with poor lesion visibility. Therefore, selection
bias may have been present in patient enrollment. Third,
we did not analyze histopathological findings such as tu-
mor necrosis and cellularity using the surgical specimens,
which could have been important to support our findings.
Fourth, the visual assessment of the presence of
intratumoral high SI or peritumoral edema could be af-
fected by postbiopsy hemorrhage because all MRI exam-
inations were performed after imaging-guided biopsy.
Fifth, we did not divide enrolled patients into test and
validation sets. Instead, 10-fold cross-validation was used
to train the eight machine learning algorithms to test the
model’s ability to predict correctly and to provide an in-
sight into how the prediction model will generalize to an
independent dataset.

In conclusion, higher values of CAD-measured washout
component and a presence of high intratumoral SI on T2-
weighted image were associated with high Ki-67, and
higher values of CAD-measured washout component, rim
enhancement, and lower apparent diffusion coefficient val-
ue were correlated with high histologic grade in luminal
cancer subtypes. Our results provide an understanding

about the relationship between luminal cancer biology and
mpMRI features. In addition, the integration of machine
learning algorithms using mpMRI features can provide im-
portant predictive information to guide treatment decisions
or determine the clinical prognosis for patients with stage I–
II luminal cancers.
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