
IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

AI-based improvement in lung cancer detection on chest
radiographs: results of a multi-reader study in NLST dataset

Hyunsuk Yoo1
& Sang Hyup Lee1

& Chiara Daniela Arru2,3
& Ruhani Doda Khera2,3 & Ramandeep Singh2,3

&

Sean Siebert2,3 & Dohoon Kim4
& Yuna Lee4

& Ju Hyun Park5 & Hye Joung Eom6
& Subba R. Digumarthy2,3 &

Mannudeep K. Kalra2,3

Received: 2 February 2021 /Revised: 20 March 2021 /Accepted: 17 May 2021
# European Society of Radiology 2021

Abstract
Objective Assess if deep learning–based artificial intelligence (AI) algorithm improves reader performance for lung cancer
detection on chest X-rays (CXRs).
Methods This reader study included 173 images from cancer-positive patients (n = 98) and 346 images from cancer-negative
patients (n = 196) selected from National Lung Screening Trial (NLST). Eight readers, including three radiology residents, and
five board-certified radiologists, participated in the observer performance test. AI algorithm provided image-level probability of
pulmonary nodule or mass on CXRs and a heatmap of detected lesions. Reader performance was compared with AUC,
sensitivity, specificity, false-positives per image (FPPI), and rates of chest CT recommendations.
Results With AI, the average sensitivity of readers for the detection of visible lung cancer increased for residents, but was similar
for radiologists compared to that without AI (0.61 [95%CI, 0.55–0.67] vs. 0.72 [95%CI, 0.66–0.77], p = 0.016 for residents, and
0.76 [95% CI, 0.72–0.81] vs. 0.76 [95% CI, 0.72–0.81, p = 1.00 for radiologists), while false-positive findings per image (FPPI)
was similar for residents, but decreased for radiologists (0.15 [95% CI, 0.11–0.18] vs. 0.12 [95% CI, 0.09–0.16], p = 0.13 for
residents, and 0.24 [95% CI, 0.20–0.29] vs. 0.17 [95% CI, 0.13–0.20], p < 0.001 for radiologists). With AI, the average rate of
chest CT recommendation in patients positive for visible cancer increased for residents, but was similar for radiologists (54.7%
[95% CI, 48.2–61.2%] vs. 70.2% [95% CI, 64.2–76.2%], p < 0.001 for residents and 72.5% [95% CI, 68.0–77.1%] vs. 73.9%
[95% CI, 69.4–78.3%], p = 0.68 for radiologists), while that in cancer-negative patients was similar for residents, but decreased
for radiologists (11.2% [95% CI, 9.6–13.1%] vs. 9.8% [95% CI, 8.0–11.6%], p = 0.32 for residents and 16.4% [95% CI, 14.7–
18.2%] vs. 11.7% [95% CI, 10.2–13.3%], p < 0.001 for radiologists).
Conclusions AI algorithm can enhance the performance of readers for the detection of lung cancers on chest radiographs when
used as second reader.
Key Points
• Reader study in the NLST dataset shows that AI algorithm had sensitivity benefit for residents and specificity benefit for
radiologists for the detection of visible lung cancer.

• With AI, radiology residents were able to recommend more chest CT examinations (54.7% vs 70.2%, p < 0.001) for patients
with visible lung cancer.

•With AI, radiologists recommended significantly less proportion of unnecessary chest CT examinations (16.4% vs. 11.7%, p <
0.001) in cancer-negative patients.
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Abbreviations
ACRIN American College of Radiology Imaging Network
AI Artificial intelligence
AUC Area under the ROC curve
CAD Computer-aided diagnosis
CR Computed radiograph
CXR Chest X-ray
DICOM Digital imaging and communications in medicine
DR Digital radiograph
FPPI False-positives per image
GEE Generalized estimating equations
LDCT Low-dose CT
NLST National Lung Screening Trial
ROC Receiver operating characteristic

Introduction

Lower cost, ease of acquisition, portability, and wider accessi-
bility make chest radiography the most commonly used imag-
ing test for initial workup of thoracic diseases [1]. However, the
projectional nature of chest X-rays (CXRs) makes the detection
of pulmonary nodules a difficult task as nodules may be ob-
scured by anatomical structures [2], causing lesions located in
the blind spots to be missed by radiologists [3, 4]. Results from
the National Lung Screening Trial (NLST) show that screening
with CXRs does not lower the mortality of patients due to low
sensitivity of CXR for nodule detection as compared to low-
dose CT (LDCT) [5, 6]. Nonetheless, the sheer prevalence of
CXRs in modern medicine implies that with improved sensitiv-
ity, CXRs can play an important role in detection of lung can-
cers presenting as incidental pulmonary nodules [7].

Studies have demonstrated that artificial intelligence (AI)
algorithms improve the performance of radiologists for the de-
tection of lung cancer in CXRs [8–11]. Jang et al reported that
AI helps observers detect overlooked lung cancers that were
either missed or detected with misinterpretation on prior
CXRs [11]. The authors suggested that AI may help observers
reduce the number of overlooked cancer [11]. However, these
algorithms are yet being adapted to clinical practice due to
concerns that, like conventional computer-aided diagnosis
(CAD) systems, AI CAD systems may decrease the specificity
of the readers and lead to an increase in detection of false-
positive and/or benign nodules which trigger further workup
with CT and/or invasive tissue biopsies [12, 13]. Therefore,
for clinical implementation of AI algorithms, it is important to
demonstrate that these systems improve malignant nodule de-
tectionwithout increasing the number of false-positive findings.

In our previous study, we validated the performance of an AI
algorithm for the detection of malignant pulmonary nodules in
the NLST data set [9]. Our previous study suggested that AI can
help improve lung cancer detection on CXRs, but did not assess
the performance improvement of blinded readers with AI-aided
interpretation. In this study, we present the results of an observer
study of eight readers, including three radiology residents, and
five radiologists, in the NLST data set. The goal of this studywas
to assess whether an AI algorithm improves the reader perfor-
mance for lung cancer detection without increasing unnecessary
false-positive findings on CXRs.

Methods

Ethics review and approval were obtained from the institution-
al review board (IRB) of Massachusetts General Hospital.
IRB approval was a required step to sign the data use agree-
ment for access and use of NLST data. The need for informed
consent was waived because our retrospective reader study
used previously acquired data from other clinical trial.

Study population

A total of 519 screening CXRs from 294 patients were
retrospectively selected from NLST, a multicenter ran-
domized clinical trial comparing low-dose CT (LDCT)
with CXRs for screening high-risk population for lung
cancer [6, 14]. The trial enrolled 53,454 participants at
33 screening centers in the USA from August 2002
through April 2004. Participants were randomized to three
annual screens (at T0, T1, and T2) with either LDCT or
CXRs [14]. Among patients enrolled through American
College of Radiology Imaging Network (ACRIN), 5491
participants were within 83% random sample and had
available screening CXRs. One hundred seventy-three
CXRs from 98 participants with diagnosis of lung cancer
during screening examinations or within 1 year of the
final screening examination were selected as cancer-
positive subgroup. Three hundred forty-six CXRs from
196 cancer-negative patients were then consecutively
sampled as cancer-negative subgroup based on the follow-
ing criteria: the distribution of patients with just one CXR
(T0), those with two CXRs (T0, T1), and those with all
three CXRs (T0, T1, T2) in the cancer-negative subgroup
was identical to the cancer-positive subgroup (Fig. 1).
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AI algorithm

We used a commercially available AI algorithm (Lunit
INSIGHT for Chest Radiography; version 2.4.11.0; Lunit
Inc.), trained with 12408 abnormal CXRs with lung nodules
or masses, annotated by at least 1 of 15 board-certified radiol-
ogists, and 72704 normal CXRs [9]. None of the NLST data
was used in the training of the AI algorithm. The algorithm is a
ResNet34-based deep convolutional neural network with a
self-attention mechanism to generate a more distinguishable
image representation [15]. The model takes Digital Imaging
and Communications in Medicine (DICOM) file as input and
produces a probability map and an abnormality score, ranging
between 0 and 100, for 10 common abnormalities in CXRs:
atelectasis, calcification, cardiomegaly, consolidation, fibrosis,
mediastinal widening, nodule or mass, pleural effusion, pneu-
moperitoneum, and pneumothorax. Please refer to examples of
lung nodules and/or masses with different scores in
Supplemental Figure S1. The model does not produce output
map when the abnormality score is below 15.0, the operating
point chosen using Youden criteria in the internal validation
set. Although we only used output map and score correspond-
ing to pulmonary nodules in this study, the model was still
trained using multi-task learning scheme, in which binary

cross-entropy loss computed for each of the 10 abnormalities
updated the parameters during model training to improve gen-
eralizability [9, 16]. None of the NLST data was included in the
training set. A more detailed description of the development of
the AI algorithm can be found in previous studies [9, 17].

Establishing the ground truth

Two senior radiologists (S.R.D. and M.K.K., with 16 and 13
years of experience in thoracic radiology, respectively) inde-
pendently annotated all 519 CXRs included in the test set for
the presence of lesion(s) suspicious for lung cancer as the
ground truth radiologists. For CXRs with suspicious for lung
cancers, the ground truth radiologists drew a closed contour
around the suspicious lesions. The suspicious lesions were de-
fined as pulmonary or pleural nodules, masses, opacities, and
hilar lymphadenopathy, which were concerning for lung cancer
either on the CXRs. Characteristics such as size, irregular or
spiculated margins, and growth over time on serial CXRs were
considered suspicious features for cancer. Lesions with typical
benign features (dense or popcorn calcification) and/or stability
over serial CXRs were considered benign. To improve their
accuracy, these radiologists referred to each patient’s cancer
characteristics as well as available sequential CXRs during

Fig. 1 Flow chart summarized selection of CXRs for observer performance testing. There were 75 CXRs from 68 patients with visible lung cancers.
Three hundred forty-six CXRs from 196 cancer-negative patients were used as the control group
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the radiologic evaluation. Disagreements over annotationswere
resolved with consensual review of CXRs.

A CXR was considered positive for visible lung cancer if
the location of the suspicious lesion marked by the ground
truth radiologists matched the location described in the histo-
pathology report. CXR lesions not corresponding to the loca-
tion of lung cancer described in the pathology report were
deemed as negative for visible lung cancer. Patients were
deemed to have visible lung cancer on prior CXRs if their
radiograph taken 1 year before the final screening CXR was
positive for visible lung cancer. For patients with multifocal
lung cancer (n = 5 patients), all suspicious lesions (n = 2 per
patient) were annotated.

Design of observer performance test

Three 2nd year radiology residents (one US resident and two
Korean residents) and five residency-trained radiologists (two
US radiologists and three Korean radiologists, respective ex-
perience of 5, 4, 5, 14, and 9 years) participated as indepen-
dent and blinded test radiologists. First year residents were not
included since they undergo chest radiography rotations at
different timepoints of the year. Second year residents were
selected to ensure that they all had completed one supervised
clinical rotation in chest radiography and had similar length of
experience/exposure in interpretation of chest radiographs.
Availability of the third and fourth year residents was limited
at the time of ongoing pandemic when several radiology res-
idents were called to serve in overflowing inpatient services.
The two ground truth chest radiologists (S.R.D. and M.K.K.)
did not participate as test radiologists.

Prior to the observer performance test, each test radiologist
was instructed to mark lesions (per CXR) for any lesions sus-
picious for cancer, not limited to pulmonary nodules or
masses (such as hilar lymphadenopathy, and pleural nodule
or thickening), while ignoring benign findings such as calci-
fication, subsegmental atelectasis, and linear scars. For CXRs
with multiple concerning findings, we instructed each reader
to annotate and score the two most suspicious lesions for lung
cancer. Each reader annotated ten training CXRs to enhance
their understanding of the study objectives before beginning
the observer performance test. Test radiologists could refer to
previous CXRs when available for comparison. The serial
CXRs were presented in chronologic order, and the readers
could not refer to future radiographs during the annotation. On
CXRs with suspicious lung cancer, each independent reader
drew a separate closed contour around the lesion and specified
a confidence rating from 1 (confidence level 0–20%) to 5
(confidence level 80–100%) for up to two suspicious lesions
per CXR. All contours were considered when estimating
FPPIs. The normalized confidence rating for the readers was
calculated by dividing the readers’ confidence rating by the
highest possible confidence rating. The readers also specified

need for a chest CT examination for workup of suspicious
lesions.

Each reader reviewed each CXR twice: first, without AI
and then with AI with at least 4 weeks of wash-out within the
two reviews. When reviewing images with AI, the readers
were able to toggle between original CXR and that with the
AI heatmap. All the readers who participated in the observer
performance test evaluated the whole test set. The reader study
was conducted between January 1, 2020, through March 31,
2020. A screen-capture of the web-based observer perfor-
mance test tool is shown in Supplemental Figure S2.

Statistical analysis

Differences in the selected characteristics of the study popu-
lation were compared between cancer-positive and cancer-
negative patients using Student’s t test for continuous vari-
ables (age, follow-up period, and mortality) and chi-square
test for categorical variables (sex, race, and ethnicity). The
confidence rating of the readers was compared with
Student’s t test. To evaluate the performance of readers with
and without AI for lung cancer detection, receiver operating
characteristic (ROC) analyses were performed. Comparison
of individual observer-level and average area under the ROC
curve (AUC) was made using DeLong’s method and Hillis’
method, respectively [18, 19]. Sensitivity and specificity of
readers with and without AI were calculated using threshold
confidence level of 15% as the operating point, and were
compared with generalized estimating equations (GEEs) [11,
20]. False-positive markings per image (FPPI) were defined as
total number of false-positive markings divided by the total
number of CXRs, and was compared by Poisson regression
[10]. Rates of CT recommendations and detection rates of
missed lung cancer visible on prior CXRs were assessed with
GEE [20]. The inter-reader agreements for lung cancer detec-
tion were assessed with weighted κ using linear weighting
[21]. Kappa results were interpreted as follows: values ≤ 0
as indicating no agreement and 0.01–0.20 as none to slight,
0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as sub-
stantial, and 0.81–1.00 as almost perfect agreement. For all
tests, p < 0.05 was considered statistically significant. All
statistical analyses were conducted using R software, version
3.6.1 (R Foundation for Statistical Computing).

Results

Patient characteristics

The differences in mean age, gender, race distribution, ethnic-
ity, and smoking status distribution between the cancer-
positive and cancer-negative groups were statistically non-sig-
nificant. Compared to that of the cancer-positive patients, the
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median time from T0 screen to last follow-up date was greater
for cancer-negative patients (3.7 (0.0–7.9) vs. 6.5 (5.9–7.1), p
< 0.001). Patients in the cancer-positive group had significant-
ly higher mortality compared to patients in the cancer-
negative group (60.2% vs. 1.0%, p < 0.001). The demographic
characteristics are summarized in Table 1.

Observer performance assessment for visible lung
cancer detection

Among 98 CXRs selected from cancer-positive patients, 23
CXRs in which there were no visible lesions suggestive of
lung cancer were excluded in our primary analysis, and 75
CXRs labeled by the ground truth radiologists as positive for
visible lung cancer were selected as case group (17.8%, 74/
421). Three hundred forty-six CXRs from cancer-negative
patients were used as the control group (82.2%, 346/421).
The distribution of the confidence rating and the total and
per CXR positive markings for each reader is shown in
Supplemental Table S1, and Supplemental Table S2,
respectively.

The performance of readers for the detection of visible lung
cancer detection is summarized in Table 2. Compared to that
without AI, the average AUC for the detection of visible lung
cancer increased significantly for radiology residents with AI
(0.76 [95% CI, 0.67–0.86] vs. 0.82 [95% CI, 0.75–0.89], p =
0.003), but for radiologists, the average AUC was similar
(0.82 [95% CI, 0.74–0.91] vs. 0.84 [95% CI, 0.79–0.89], p
= 0.24). Compared to that without AI, the average sensitivity
increased significantly for radiology residents (0.61 [95% CI,
0.55–0.67] vs. 0.72 [95% CI, 0.66–0.77], p = 0.016), but
specificity was similar with AI (0.88 [95% CI, 0.86–0.90]
vs. 0.88 [95% CI, 0.86–0.90], p = 0.89). For radiologists,
average sensitivity (0.76 [95% CI, 0.72–0.81] vs. 0.76 [95%
CI, 0.72–0.81], p = 1.00) was similar, but specificity increased
with AI (0.79 [95% CI, 0.77–0.81] vs. 0.86 [95% CI, 0.84–
0.87], p < 0.001). Average FPPI without and with AI was
similar for radiology residents (0.15 [95% CI, 0.11–0.18] vs.
0.12 [95% CI, 0.09–0.16], p = 0.13), but was significantly
lower with AI for radiologists (0.24 [95% CI, 0.20–0.29] vs.
0.17 [95% CI, 0.13–0.20], p < 0.001). The performance of the
readers for the detection of all lung cancer, when no exclusion
is applied, is presented in Supplemental Table S3.

Table 1 Baseline demographic
characteristics of cancer-positive
and cancer-negative patients for
the observer performance test.
Data are presented as no./tot no.
(%) of patients, unless otherwise
indicated.

Characteristics Total Cancer-positive Cancer-negative p value

N 294 (100.0) 98 (33.3) 196 (66.7)

Number of screening examinations

One (T0) 141 (48.0) 47 (48.0) 94 (48.0)

Two (T0, T1) 81 (27.6) 27 (27.6) 54 (27.6)

Three (T0, T1, and T2) 72 (24.5) 24 (24.5) 48 (24.5)

Age, mean (SD) 62.6 (5.1) 62.8 (5.0) 62.4 (5.2) 0.49

Sex

Male 164 (55.8) 59 (60.2) 105 (53.6) 0.28
Female 130 (44.2) 39 (39.8) 91 (46.4)

Race

White 276 (93.9) 93 (94.9) 183 (93.4) 0.51
Black or African American 11 (3.7) 5 (5.1) 6 (3.1)

Asian 1 (0.3) 0 (0.0) 1 (0.5)

American Indian or Alaskan Native 1 (0.3) 0 (0.0) 1 (0.5)

Native Hawaiian or other Pacific Islander 0 (0.0) 0 (0.0) 0 (0.0)

> 1 race 4 (1.4) 0 (0.0) 4 (2.0)

Unavailable 1 (0.3) 0 (0.0) 1 (0.5)

Ethnicity

Hispanic or Latino 3 (1.0) 1 (1.0) 2 (1.0) 1.00
Not Hispanic or Latino 291 (99.0) 97 (99.0) 194 (99.0)

Unavailable 0 (0.0) 0 (0.0) 0 (0.0)

Smoking status

Former 140 (47.6) 44 (44.9) 96 (49.0) 0.51
Current 154 (52.4) 54 (55.1) 100 (51.0)

Outcomes

Follow-up, median (IQR), year 6.3 (5.5–7.2) 3.7 (0.0–7.9) 6.5 (5.9–7.1) < 0.001

Mortality 61 (20.7) 59 (60.2) 2 (1.0) < 0.001
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The inter-reader agreements for lung cancer detection with-
out and with AI are presented in Supplemental Table S4.
There was fair to moderate interobserver agreement between
three residents without AI, and consistently moderate agree-
ment with AI-assisted interpretation. Likewise, radiologist im-
proved from fair or moderate (5/10 radiologist pairwise com-
parison in each) interobserver agreement for CXR interpreta-
tion without AI to moderate (9/10 radiologists pairwise com-
parison) or good (1/10) agreement with AI-assisted
interpretation.

Table 3 summarizes the percentages of chest CT recom-
mendation for patients with and without visible lung cancer.
For patients with visible lung cancer on CXR, the average
chest CT recommendation rate increased significantly for res-
idents, but was similar for radiologists without and with AI
(54.7% [95% CI, 48.2–61.2%] vs. 70.2% [95% CI, 64.2–
76.2%], p < 0.001 for residents and 72.5% [95% CI, 68.0–
77.1%] vs. 73.9% [95% CI, 69.4–78.3%], p = 0.68 for radi-
ologists). Conversely, in patients without visible lung cancer,
the average chest CT recommendation rate was similar with-
out and with AI for residents, but decreased for radiologists
(11.2% [95% CI, 9.6–13.1%] vs. 9.8% [95% CI, 8.0–11.6%],
p = 0.32 for residents and 16.4% [95% CI, 14.7–18.2%] vs.
11.7% [95% CI, 10.2–13.3%], p < 0.001 for radiologists).

Detection rate for lung cancer visible in previous chest
radiographs

Among 98 cancer-positive patients, 51 patients had two or
more CXRs, and 7 patients had visible lung cancers on prior
CXRs. In this study, these 7 CXRs were regarded as having
missed lung cancers. Of these 7 missed lung cancers, average
residents detected significantly more lung cancer with AI than
without AI (39% [2.7 of 7] vs. 71% [5.0 of 7], p = 0.021), but
such gain was not seen in radiologists (57% [4.0 of 7] vs. 51%
[3.6 of 7], p = 0.63). Similarly, average residents recommend-
ed significantly more chest CT examination for these CXRs
with AI thanwithout AI (33% [2.3 of 7] vs. 71% [5.0 of 7], p =
0.008), but the recommendation rate was similar for radiolo-
gists (51% [3.6 of 7] vs. 49% [3.4 of 7], p = 0.81). The per-
formance of individual readers for the detection of missed
lung cancers is shown in Table 4.

Discussion

This study assessed how an AI algorithm benefits reader for
detecting visible lung cancer in CXRs.When AI was used as a
second reader, residents detected more visible lung cancer
(0.61 vs. 0.72, p = 0.016), and were able to detect moremissed
lung cancer present in prior CXRs (39% vs. 71%, p = 0.021).
In comparison, radiologists had higher specificity (0.79 vs.
0.86, p < 0.001) and lower FPPI (0.24 vs. 0.17, p < 0.001)Ta
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with AI. Improved inter-reader agreement for both residents
and radiologists on AI-assisted interpretation was likely relat-
ed to improved reader confidence in “calling” lesions as pres-
ent or absent with AI assistance rather than without AI on an
otherwise highly subjective interpretation of projection
radiographs.

Our results suggest that AI algorithm benefits less-
experienced readers in terms of sensitivity, and more-
experienced readers in terms of specificity. Previous studies
suggested that less-experienced readers are prone to missing
lung cancers, especially for lesions that have low visibility
score, and those that are overlapping with anatomical struc-
tures [11]. In this study, the AI algorithm likely reduced such

errors by locating such subtle lesions for the residents [8, 11].
As shown in other studies, AI helped improve the perfor-
mance of the residents up to the level that was on par with
radiologists, which led to a significant increase in the chest CT
recommendation rate for patients with visible lung cancer [8,
11, 17]. In comparison, such benefit may have not been real-
ized for the more-experienced readers in our study who de-
tected visible lung cancers without AI.

For the radiologists in our study, AI improved specificity
and reduced false-positive nodules without decreasing their
sensitivity. As a result, radiologists recommended fewer chest
CT examinations for patients without visible lung cancer,
while maintaining a similar chest CT recommendation rate

Table 3 The percentages of chest CT recommendation in 75 CXRs (n = 68) positive for visible lung cancer and 346 CXRs (n = 196) selected from the
cancer-negative control group

Group 75 CXRs from patients positive for visible lung cancer (n = 68) 346 CXRs from cancer-negative patients (n = 196)

Without AI With AI p value Without AI With AI p value

Radiology residents

1 45.3 (34.1–56.6) 62.7 (51.7–73.6) 0.031 8.7 (5.7–11.6) 5.5 (3.1–7.9) 0.10

2 57.3 (46.1–68.5) 74.7 (64.8–84.5) 0.022 16.5 (12.6–20.4) 14.2 (10.5–17.8) 0.40

3 61.3 (50.3–72.4) 73.3 (63.3–83.3) 0.11 8.4 (5.5–11.3) 9.8 (6.7–13.0) 0.51

Average 54.7 (48.2–61.2) 70.2 (64.2–76.2) < 0.001 11.2 (9.3–13.1) 9.8 (8.0–11.6) 0.32

Radiologists

1 82.7 (74.1–91.2) 81.3 (72.5–90.2) 0.83 16.8 (12.8–20.7) 8.4 (5.5–11.3) < 0.001

2 65.3 (54.6–76.1) 69.3 (58.9–79.8) 0.60 33.5 (28.6–38.5) 17.9 (13.9–22.0) < 0.001

3 68.0 (57.4–78.6) 73.3 (63.3–83.3) 0.47 13.9 (10.2–17.5) 21.1 (16.8–25.4) 0.012

4 68.0 (57.4–78.6) 74.7 (64.8–84.5) 0.37 6.4 (3.8–8.9) 4.3 (2.2–6.5) 0.24

5 78.7 (69.4–87.9) 70.7 (60.4–81.0) 0.26 11.6 (8.2–14.9) 6.9 (4.3–9.6) 0.04

Average 72.5 (68.0–77.1) 73.9 (69.4–78.3) 0.68 16.4 (14.7–18.2) 11.7 (10.2–13.3) < 0.001

Table 4 The detection rate and chest CT recommendation rate for lung cancers visible in previous chest radiographs

Group Detection rate (image-level) Detection rate (lesion-level) Chest CT recommendation rate

Without AI With AI p value Without AI With AI p value Without AI With AI p value

Radiology residents

1 57 [4/7] 71 [5/7] 0.57 57 [4/7] 71 [5/7] 0.57 43 [3/7] 57 [4/7] 0.59

2 29 [2/7] 71 [5/7] 0.08 29 [2/7] 71 [5/7] 0.08 29 [2/7] 86 [6/7] 0.008

3 29 [2/7] 71 [5/7] 0.08 29 [2/7] 71 [5/7] 0.08 29 [2/7] 71 [5/7] 0.076

Average 39 [2.7/7] 71 [5.0/7] 0.021 39 [2.7/7] 71 [5.0/7] 0.021 33 [2.3/7] 71 [5/7] 0.008

Radiologists

1 100 [7/7] 57 [4/7] 0.025 100 [7/7] 57 [4/7] 0.025 71 [5/7] 57 [4/7] 0.57

2 29 [2/7] 57 [4/7] 0.26 29 [2/7] 43 [3/7] 0.57 29 [2/7] 57 [4/7] 0.26

3 57 [4/7] 57 [4/7] 1.00 57 [4/7] 57 [4/7] 1.00 57 [4/7] 43 [3/7] 0.59

4 29 [2/7] 43 [3/7] 0.57 29 [2/7] 43 [3/7] 0.57 29 [2/7] 43 [3/7] 0.57

5 71 [5/7] 43 [3/7] 0.26 71 [5/7] 43 [3/7] 0.26 71 [5/7] 43 [3/7] 0.26

Average 57 [4.0/7] 51 [3.6/7] 0.63 57 [4.0/7] 49 [3.4/7] 0.47 51[3.6/7] 49 [3.4/7] 0.81
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for patients positive for visible lung cancer. Without AI, radi-
ologists tended to overcall ambiguous findings that were in
fact benign findings, which led to unnecessary chest CT rec-
ommendations. However, with AI, radiologists were able to
rule out such benign lesions while still ruling in positive find-
ings (Fig. 2).

We believe our results support the use of AI CAD systems
for the detection of lung cancer in CXRs. Prior studies with
conventional CAD systems, which rely on hand-crafted fea-
tures, document good sensitivity for lung nodule detection,

but their application is limited by high false-positive outputs
[12, 13, 22, 23]. High false-positive rates can trigger unneces-
sary chest CT examinations and patient anxiety [23]. Our AI
CAD system can help avoid such issues while assisting
readers in identifying subtle lesions that may otherwise be
missed. This finding is consistent with other studies on AI
CAD systems with markedly decreased false-positive rate,
high specificity, and preserved excellent nodule detection per-
formance [8, 10].

Fig. 2 CXRs of patients without
visible lung cancer for which the
AI helped reduce the false-
positive annotation of the radiol-
ogists. a CXRs of a woman in her
50s, and (d) a man in his 50s who
were negative for visible lung
cancer. b, c, e, f Examples where
radiologists initially had false-
positive annotation without AI
(drawn with a white circle), but
correctly dismissed the annota-
tions with AI. Because the abnor-
mality score of the AI was less
than the operating point, the AI
did not display any heatmap
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The relative advantage of AI CADs, especially those
trained using deep learning–based algorithms, over conven-
tional CAD systems in terms of improved specificity may be
derived from large training datasets and “experiential learn-
ing” approach of AI CAD. Such learning enables AI CAD
systems to map input image into a latent feature space which
can help differentiate concerning findings from other struc-
tures and benign lesions [24]. During training, loss function
penalizes false-positive as well as false-negative predictions,
forcing the AI algorithm to learn representations of nodules
that distinguishes them from those of non-target findings such
as spurious lesions related to calcifications and vessels [25].

The increased detection of missed lung cancer in prior
CXRs can enable earlier detection of lung cancer. AI detected
five of the seven missed lung cancers (Fig. 3), but failed to
detect the remaining two of the seven cancers (Fig. 4). These
two cancers missed by the AI were present on conventional
radiographs (CRs), the type of images for which the AI has
been shown to have decreased performance as compared to

digital radiographs (DRs) [9]. Since the five cancers detected
with AI-aided interpretation were difficult cases that were
mostly missed by residents without AI, AI increased the de-
tection rate for radiology residents. Conversely, AI did not
increase the detection rate of these lesions for the experienced
radiologists who detected these cases without AI. In fact, for
radiologists 1 and 5, AI led to false-negative interpretation of
lung cancers that were reported as present without AI. Such
result suggests that readers should be cautious about
interpreting AI results, especially when AI is implemented
on a setting with characteristics vastly different from the train-
ing set.

A strength of our study is evaluation of readers with AI in a
data set selected from the NLST, a multicenter randomized
clinical trial in which patients had a wide spectrum of abnor-
malities that may be encountered in the clinical practice [14].
In contrast to the previous studies that used normal CXRs as
the control group, to simulate real-world practice and provide
sufficient challenge to our AI algorithm, we did not

Fig. 3 Missed lung cancers on
prior CXRs of two patients that
were detected by the AI
algorithm. The location of the
lesion is marked with a red circle.
a CXR of a woman in her 60s
who was diagnosed with lung
cancer 454 days after her baseline
imaging. The AI algorithm (b)
detected lung nodule in the left
upper lung overlapping with the
left clavicle. c CXR of a woman
in her 50s who was diagnosed
with lung cancer 747 days after
her baseline CXR. d The AI
algorithm detected a subtle lung
nodule in the left lower lung that
is overlapping with the rib
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intentionally exclude any patients with other pathologies, such
as calcified granuloma, consolidation, emphysema, and other
thoracic diseases [8–10]. Also, all radiologists and residents in
our study had access to prior screening CXRs during their
evaluation, reflecting the actual interpretation workflow.
Thus, our study has greater value in terms of applicability to
the real-word settings and further establishes the generalizabil-
ity of the results [8, 10].

There are several limitations to this study. First, although
NLST is a community cohort of participants at high risk of
lung cancer, the prevalence of lung cancer was low, and only
98 patients with lung cancer were included in our analysis. Of
these 98 patients, 75 patients had visible cancer, and seven
patients had missed lung cancer present in prior CXRs.
Because of the small number of lung cancer patients, it was
hard to achieve statistical significance, especially for assessing
detection of missed lung cancer present in prior CXRs.
Second, since we were unable to conduct observer perfor-
mance test on entire NLST data set, we conducted an observer
study data set consisting of 519 CXRs. In clinical practice, the
prevalence of lung cancer encountered may be lower than that
encountered in this reader study. Third, as pointed out in the
previous study [9], AI had lower performance in the CR im-
ages, which led to the underperformance of the AI algorithm.
The added value of AI may be greater when applied to CXRs
acquired with modern equipment. Fourth, although two
ground truth radiologists referred to all available clinical and

pathology information during the annotation, the ground truth
visibility labels were generated without paired CT images, so
they may have been inaccurate.

In conclusion, the AI algorithm improved sensitivity and
reduced false-positives for lung cancer detection for residents
and radiologists, respectively. AI can help enhance the value
of CXRs for detecting lung cancer by improving the quality of
reading for various reader groups.
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