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Abstract
Objectives Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma
(GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of
sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diag-
nostic performance of multiple radiomics-based models to differentiate GBM from PCNSL.
Methods Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed
using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permu-
tations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst
performing models were compared to assess differences in performance.
Results The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top
performingmodels (AUC: 0.961–0.977) but did show considerable variation between the best and worst performingmodels. The
top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our
study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used
T1-CE and ADC, achieving a cross-validated AUC of 0.975.
Conclusion Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as
well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those
derived from all five sequences.
Key Points
• Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL
varies considerably.

• ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model.
• Embedded feature selection models perform better than models using a priori feature reduction.
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Abbreviations
ADC Apparent diffusion coefficient
AFNI Analysis of Functional NeuroImages
ANT Advanced normalization tools
AUC Area under the curve
DSC Dynamic susceptibility contrast
DWI Diffusion weighted imaging
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FLAIR Fluid-attenuated inversion recovery
GBM Glioblastoma
GBRM Generalized boosted regression model
LASSO Least absolute shrinkage and selection

operator
LOGISMOS Layered Optimal Graph Image Segmentation

for Multiple Objects and Surfaces
ML Machine learning
MLP Multi-layer perceptron
MRI Magnetic resonance imaging
PCA Principal component analysis
PCNSL Primary central nervous system lymphoma
r-CBV Relative cerebral blood volume
ROC Receiver operating characteristic
SIFT Scale invariant feature transform
SVM Support vector machine
T1-CE T1 contrast enhanced

Introduction

Glioblastoma (GBM) and primary central nervous system
lymphoma (PCNSL) together comprise the twomost common
primary malignant brain tumors [1]. Whereas GBM accounts
for 14.6% of all brain neoplasms, PCNSL accounts for about
1.9% [2]. Even though the treatment strategies are vastly dif-
ferent, they both share overlapping clinical and imaging char-
acteristics, which makes accurate pre-operative identification
critical but challenging [3–5]. The utility of conventional and
more advance imaging sequences (including diffusion and
perfusion studies) has previously been assessed with modest
success [6–10]. However, these may not be widely available.

More recently, a number of studies (Table 1) have
attempted a radiomic-based differentiation between GBM
and PCNSL with good success [1, 3, 5, 11–22]. A number
of these were performed using machine learning (ML), which
includes a wide variety of statistical analysis algorithms [23].
The success of a ML technique depends considerably on the
amount, type and completeness of data, type of feature
selection/reduction technique, and the problem to be ad-
dressed. As such, the predictive performance of various ML
models for a specific problem can vary and remains largely
unaddressed when differentiating GBM from PCNSL. This is,
therefore, a need to compare the predictive performance of
various models to determine the best performing models for
this two-class problem. Similarly, given the heterogeneity of
prior studies, it is important to determine if individual se-
quences or a combination of sequences have equivalent or
superior performance when compared to all sequences com-
bined. This will help guide the selection of best performing
models for future studies and facilitate model selection for
larger studies using multi-institutional datasets.

In this study, we compared the predictive performance of
various ML techniques for differentiating between PCNSL
and GBM using a combination of various feature selection
and ML algorithms. The aims were to identify the best and
worst performing models, as well as to determine if accurate
distinction between these entities could be achieved using a
single sequence or required a combination of sequences for
best results.

Methods

This is a single institution retrospective study, performed post
approval of the local institutional review board. Patients were
identified using a combination of institutional cancer registries
and electronic medical records. Inclusion criteria were a path-
ologically proven diagnosis of GBM or PCNSL. Exclusion
criteria included imaging studies with motion artifacts, ab-
sence of available index MRI scan, or absence of all required
sequences (axial T1WI, T2WI, diffusion-weighted imaging
[DWI], fluid-attenuated inversion recovery [FLAIR], and
contrast-enhanced T1WI [T1-CE]). Additionally, patients
were excluded where the image pre-processing (see below)
or feature extraction was unsuccessful. This yielded a total
of 94 patients, 34 with PCNSL and 60 with GBM, who were
eventually assessed.

Image pre-processing

Post de-identification of images, the DICOM images were
converted to nifti format prior to pre-processing. Figure 1 pro-
vides an overview of the study workflow. The data were ini-
tially resampled to voxel size 1 × 1 × 5 mm3 using the AFNI
package (https://afni.nimh.nih.gov/) [24]. All sequences were
registered to T1WI using Advanced Normalization Tools
(ANTs) (http://stnava.github.io/ANTs/.) [25]. Following the
resampling and co-registration, the image intensities were
normalized to [0,255] using the feature scaling method
available in the ANT registration suite.

Tumor segmentation was performed on axial T1W CE and
FLAIR images by two radiologists (S.P., G.B.) in consensus
using an in-house developed semi-automatic tool Layered
Optimal Graph Image Segmentation for Multiple Objects
and Surfaces (LOGISMOS) that first automatically identifies
the tumor surfaces followed by an efficient “just-enough in-
teraction” with an optional surface editing step which may be
invoked if needed [26]. The T1-CE images were used to gen-
erate the masks for the enhancing disease (including internal
necrosis where present). The FLAIR images were used to
generate a mask for the entire lesion (tumor and surrounding
edema). Figure 2 shows representative examples of ROI seg-
mentation for both tumor types. The T1-CE-derived maskwas
subsequently subtracted from this mask to generate the mask
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for the FLAIR signal abnormality surrounding the tumor. This
way, two masks—one for the tumor and the other for the
surrounding FLAIR signal abnormality—were expert-
identified.

Feature extraction

For each tumor, features were extracted using two masks, one
for the tumor component (including enhancing and necrotic
tumor) and the other for the surrounding FLAIR component.
Features were extracted using PyRadiomics v3.0 [27]. Since
there were ten possible mask and sequence combinations (five

MRI sequences and two masks), on each of which 107
radiomic features were obtained, there were a total of 1070
features. For each sequence-specific model, the feature set
included 214 (2 masks × 1 sequence × 107 features) radiomic
features. Additionally, 3 limited sequence combinations were
also evaluated and included: T1-CE/ADC, T1-CE/ADC/
FLAIR, and ADC/FLAIR.

Each set of 107 features included 3D shape features (n =
14), first-order features (n = 18), gray level co-occurrence
matrix features (n = 24), gray level dependency matrix fea-
tures (n = 14), gray level run length matrix features (n = 16),
gray level size zone matrix features (n = 16), and neighboring
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Fig. 1 Overview of the current study workflow

Fig. 2 Representative examples
of the two tumor types (GBM: a–
c; PCNSL: d–f) along with ROI
segmentation for whole tumor
and FLIAR signal abnormality.
The edema mask was created
through subtraction of the T1-CE
mask from the FLAIR mask. The
dotted red line surrounding the
segmented volume (b, c, e, and f)
represents the volume of interest
as defined by the user
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gray tone difference matrix features (n = 5). The default value
for the number of bins was fixed by bin width of 25 gray
levels. In rare cases where the edema was minimal, leading
to absence of a corresponding mask, the value of the corre-
sponding feature was set to − 9999.

Feature selection

Due to the large size of the possible feature sets to be used
relative to the sample size and highly correlated variables,
feature selection is generally considered a critical piece of
the model building process. Three feature selection methods
were considered: a linear combination filter, a high correlation
filter, and principal component analysis (PCA). The linear
combination (lincomb) filter addresses both collinearity and
dimension reduction. The high correlation (corr) filter
removes variables which have a large absolute correlation.
For the models using all sequences, the highest allowable
correlation was set to 0.4 and for the models using each se-
quence separately, the threshold was set to 0.6. These thresh-
olds were chosen to sufficiently reduce the dimensionality of
the feature set for model fitting while retaining many of the
important variables. The number of components retained in
the PCA transformation was determined by specifying the
fraction of the total variance that should be covered by the
components. For the models using all sequences, this thresh-
old was set to 80% and for the models using each sequence
separately, the threshold was set to 85%, again with the goal of
sufficiently retaining as much information as possible with
enough dimension reduction to allow model fitting. Finally,
models were also run using the entire feature set without any a
priori feature reduction. These feature selection methods were
implemented using the recipes package in R version 4.0.2 [28,
29]. Prior to any feature selection, all variables were standard-
ized and missing values were imputed using mean imputation.

Data analysis

Twelve different predictive models were fit to determine the
best classifier for each feature set. These models can be cate-
gorized into three broad groups: linear classifiers, non-linear
classifiers, and ensemble classifiers. The linear classifiers used
were linear, logistic, ridge, elastic net, and LASSO regression.
The non-linear classifiers used were neural network, support
vector machine (SVM) with a polynomial kernel, SVMwith a
radial kernel, and multi-layer perceptron (MLP). Finally, the
ensemble classifiers used were random forest, generalized
boosted regression model (GBRM), and boosting of classifi-
cation trees with AdaBoost.

Each model was fit using the three feature selection tech-
niques as well as the entire feature set (full), except for the
linear regression, logistic regression, and the neural network
which cannot be fitted with the full feature set. This is because

the model parameters cannot be uniquely estimated in linear
and logistic regression models when the number of features is
much larger than the sample size. For neural network, however,
the problem is more of excessive computational requirement.

This yielded 45 possible model/feature selection combina-
tions to be fit to each of the possible feature sets. These com-
binations were evaluated for individual MRI sequences (n = 5),
a combination of sequences (T1-CE + ADC + FLAIR, T1-CE
+ ADC, and ADC+ FLAIR; n = 3), and all sequences com-
bined (n = 1). Overall, a total of 405 different models were
assessed. Predictive performance of each model was evaluated
using fivefold repeated cross-validation with five repeats. For
models with tuning parameters, important parameters were
tuned using nested cross-validation to avoid bias. The feature
selection techniques were carried out within each cross-
validated split of the data, so as not to bias the estimate of
predictive performance. Model fitting and cross-validated pre-
dictive performance were implemented using the
MachineShop and RSNNS packages in R version 4.0.2
[29–31]. Predictive performance was measured with the area
under the receiver operating characteristic curve (ROC AUC)
for interpretability. As models were formulated to predict
GBM, ROC AUC estimates the probability that a randomly
selected subject that had GBM will have a greater predicted
value than a randomly selected subject that had PCNSL.
Higher ROC AUC values indicate better predictive
performance.

To compare predictive performance between different
model/feature selection techniques and between models fit to
features from all sequences, the combination of sequences,
and individual sequences, the corrected resampled t test was
used on the resampled ROC AUC values to properly account
for the correlation arising from overlapping observations in
the training and test sets from the repeated cross-validation
procedure [32, 33]. To assess the variability in the perfor-
mance of different model/feature selection techniques, model
performance was compared between the top performing mod-
el and the top and bottom five models in each sequence cate-
gory (Table 2; also Supplementary Table 3). All p values were
adjusted for multiple comparisons using the false discovery
rate adjustment [34].

Results

A total of 94 patients were studied, 34 with PCNSL (36.2%)
and 60 with GBM (63.8%). Further details on patient demo-
graphics, scanner types, and typical scanning parameters at
authors’ institute are provided in Supplementary Table 1.
The mean cross-validated ROC AUC for the best and worst
five models, using all sequences, individual sequences, and a
combination of sequences is provided in Table 2. Figure 3
shows the mean ROC AUC for all models across all feature
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Table 2 Comparison of AUC values for the highest and lowest five
models when using all sequences, individual sequences, and a
combination of sequences. The models are ranked based on mean and

standard deviation (SD) of AUC. Models with significantly lower perfor-
mance (p < 0.05) when compared to the best performingmodel have been
marked with (*)

Top performing models Lowest performing models

All sequences combined

Rank Model Feature selection AUC mean (SD) Rank Model Feature selection AUC mean (SD)

1 GBRM full 0.972 (0.033) 41 LASSO lincomp *0.666 (0.087)

2 LASSO full 0.967 (0.032) 42 logistic corr *0.642 (0.147)

3 AdaBoost full 0.964 (0.032) 43 LASSO corr *0.567 (0.102)

4 Enet full 0.963 (0.024) 44 linear lincomp *0.513 (0.181)

5 RF full 0.961 (0.043) 45 logistic lincomp *0.508 (0.151)

T1WI only

1 RF corr 0.973 (0.027) 41 SVM poly lincomp *0.813 (0.084)

2 LASSO full 0.964 (0.037) 42 linear corr *0.682 (0.133)

3 GBRM corr 0.961 (0.041) 43 logistic corr *0.639 (0.129)

4 Enet full 0.953 (0.042) 44 linear lincomp *0.591 (0.14)

5 AdaBoost corr 0.947 (0.050) 45 logistic lincomp *0.571 (0.134)

T2WI only

1 GBRM full 0.959 (0.037) 41 logistic pca *0.83 (0.086)

2 RF full 0.953 (0.043) 42 linear corr *0.687 (0.173)

3 RF corr 0.948 (0.046) 43 logistic corr *0.687 (0.157)

4 GBRM corr 0.945 (0.047) 44 linear lincomp *0.59 (0.121)

5 SVM poly full 0.941 (0.049) 45 logistic lincomp *0.58 (0.119)

FLAIR only

1 LASSO full 0.968 (0.036) 41 SVM poly lincomp *0.807 (0.107)

2 Enet full 0.963 (0.038) 42 linear corr *0.64 (0.127)

3 RF full 0.961 (0.037) 43 logistic corr *0.631 (0.132)

4 GBRM full 0.957 (0.044) 44 logistic lincomp *0.532 (0.144)

5 RF corr 0.938 (0.05) 45 linear lincomp *0.529 (0.153)

ADC only

1 GBRM full 0.963 (0.031) 41 GBRM pca *0.845 (0.101)

2 RF full 0.963 (0.03) 42 linear corr *0.694 (0.127)

3 RF corr 0.961 (0.035) 43 logistic corr *0.677 (0.126)

4 AdaBoost full 0.96 (0.044) 44 linear lincomp *0.522 (0.148)

5 AdaBoost corr 0.955 (0.042) 45 logistic lincomp *0.506 (0.123)

T1-CE only

1 AdaBoost full 0.968 (0.031) 41 GBRM lincomp *0.838 (0.08)

2 GBRM full 0.968 (0.037) 42 linear corr *0.724 (0.128)

3 RF full 0.967 (0.027) 43 logistic corr *0.689 (0.119)

4 AdaBoost corr 0.954 (0.052) 44 linear lincomp *0.527 (0.189)

5 RF corr 0.954 (0.04) 45 logistic lincomp *0.508 (0.177)

Sequence combinations: T1-CE + ADC + FLAIR

1 AdaBoost full 0.977 (0.03) 41 LASSO corr *0.764 (0.143)

2 GBRM full 0.972 (0.032) 42 linear corr *0.705 (0.147)

3 RF full 0.971 (0.028) 43 logistic corr *0.677 (0.146)

4 LASSO full 0.963 (0.037) 44 linear lincomp *0.527 (0.189)

5 AdaBoost corr 0.96 (0.053) 45 logistic lincomp *0.508 (0.177)

T1-CE + ADC

1 AdaBoost full 0.975 (0.028) 41 LASSO corr *0.833 (0.121)

2 RF full 0.975 (0.029) 42 linear corr *0.815 (0.113)
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combinations, when built using data from all five MRI
sequences.

In general, most of the high performing models, regard-
less of whether they were derived from all sequences, in-
dividual sequences, or a combination of limited sequences,
were the ones using full feature set without any a priori
feature reduction. On the other hand, most of the worst
performing models used the linear combination feature re-
duction strategy. The model performance among the top 5
models was comparable across categories, and the
corrected resampled t test with false discovery rate adjust-
ment did not indicate any differences between the top
models and the top performing model (AUC 0.977). The
top performing model was however significantly better
when compared against the bottom five models in each
category. The adjusted p values and the overall perfor-
mance of the 45 models when using all sequences, T1-
CE, and T1-CE/FLAIR/ADC-derived models are provided
in Supplementary Data (Supplementary Tables 3–6).

The best performing model used only a limited combina-
tion of sequences (T1-CE/FLAIR/ADC) and achieved an
AUC of 0.977. This was comparable to the model using all
five sequences as input, which had the best cross-validated
AUC of 0.972 (p value of 0.790 when compared with best
performing model). Similarly, the best performing models
using only T1-CE/ADC (mean AUC of 0.975) and using only
FLAIR/ADC (mean AUC of 0.971) also had comparable per-
formance to the best performing model. Table 3 lists the over-
all top five models of the analysis, along with the performance
metrics.

Discussion

Our study suggests that the model performance for a
radiomics-based differentiation between GBM and PCNSL
can vary significantly, based on the chosen model, although
several best predictive models have comparable performance.

Table 2 (continued)

Top performing models Lowest performing models

All sequences combined

Rank Model Feature selection AUC mean (SD) Rank Model Feature selection AUC mean (SD)

3 GBRM full 0.972 (0.031) 43 logistic corr *0.757 (0.101)

4 AdaBoost corr 0.966 (0.039) 44 linear lincomp *0.527 (0.189)

5 GBRM corr 0.965 (0.044) 45 logistic lincomp *0.508 (0.177)

ADC + FLAIR

1 GBRM full 0.971 (0.036) 41 LASSO corr *0.771 (0.151)

2 RF full 0.969 (0.036) 42 logistic corr *0.71 (0.103)

3 AdaBoost full 0.958 (0.048) 43 linear corr *0.686 (0.142)

4 AdaBoost corr 0.957 (0.058) 44 linear lincomp *0.522 (0.148)

5 LASSO full 0.953 (0.032) 45 logistic lincomp *0.506 (0.123)

Fig. 3 Comparison of mean
cross-validated AUC for various
model-feature combinations
when using data from all five
MRI sequences
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Interestingly, the best performing models were those that per-
formed embedded feature selection fit to the full texture fea-
ture set, as opposed to models using any of the a priori feature
reduction strategies. Another important observation is that
models derived from a limited combination of sequences
may perform as well as the models using data from all five
sequences. These observations are relevant not only in terms
of highlighting the variability across machine learning models
for the same problem but also in terms of evaluating the ne-
cessity of a priori feature reduction which is almost routinely
performed. Finally, the excellent performance of a limited
sequence combination may allow for a less computationally
intensive workflow that may be easier to integrate in clinical
practice.

In the current study, of the three feature selection/reduction
strategies, models using PCA overall performed better while
the lincomb-based models performed the worst. None of these
however performed as well as models using full feature set
with embedded feature selection. It is pertinent to note here
that PCA leads to the fewest number of features included in
the models and the linear combination filter leads to the larg-
est. As the number of tumors in the data is small relative to the
number of features, it makes sense that feature selection
methods leading to smaller feature sets would perform better,
particularly for those models which do not do any embedded
feature selection, such as the linear, logistic, neural network,
and SVMmodels. However, any feature selection filter would
result in some loss of information. The impact of loss of in-
formation is evident when evaluating performance of embed-
ded feature selection methods of the elastic net, LASSO, ran-
dom forest, AdaBoost, and GBRM models which show poor
predictive performance with feature reduction (AUC: 0.666–
0.738) and considerably improved performance when using
full feature set (AUC: 0.961–0.972). Of note, both the ensem-
ble models and penalized regression models like GBRM or
LASSO do perform feature selection. However, the feature
selection in such cases is part of the model fitting process,
unlike other models which require a priori feature reduction
using some form of feature selection strategy.

In the analysis using all sequences, the GBRM classifier
had an observed ROC AUC of 1.000 and mean cross-
validated ROC AUC of 0.972, while the LASSO classifier

had an observed ROC AUC of 1.000 and mean cross-
validated ROC AUC of 0.967. The absence of a compelling
drop in performance and the use of nested cross-validation for
tuning parameters would argue against over-fitting of models
in our analysis. The low Brier scores of multiple top
performing models also attest to the robustness of results in
our case. Similarly, the models using a combination of se-
quences also had excellent cross-validated performance, when
using full features without any specified feature reduction
strategy. This is an interesting observation since most of the
prior studies have consistently used some form of feature re-
duction strategy, varying between principal component anal-
ysis, recursive random forest, and minimum redundancy,
maximum relevance [14, 17, 22]. Our findings suggest that
feature reduction, thoughmeant to reduce redundant and high-
ly correlated features, may not always be ideal and can nega-
tively impact model performance. Embedded feature selection
in the model, on the other hand, may perform better.

Another important observation from our study is that infor-
mation derived from a limited combination of sequences may
suffice to differentiate GBM from PCNSL. In fact, none of the
overall top five performing models used the full feature set
(Table 3). It is pertinent to note here that all five models, at the
very least, consistently used post-contrast imaging and ADC
map–derived texture features. This is relevant since it could
help reduce the required computational effort and time. We
found the model using T1-CE, ADC, and FLAIR to have the
highest mean cross-validated AUC of 0.977, though other
combinations (all sequences, T1-CE + ADC, ADC +
FLAIR) also had comparable performance. In this regard,
the model performance using only the ADC and FLAIR im-
ages is worth noting since it implies that excellent accuracy
could be obtained without contrast administration, a finding
that may be useful for patients who are unable to get a
contrast-enhanced study. Almost all prior studies dealing with
the same two-class problem, except for Wang et al, have used
a contrast-enhanced sequence for analysis [18]. The top
radiomics features and their relative importance for the best
overall performing model are provided in Supplementary
Table 2. Most of the top-ranking features were second-order
features and derived from the T1-CE images. A combination
of sequences, in general, did better than individual sequences

Table 3 Top five model-feature combinations with observed and cross-validated AUC values and cross-validated performance metrics

Rank Sequence(s) Model Feature selection Observed AUC CV AUC CV Brier CV accuracy CV sensitivity CV specificity

1 CE + A + F AdaBoost full 1.000 0.977 0.082 0.934 0.970 0.871

2 CE + A AdaBoost full 1.000 0.975 0.090 0.909 0.947 0.844

3 CE + A RF full 1.000 0.975 0.068 0.917 0.957 0.849

4 CE + A + F GBRM full 1.000 0.972 0.054 0.940 0.977 0.877

5 CE + A GBRM full 1.000 0.972 0.074 0.909 0.940 0.855
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alone, with the maximal AUC achieved for T1-CE and
FLAIR, both with mean cross-validated AUC of 0.968.

Overall, multiple machine learning–based models in our
study achieved excellent accuracy which was better than mul-
tiple previously reported studies where the AUC varied be-
tween 0.877 and 0.956, and comparable to other studies by
Yun et al, Nakagawa et al, and Chen et al (see Table 1). Of the
multiple previously reported studies, only Yun et al reported
the model performance across three different models, and
using three feature reduction techniques. [22]. Their best
performing machine learning model used generalized linear
model boosting with backward feature elimination as a feature
reduction technique, achieving an AUC of 0.943 which is
inferior to the best performing model in the current study
(AUC of 0.977). However, the best overall performing model
in their study was MLP (AUC of 0.991). In our analysis, even
though MLP-based models showed high performance (mean
AUC: 0.913–0.933), they were not among the top 5
performing models in any category. This could possibly be
secondary to the imaging data used. For example, all MRI
studies in their cohort were done on a 3-T magnet with a slice
thickness of 1 mm for the post-contrast images. The magnet
strength and image resolution are known to affect texture fea-
tures and could account for some of these differences.

Chen et al also achieved excellent results (AUC of 0.982–
0.991) for the same two-class problem using features derived
from T1-CE images [3]. However, unlike general radiomic
features, which are derived from image features such as inten-
sity, shape, wavelet, or texture parameters, they extracted
radiomic features using scale invariant feature transform
(SIFT), which may explain the slight variability in results
compared to our current study. Nakagawa et al were also able
to achieve a similar model performance (AUC of 0.980) in
their study using eXtreme gradient boosting (XGBoost), and a
combination of T1-CE, T2WI, ADC, and rCBVmaps derived
from dynamic susceptibility contrast (DSC)–enhanced perfu-
sion MRI [16]. However, DSC imaging may not be widely
available. Our results, which use conventional and routinely
available sequences, are more pragmatic.

Limitations of our study include its retrospective nature
and a relatively small sample size. Given this limitation, it
is quite possible that the model performance may vary
with additional training data. Another limitation would
be the absence of external validation cohort which would
help determine the generalizability of our findings. Unlike
GBM, there are no freely available data repositories for
PCNSL patients to our knowledge which could be readily
used. We also did not compare our results to expert hu-
man readers. However, multiple prior studies have com-
pared machine learning models with human readers and
noted the AUC of the expert human readers to vary be-
tween 0.79 and 0.94, indicating that the top performing
machine learning models would likely outperform expert

human readers [11, 16, 20]. Future studies should evalu-
ate the combined accuracy of human readers and best
performing machine learning models. Finally, despite the
number of different models that were evaluated, we did
not assess deep neural networks since this technique is
more computationally demanding and data hungry.
Nevertheless, our study evaluates the performance of 45
different feature machine learning techniques and pro-
vides additional insights into factors that may determine
final model performance. Other relative strengths of the
study include a documented imaging protocol, use of fea-
ture selection techniques, discrimination and calibration
statistics, pathological confirmation in all cases, nested
cross-validation, and potential clinical utility, all of this
contribute to the radiomic quality score as proposed pre-
viously [35].

Conclusion

Our findings suggest that excellent discrimination between
PCNSL and GBM can be achieved through machine learning.
Additionally, features derived from a limited number of se-
quences may perform as well as features derived from multi-
ple sequences. Another pertinent observation is that models
without any a priori feature reduction strategy generally out-
perform models derived post-feature reduction. Finally, the
model performance varies considerably, based on the feature
selection technique and the model used. Future studies should
focus on a more extensive evaluation of different machine
learning models to determine the best possible combination
of feature selection and learning model for a more optimized
model performance.
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