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Abstract
Objective To automate the segmentation of whole liver parenchyma on multi-echo chemical shift encoded (MECSE) MR
examinations using convolutional neural networks (CNNs) to seamlessly quantify precise organ-related imaging biomarkers
such as the fat fraction and iron load.
Methods A retrospective multicenter collection of 183 MECSE liver MR examinations was conducted. An encoder-decoder
CNN was trained (107 studies) following a 5-fold cross-validation strategy to improve the model performance and ensure lack of
overfitting. Proton density fat fraction (PDFF) and R2* were quantified on both manual and CNN segmentation masks. Different
metrics were used to evaluate the CNN performance over both unseen internal (46 studies) and external (29 studies) validation
datasets to analyze reproducibility.
Results The internal test showed excellent results for the automatic segmentation with a dice coefficient (DC) of 0.93 ± 0.03 and
high correlation between the quantification done with the predicted mask and the manual segmentation (rPDFF = 1 and rR2* = 1;
p values < 0.001). The external validation was also excellent with a different vendor but the samemagnetic field strength, proving
the generalization of the model to other manufacturers with DC of 0.94 ± 0.02. Results were lower for the 1.5-TMR same vendor
scanner with DC of 0.87 ± 0.06. Both external validations showed high correlation in the quantification (rPDFF = 1 and rR2* = 1;
p values < 0.001). In both internal and external validation datasets, the relative error for the PDFF and R2* quantification was
below 4% and 1% respectively.
Conclusion Liver parenchyma can be accurately segmented with CNN in a vendor-neutral virtual approach, allowing to obtain
reproducible automatic whole organ virtual biopsies.
Key points
• Whole liver parenchyma can be automatically segmented using convolutional neural networks.
•Deep learning allows the creation of automatic pipelines for the precise quantification of liver-related imaging biomarkers such
as PDFF and R2*.

•MR “virtual biopsy” can become a fast and automatic procedure for the assessment of chronic diffuse liver diseases in clinical
practice.
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Abbreviations
AI Artificial intelligence
ASSD Average symmetric surface distance
CNN Convolutional neural network
DC Dice coefficient
FDR False discovery rate
MECSE Multi-echo chemical shift encoded
MSD Maximum surface distance
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
PDFF Proton density fat fraction
RVD Relative volume difference
VOE Volumetric overlap error

Introduction

On the assessment of chronic diffuse liver diseases, such as
non-alcoholic fatty liver disease (NAFLD), non-alcoholic
steatohepatitis (NASH), or iron overload, magnetic resonance
(MR) imaging has an important role in the evaluation of pa-
renchymal deposits, including fat and iron [1]. NAFLD and
NASH may progress towards increasing stages of hepatic fi-
brosis and, finally, to cirrhosis and HCC development [2].
Proton density fat fraction (PDFF) and R2* relaxation rate
are used as reproducible quantitative metrics, obtained from
MR images, for steatosis and iron concentration estimations,
respectively. MR imaging biomarkers take an important role
in the diagnosis and treatment monitoring of patients suffering
from chronic diffuse liver diseases [3–6], offering additional
information to the qualitative diagnosis made by radiologists.

Liver biopsy has important limitations related to the invasive-
ness of the procedure, the sampling bias due to the heterogeneous
distribution of different histological features within the liver pa-
renchyma, the intra- and inter-observer variability of pathological
grading system, and the large patients’ unacceptance and with-
drawal [7–9]. On the other hand, the so-called virtual biopsies,
carried out throughMR images and computational methods, can
be performed multiple times and evaluate the heterogeneous dis-
tributions with high patients’ acceptance.

Multi-echo chemical shift–encoded gradient-echo
(MECSE) MR images allow for the simultaneous and precise
quantification of fat and iron within the liver parenchyma [4,
5, 10]. PDFF and R2* measurements are highly related to the
histopathological grading systems, allowing MR virtual biop-
sy to become a common procedure performed in clinical prac-
tice for the assessment of chronic diffuse liver diseases [4, 5].

Liver PDFF and R2* quantification is usually obtained
from small regions of interest (ROI); however, there is a lack
of standardization when placing the ROIs across the liver (dif-
ferent sizes, locations, and number), introducing subsampling
biases and subjective region selection, increasing variability

across sites and studies, and reducing the reproducibility and
repeatability of the imaging biomarkers quantified [11, 12].
To obtain an estimation of the patient liver status and to grade
the heterogeneity of fat or iron distribution, MR virtual biop-
sies should evaluate the imaging biomarkers across the whole
liver in a voxel-wise approach. Liver segmentation is nowa-
days done in a manual or semi-automatic way, hindering ra-
diologists’ workflow.

The main difficulties for automatic segmentation of the
liver in these MR images are related to its similarities with
the surrounding organs, aggravated by the low image spatial
resolution and large slice thickness, which causes partial vol-
ume effects. Moreover, diseased livers have different shapes,
morphologies, and sizes among patients.

Traditionally, model-based [13], atlas-based [14–16], and
level set–based [17, 18] methodologies have been used to seg-
ment the liver on both MR and CT images. Unfortunately,
these methods entail high computation costs and long execu-
tion times, being a challenge to generate an atlas model able to
comprehend the huge variability in liver morphologywithin the
population, failing in the generalization to all liver signal inten-
sities and shapes.

Learning-based methodologies [19–25] have been proposed
to automate some tasks traditionally done by radiologists [26].
Regarding organ segmentation, artificial intelligence (AI) and
mainly convolutional neural networks (CNNs) are able to model
all variations found on a training dataset and to perform an au-
tomatic segmentation in some seconds without high computa-
tional needs. Up to now, most of the developed learning-based
CNN methods for liver segmentation are built using computed
tomography (CT) images [19–23]. The ones developed overMR
examinations [22–25] used different sequences including
diffusion-weighted [24], T2-weighted [23, 24], and dynamic
contrast-enhanced [23, 25] exams.

Our hypothesis is that MECSE-MR images, needed to pre-
cisely quantify liver fat and iron deposits, can be used for
whole liver segmentation by using a CNN solution to auto-
matically extract imaging biomarkers. The aim of this study is
to develop and validate, with both internal and external inde-
pendent cases, a novel CNN-basedmodel trained to generate a
whole liver virtual dissection and quantification.

Materials and methods

A retrospective multicenter and international collection of 182
patients with suspected diffuse liver disease and a 2D-
MECSE-MR examination was conducted (Table 1), only pa-
tients without intrahepatic lesions were included. A first co-
hort of 153 studies, from two different centers, was selected to
create and test the model. A second cohort included 29 studies
from two independent centers in different countries for exter-
nal validation purposes.
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Dataset preparation

All the studies were manually segmented by a radiologist with
more than 5 years’ experience on abdominal MR imaging.
The first echo time was selected as the reference image for
manual segmentation due to its higher signal-to-noise ratio
[23]. The liver parenchyma was delineated, avoiding the gall-
bladder and large vessels.

The different splits of the whole dataset required for the de-
velopment and validation of the model are illustrated in Fig. 1.

Convolutional neural network architecture

The proposed architecture was an encoder-decoder CNN [27]
with four convolutional blocks on each branch.

To increase the network generalization and reduce overfitting,
a normalization of the activations was applied after each
convolutional layer including a batch normalization layer [28].

Furthermore, to achieve an acceptable boundary detection
and a faster convergence of the network, a deep supervision
[29, 30] path was included. 1 × 1 convolutional layers were
added at the output of each decoder level and summed to
achieve the final activation map.

Preprocessing and data augmentation

All the images were resampled to a shape of 192 × 192 by
applying a bicubic interpolation and normalized to (0–1)
range.

To avoid overfitting and to increase the network generaliza-
tion, on-the-fly data augmentation was applied during the train-
ing process. The transformations applied include rotations be-
tween ± 5° and Gaussian noise addition (μ = 0; σ є [0.001,
0.01]) to the training images.

Model training and validation/tuning

To analyze the generalization and robustness of the designed
architecture to new unseen data and to tune some CNN
hyperparameters, a 5-fold cross-validation strategy was
followed.

The training was performed along 300 epochs with a batch
size of 40 images. The loss function to optimize on each itera-
tion was based on the Dice coefficient (DC) [31]. An ADAM
optimizer [32] was used during the training process. The initial
learning rate was set to 1e-5 and the remaining hyperparameters
were kept with their default values [32].

Table 1 Acquisition protocols of
MR imaging studies used for both
the model development and the
external validation. A total of 4
MR scanners were used, one per
center. The first column includes
information from scanners the
two scanners used at two different
hospitals (Spain and Portugal) in
the model development and test
dataset; the second and third
columns include the acquisition
protocols used for the external
validation with two other MR
scanners at two distant sites
(Argentina and Chile)

Characteristic Value

Model development and test External validation

Institution 1 Institution 2

Country Spain and Portugal Argentina Chile

Patients, n 153 19 10

Male, female, n 81, 73 12, 7 6, 4

Age in years, median (range) 56 [48–63] 53 [27–66] 59.5 [26–79]

Manufacturer Philips Siemens Philips

Model name Achieva Skyra Achieva

Magnetic field, T 3 3 1.5

Flip angle, ° 10 10 5

Repetition time, s 9 – 12.04 32 – 120 15

Pixel bandwidth, Hz/pixel 2132 – 2880 1565 2681

Matrix size 160 × 160 – 224 × 224 256 × 216 192 × 192

Number of slices 24–34 4–5 31–40

Pixel spacing, mm2 1.7 × 1.7–2.0 × 2.0 1.6 × 1.6 2.3 × 2.3

Spacing between slices, mm 6.0–7.3 15.0–17.1 5–5.2

Slice thickness, mm 6–7 7–8 10–10.5

Number of echoes 12 6, 12 16

First echo time, s 0.9–1.0 1.0–1.2 1.1–1.2

Last echo time, s 7.7–8.7 9.7–14.4 13.8

Spacing between echoes, s 0.6–0.7 1.2–1.4 0.8

Acquisition duration, s 13.51–35.22 14.36–27.48 15.26–19.09

PDFF, median [range], % 5.6 [0–28.4] 7.2 [0.4–22.5] 6.9 [4.0–19.9]

R2*, median [range], s-1 47.77 [28.6–200.2] 66.1 [47.9–248.6] 33.7 [25.6–47.3]
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PDFF and R2* quantification

Both PDFF and R2* were quantified voxel-wise in all MR
studies using QUIBIM Precision – Liver fat and iron v1.0.0
analysis module (QUIBIM), approved as medical device with
CE mark class IIa. The median liver value was used for each
patient. Different ranges to differentiate steatosis and siderosis
grades were defined following the thresholds introduced in [4]:

& Steatosis (PDFF): none (< 4.8%), low (4.8–8.5%), mild
(8.6–12.9%), high (> 12.9%).

& Siderosis (R2*): none (< 42 s-1), mild (42–91 s-1), high
(> 91 s-1).

To evaluate automatic segmentation performance, PDFF
and R2* were quantified over both CNN-based and manual
liver masks.

Fig. 1 Datasets for the different training, testing, and validation of the model

Fig. 2 PDFF and R2* distributions on the different subsets created from the whole dataset
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Heterogeneity assessment

The test dataset was used to analyze if the trained model was
able to generalize to cases in which fat and/or iron were dis-
tributed heterogeneously. Four circular ROIs (7cm2) were
drawn across the liver (two ROIs within the left lobe and
two ROIs within the right lobe) avoiding non-liver parenchy-
ma regions. The median value of each ROI was calculated and
the difference between the lowest and highest values was ex-
tracted (ΔhDFF, ΔR2*).

Testing and performance evaluation

Seventy-six previously unseen cases were used to evaluate the
network performance. After image normalization, all MR series
were segmented with a 2D slice-by-slice approach using the
trained network and stacked to finally obtain the whole liver
mask. At the CNN output, a probability liver map was obtained.
To increase robustness in the quantification, amore conservative
segmentation was chosen ensuring that all the segmented voxels
belong to liver parenchyma, without worrying if some peripher-
al voxels corresponding to the liver weremissed. For that, all the
voxels with a probability higher than 90%were defined as liver.

After segmentation, along the 3D mask, some small isolat-
ed segmented regions occasionally appeared. Therefore, all
regions with a volume lower than the biggest component were
removed, leaving a single large liver region.

Finally, to evaluate the performance and generalization of
the trained network, different parameters were calculated to
measure the differences between the CNN-based and the man-
ual (ground truth) masks: dice coefficient (DC), volume over-
lap error (VOE), relative volume difference (RVD), average
symmetric surface distance (ASSD), maximum surface dis-
tance (MSD), false discovery rate (FDR), Spearman correla-
tion index (r) for liver volume, PDFF and R2*, and relative
error in the quantification of PDFF and R2*.

Results

PDFF and R2* quantification

For each subset of data, the percentage of patients belonging
to each steatosis and siderosis grade was analyzed using the
median values obtained with the manual masks and the de-
fined thresholds. Different PDFF and R2* distributions are
found along the subsets (Fig. 2); therefore, the reproducibility
of the model and its generalization to different steatosis and
siderosis grades were analyzed.

Heterogeneity assessment

When analyzing PDFF and R2* on four different ROIs across
the liver, aΔPDFF of 4.01 ± 1.75% (mean ± SD) and aΔR2*
of 11.13 ± 7.45s-1 were obtained, being the maximum differ-
ence 8.57% for the PDFF and 38.56s-1 for the R2*. Whether
the steatosis and/or siderosis grades are associated with each
patient changed depending on the ROI value used was ana-
lyzed. Fifty-five of the cases suffered a steatosis grade change,
while 33% had a change in the siderosis grade. Therefore,
there are some cases in the test dataset where PDFF and/or
R2* were distributed heterogeneously and the generalization
to these cases was proved.

Model validation

The network robustness to different datasets was evaluated
comparing the DC calculated over the training and tuning-
validation datasets on each fold of the 5-fold cross-validation.
Table 2 shows, on each fold, the highest mean DC obtained
over the validation dataset and its corresponding value over
the training dataset. The DC showed similar values along the
different folds in both datasets, while maintaining similar re-
sults on each fold independently.

Model testing

The mean, standard deviation, and median values of the dif-
ferent metrics are summarized in Table 3. The median DCwas
94% with a FDR of 4%, meaning that the number of non-liver
segmented voxels was minimized while maintaining a good
segmentation performance.

Furthermore, a low relative error in both PDFF and R2*
quantification was obtained, with mean ± SD values of 2.8 ±

Table 2 Highest mean dice coefficient obtained on each fold from a
cross-validation training over both training and internal validation images
using the training-validation dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Validation dice coefficient (%) 95.05 95.17 95.26 94.92 95.38

Training dice coefficient (%) 98.07 98.02 98.14 97.87 97.87

Table 3 Results obtained for the
segmentation assessment over the
testing dataset using a threshold
of 0.9

DC VOE RVD ASSD (mm) MSD (mm) FDR

Median 0.94 0.11 0.05 1.56 26.53 0.03

Mean ± STD 0.93 ± 0.03 0.13 ± 0.06 0.06 ± 0.05 1.87 ± 1.12 27.44 ± 8.96 0.04 ± 0.02
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3.25% and 0.59 ± 0.52% and median values of 1.4% and
0.47%, respectively.

PDFF and R2* correlations between the results obtained
when analyzing the liver using the manual segmentation and
the CNN mask are shown in Fig. 3 (upper row), showing a
perfect correlation on both components (PDFF and R2*: r = 1,
p < 0.001). The correlation between the liver volumes is also
represented, obtaining a correlation value of r = 0.98
(p < 0.001).

Bland-Altman plots (Fig. 3, lower row) show the difference
in the quantification of liver volume, PDFF, and R2*. These
parameters show a low bias (volume: 0.07L, PDFF: 0.12%
and R2*: 0.27s-1) and narrow limits of agreement (volume:
[- 0.11 to 0.26] L, PDFF: [- 0.12 to 0.36]% and R2*: [- 0.18 to
0.71]s-1). Similar differences are obtained along the whole
spectrum for each variable (no differences are seen between
low and high volume, PDFF, and R2* values).

Figure 4 illustrates three different test studies. As seen,
large vessels, such as the inferior vena cava, were excluded
from the predicted segmentation mask.

External validation

The reproducibility of the trained model was evaluated using
an additional MR dataset from different centers and scanners

(Table 4). The results obtained with a 1.5-T scanner are lower
than those obtained with a 3-T scanner (DC: 0.93 ± 0.03
Philips 3T, 0.87 ± 0.06 Philips 1.5T). However, although the
model was trained with Philips MR studies, the results with
the Siemens scanner were higher (DC: 0.93 ± 0.03 Philips,
0.94 ± 0.02 Siemens).

In the assessment of PDFF and R2* quantification, a low
relative error was seen. At institution 1, the mean ± SD relative
error was 3.24 ± 3.93% for the PDFF and 0.80 ± 0.85% for the
R2*, while the median values were 1.99% for the PDFF and
0.53% for the R2*. At institution 2, the mean ± SD values
were 3.42 ± 3.99% for the PDFF and 0.86 ± 0.76% for the R2*
and the median values were 1.96% for the PDFF and 0.73%
for the R2*.

Figure 5 shows the correlation between the results obtained
in the liver volume, PDFF, and R2* quantification, showing a
nearly perfect correlation between the results obtained with

Fig. 3 Correlation analysis over the testing dataset for the liver volume
(left), PDFF (middle), and R2* (right) quantification when comparing the
results obtained when using the ground truth and the predicted segmen-
tationmask. In the upper rows, the correlation betweenmanual-based and
automatic-based quantitative data is represented. In the bottom rows,

Bland-Altman plots to compare both variables of each parameter are
included. Within the correlation images, in x- and y-axes respectively,
the histogram of the variables obtained with the ground truth and the
CNN predicted mask is represented

�Fig. 4 Segmentations obtained on three different test cases at different
anatomical levels. In yellow the CNN predicted segmentation mask is
shown and in red the contour of the ground truth is represented. a
Results in a study from one of the centers used for the model
development. b Results in a study from the other center used for the
model development. c Performance on a study which belongs to a
patient with partial hepatectomy
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both masks. At institution 1, the correlation between volume
values was r = 0.96 (p < 0.001), while at institution 2, it was
r = 0.88 (p < 0.001). At both institutions, both PDFF and R2*
showed a perfect correlation (r = 1; p < 0.001). A Bland-
Altman analysis was also conducted to analyze the differences
in the quantification of the three parameters. For all the cases,
the results showed a low bias value and narrow limits of
agreement. In addition, similar values are obtained in the
whole spectrum for each parameter.

The mask obtained on a study from each center is repre-
sented in Fig. 6.

Processing time

The overall processing time for the whole 3D liver CNN seg-
mentation and quantification was 26 ± 6 s (mean ± SD).

Discussion

A novel methodology for an automatic vendor and field
strength–neutral segmentation of the liver parenchyma on
low-contrast MECSE-MR images based on CNN has been
proposed. This automatic segmentation allows the quantifica-
tion of fat (PDFF) and iron (R2*) in the assessment of diffuse
liver diseases.

Different learning-based models have been reported for
liver segmentation on a variety of MR series [22–25].
However, only one publication used a MECSE-MR sequence
[22] with a DC of 0.93 ± 0.04, the same as us in our testing
dataset. Although an external validation with different MR
scanners was also performed, no results per scanner were pro-
vided. The mean DC reported in [22] for the external valida-
tion was 0.92 ± 0.05, while in our external validation, we
achieved a mean DC of 0.87 ± 0.06 in a Philips 1.5-T scanner
and 0.94 ± 0.02 in a Siemens 3-T scanner.

Previous studies focused on the maximization of the segmen-
tationmetrics, not focusing on using themask to extract imaging
biomarkers. The main objective of our method was achieving
the highest accuracy in liver segmentation reducing false-
positive areas to avoid errors and obtain the highest precision
on PDFF and R2* quantification. Accordingly, the obtained

livermask has to be accurate but conservative, without including
neighbor structures such as gallbladder or large vessels, even at
the cost of losing small peripheral liver areas. The results obtain-
ed in this study show a high correlation and a quite low relative
error when comparing the PDFF andR2* liver values quantified
using the manual and the CNN-based mask.

A study by Stocker et al [33] shows the differences obtain-
ed when quantifying PDFF and R2* using an in-house auto-
matic tool for liver segmentation and quantification. When
comparing the Bland-Altman plots, narrower limits of agree-
ment were obtained for both PDFF and R2* in our study,
meaning that the differences between the results from the
manual and the automatic tools were lower in our solution.

Noteworthily, the reproducibility of the developed model
was analyzed using MECSE-MR studies from external cen-
ters with different scanners from the ones used during train-
ing-tunning. CNN-based models are known to offer different
results when small changes are applied to the input images
[34, 35], being very sensitive to training data properties. For
this reason, we constructed a dataset covering a large popula-
tion spectrum, from different centers and scanners, applying
different preprocessing techniques such as data augmentation
and image normalization to improve the reproducibility of the
model.

The lower precision obtained with the 1.5-T MR scanner
can be related to the fact that these opposed-phase images
were acquired with a lower in-plane resolution (2.3 × 2.3
mm2) and a higher slice thickness (10-10.5 mm), aggravating
partial volume effects and, therefore, making difficult tissue
differentiation. To increase the model generalization to these
acquisitions, the CNN model should be further tuned and
retrained with images from scanners with lower field strength
magnets and lower image resolution. Another optionwould be
the application of recently published solutions to perform a
manufacturer shift using different CNN-based style transfer
applications based on generative adversarial networks
(GANs) [36]. However, when comparing the PDFF and R2*
values quantified from the manual ground truth and the pre-
dicted mask, the high correlation between values and the low
relative error in the quantification foster its applicability in
clinical practice. Additionally, the CNN solution showed gen-
eralization to other manufacturers; the results obtained with

Table 4 Results obtained over the
external validation dataset for the
segmentation assessment
differentiated by the two different
international centers. Upper rows:
institution 1 (Siemens 3T);
bottom rows: institution 2 (Philips
1.5T)

DC VOE RVD ASSD (mm) MSD (mm) FDR

Institution 1 (Siemens, 3T)

Median 0.95 0.09 0.06 1.06 25.70 0.02

Mean ± STD 0.94 ± 0.02 0.11 ± 0.04 0.07 ± 0.05 1.10 ± 0.60 27.32 ± 9.67 0.02 ± 0.01

Institution 2 (Philips, 1.5T)

Median 0.86 0.24 0.08 3.88 28.77 0.07

Mean ± STD 0.87 ± 0.06 0.22 ± 0.10 0.12 ± 0.11 3.83 ± 2.02 37.43 ± 16.71 0.08 ± 0.04
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Fig. 5 Differences between the liver volume (left), PDFF (middle), and
R2* (right) values obtained using the ground truth and the CNN predicted
mask at institution 1 and institution 2. Within each institution, the upper
row shows the correlation analysis between both values and the bottom

row contains the Bland-Altman plots. In the correlation images, in x- and
y-axes respectively, the histogram of the variables obtained with the
ground truth and the CNN predicted mask is represented
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Siemens images were better than those obtained with Philips
scanner. It is also relevant to note that the training and internal
validation processes were conducted using images from Spain
and Portugal (Europe), while the external validation faced
studies from Argentina and Chile (South America), fostering
the international generalization of the tool.

In this way, the automatic quantification of PDFF and R2*
allows the generation of virtual biopsies, facing the main prob-
lems that pathological biopsies entail, offering a huge advance
on the assessment of diffuse liver diseases. Moreover, any
error obtained in the CNN-based segmentation can be manu-
ally edited by an expert before performing the quantitative

Fig. 6 Segmentation obtained on two studies from the external validation
at different anatomical levels. In yellow the predicted segmentation mask
is shown and in red the contour of the ground truth is represented. a Study

acquired on a Siemens 3-T MR scanner. b Study acquired on a Philips
1.5-T MR scanner
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analysis over the new corrected mask, ensuring the validity of
the results.

It is well-known that other 3D-MR sequences are common-
ly used. Since the proposed algorithm is based on a 2D CNN,
the MR images are segmented slice-by-slice. Therefore, since
the CNN has learned to segment independent slices from dif-
ferent anatomical levels, the expansion of this solution to 3D
acquisitions is direct.

The main limitation of this study relates to the limited
sample size, with a lack of studies coming from some other
manufacturers and from scanners with different MECSE-MR
acquisition protocols. Other next steps include liver
parcellation in left-right lobes, and in the different hepatic
segments. A complete liver volumetry together with a sepa-
rate PDFF and R2* quantification will improve the heteroge-
neity evaluation of fat and iron distribution. Furthermore, the
segmentation of the lesions will be of interest to exclude them
from the liver parenchyma quantification.

In conclusion, whole liver parenchyma can be automatical-
ly and accurately segmented using CNN before imaging bio-
marker extraction. Deep learning liver virtual dissection al-
lows the creation of automatic pipelines to characterize diffuse
liver diseases through the quantification of fat fraction and
iron concentration by calculating the PDFF and R2* in a
voxel-wise manner. This model allows MR virtual biopsy to
become a fast and automatic procedure for the assessment of
chronic diffuse liver diseases in clinical practice.
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