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Abstract

Objectives This study aimed to apply a radiomics approach to predict poor psychomotor development in preterm neonates using

brain MRL.

Methods Prospectively enrolled preterm neonates underwent brain MRI near or at term-equivalent age and neurodevelopment was

assessed at a corrected age of 12 months. Two radiologists visually assessed the degree of white matter injury. The radiomics analysis on

white matter was performed using T1-weighted images (T1WI) and T2-weighted images (T2WI). A total of 1906 features were extracted

from the images and the minimum redundancy maximum relevance algorithm was used to select features. A prediction model for the

binary classification of the psychomotor developmental index was developed and eightfold cross-validation was performed. The diag-

nostic performance of the model was evaluated using the AUC with and without including significant clinical and DTI parameters.

Results A total of 46 preterm neonates (median gestational age, 29 weeks; 26 males) underwent brain MRI (median corrected

gestational age, 37 weeks). Thirteen of 46 (28.3%) neonates showed poor psychomotor outcomes. There was one neonate among 46

with moderate to severe white matter injury on visual assessment. For the radiomics analysis, twenty features were selected for each

analysis. The AUCs of prediction models based on TIWI, T2WI, and both TIWI and T2WI were 0.925, 0.834, and 0.902.

Including gestational age or DTI parameters did not improve the prediction performance of TIWI.

Conclusions A radiomics analysis of white matter using early TIWI or T2WI could predict poor psychomotor outcomes in

preterm neonates.

Key Points

* Radiomics analysis on T1-weighted images of preterm neonates showed the highest diagnostic performance (AUC, 0.925) for
predicting poor psychomotor outcomes.

* In spite of 45 of 46 neonates having no significant white matter injury on visual assessment, the radiomics analysis of early brain
MRI showed good diagnostic performance (sensitivity, 84.6%, specificity, 78.8%) for predicting poor psychomotor outcomes.

* Radiomics analysis on early brain MRI can help to predict poor neurodevelopmental outcomes in preterm neonates.
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Abbreviations
AUC Area under the curve
FA Fractional anisotropy

GLCM  Gray level co-occurrence matrix
GLDM  Gray level dependence matrix
GLRLM  Gray level run length matrix
GLSZM  Gray level size zone matrix

GM Gray matter

LoG Laplacian of Gaussian-filtered

MRMR  Minimum redundancy maximum relevance
PDI Psychomotor development index

PLIC Posterior limbs of internal capsule
ROC Receiver operating characteristics
ROI Region of interest

TIWI T1-weighted image

T2WI T2-weighted image

WM White matter

Introduction

Preterm birth is a leading worldwide health problem [1, 2]. For
example, in the USA, more than 1.5% of live births are of
neonates who weigh less than 1500 g. Preterm neonates are
more likely to have poor neurodevelopmental outcomes such
as cerebral palsy and other cognitive or behavioral impair-
ments [3-7].

Previous studies have shown that intervention services
have significant and positive effects on the cognitive devel-
opment of high-risk preterm neonates [8]. Therefore, the
prediction of neurodevelopmental outcomes is crucial for
clinicians to identify those neonates who would benefit
from developmental interventions [8]. Many neuroimaging
studies have tried to correlate imaging markers and
neurodevelopmental outcomes in preterm neonates [9—15].
In particular, gross and microstructural characteristics that
can be observed on brain MR images have been actively
utilized in earlier studies. Gross abnormalities in the white
matter (WM) and gray matter (GM) structures of preterm
neonates were found to predict their neurodevelopmental
outcome at 2 years of age [9]. Abnormalities in WM volume
and microstructural signals showed high predictive value
for certain neurodevelopmental outcomes [14]. Still, mild
to significant psychomotor outcomes were observed in up to
16% of cases which did not exhibit visible WM injury on
MR images [16].

Radiomics has been increasingly used for image-based di-
agnosis and prognosis, enabling the extraction and analysis of
quantitative features on medical images [17]. Many radiomics
studies have helped radiologists discover hidden gems of in-
formation that could aid the diagnosis, treatment, and progno-
sis prediction of brain tumors. While radiomics is infrequently
applied to fields other than oncology in the neuroradiology
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field, recent studies showed that radiomics can potentially
help classify ischemic group in infants [18], attention deficit
hyperactivity disorder [19], or neurofibromatosis 1 subtypes
[20].

We hypothesized that a radiomics analysis of WM in pre-
term neonates could help predict poor neurodevelopmental
outcomes even without visible signal abnormalities. Thus,
the objective of this study was to develop a model for
predicting poor neurodevelopmental outcomes and validate
its performance in preterm neonates with minimal or no visi-
ble WM abnormalities.

Materials and methods
Study participants

Study patients were selected from a prospective study per-
formed at our institution, which was designed to analyze
MR image data acquired from preterm neonates to identify
imaging biomarkers that could predict neurodevelopmental
outcomes. Our university institutional review board approved
the study design and written informed consent was obtained
from all patient guardians. All data were anonymized before
the MR data were processed.

From September 2017 to December 2018, 60 neonates
were enrolled. The inclusion criteria for enrollment were
as follows. Preterm neonates delivered (@) at less than 28
weeks of gestational age, (b) with birth weight less than
1500 g, or (c) at less than 37 weeks of gestational age
with suspected ischemic brain injury. The exclusion
criteria were (a) neonates who had congenital malforma-
tion, infection, or metabolic diseases that would affect
later development, (b) neonates who showed intracranial
hemorrhage that was grade 3 or higher on ultrasound, or
(c) neonates with any structural abnormality on a prior
brain imaging study. All the enrolled preterm neonates
underwent brain MRI before discharge, near or at term-
equivalent age. Among enrolled 60 preterm neonates, 56
neonates successfully undergone neurodevelopmental as-
sessment at a corrected age of 12 months. Ten neonates
were excluded before radiomics analysis. Therefore, a to-
tal of 46 neonates were included for the analysis (Fig. 1).

Neurodevelopmental outcomes and clinical variables

One examiner evaluated the neurodevelopmental abilities
of neonates using the Korean-Bayley Scales of Infant and
Toddler Development, second edition (Bayley II) when
each infant reached a corrected age of 12 months.
Bayley II includes the psychomotor development of in-
fants. The Psychomotor Development Index (PDI) as-
sesses gross and fine motor skills. A delay in development



Eur Radiol (2021) 31:6147-6155

6149

60 preterm neonates
From September 2017 to December 2018

Excluded (n = 3)

A 4

* Brain hemorrhage (n = 1)
* MRI Failure (n = 1)

Excluded (n = 2)

* Follow up loss (n = 2)

55 preterm neonates
with Bayley scale at 12 months

[ 57 eligible preterm neonates enrolled

J ° Expire (n = 1)

Excluded (n = 9)

* Missing raw data (n = 1)
 Severe motion artifact (n = 8)

46 Preterm neonates for radiomics analysis

[
g
[
.

Fig. 1 Flowchart shows study population and exclusion criteria

was defined by a score that was more than 1 standard
deviation below the normative mean (PDI score < 85).
Clinical variables including birth history were collected
from the electronic medical records. Questionnaires were
complete by parents for the assessment of maternal edu-
cation and socioeconomic level as those were associated
with neurodevelopmental outcomes of preterm neonates
[21, 22].

MRI protocols, regional segmentation, and radiologic
assessment

Brain MRI was performed using a 3-T scanner (GE MRI
750w, GE Healthcare, Milwaukee, WI). The MRI examina-
tion included a 3D T1-weighted fast spoiled gradient-echo
sequence, multiparametric quantitative MRI based on the
multi-echo, multi-delay saturation recovery spin echo, and
DTI. For the radiomics studies, we used synthetic T1-
weighted images (T1WI) and T2-weighted images (T2WI)
were generated from the multi-echo, multi-delay data. The
imaging protocol is further described in Appendix 1. We ob-
tained regional volumes (total brain, cortical GM, deep GM,
and WM) using infant FreeSurfer [23, 24]. Regions of inter-
ests were drawn in both of the posterior limbs of internal
capsules (PLICs) on a fractional anisotropy (FA) map derived

from DTI [25, 26]. All scan results were evaluated by two
radiologists, a pediatric neuroradiologist with 10 years of ex-
perience and a neuroradiologist with 13 years of experience.
Both radiologists were unaware of the neonates’ perinatal his-
tory and ultrasonographic findings. White-matter abnormality
was rated and classified into two categories: “none or mild
abnormality” or “moderate to severe abnormality” [9]. The
final classification was made in consensus.

Segmentation, feature extraction, and selection for
radiomics analysis

The overall pipeline of the radiomics analysis is illustrated in
Fig. 2. Segmentation was performed semi-automatically on
the WM region by a radiologist. Radiomics features were
defined according to the Pyradiomics Python package, version
3.0 [27]. A total of 11 image types were derived from the
standard normalized original TIWI and T2WI and their fil-
tered images. Filtering was done with wavelet-transformed
(eight wavelet decompositions) and Laplacian of Gaussian-
filtered (LoG) (two values of sigma) images. Radiomics fea-
tures were extracted from both TIWI and T2WI, resulting in a
total of 1906 features. Segmentation and feature extraction
methods are described in detail in Appendix 2.
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Fig. 2 The overall pipeline of the radiomics analysis. Part 1 includes
image acquisition and segmentation. Masks for regions of interest for
white matter were acquired based on T2WI using the semi-automated
method. Part 2 includes image normalization and filtering. A total of 11
image types (2 Laplacian of Gaussian-filtered images, 8 decompositions
of wavelet-transformed images, and the original image) which were all
derived from normalized T1WI and T2WI. Part 3 includes extraction of

The minimum redundancy maximum relevance (MRMR)
algorithm was used to select features of high relevance to train
the prediction model. Specifically, the top 20 relevant features
were used to build prediction models based on TIWI and
T2WI, respectively. For another model based on a combina-
tion of TIWI and T2WI, the top 10 relevant features of each
T1WI and T2WI were used.

Model construction and validation

A tree ensemble classifier was used as a prediction model for
the binary classification of PDI. The random undersampling
boost (RUSBoost) algorithm was used for ensemble aggrega-
tion due to its capability to handle imbalanced data with dis-
crete class labels like the training data used in this study [28].
The prediction model was trained with radiomics features se-
lected with the MRMR algorithm in 46 data sets. Eightfold
cross-validation was done to evaluate the generalized perfor-
mance of the prediction model. The receiver operating char-
acteristic (ROC) curve analysis was used to explain the pre-
diction performance of the selected radiomics features. The
optimal area under the curve (AUC) was computed for each
of the three cases (T1WI, T2WI, and combination of TIWI
and T2WI). Clinical or imaging variables with statistical sig-
nificance on multivariate analysis were additionally included
and the prediction performance was computed.
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radiomics features. All of the derived image types were used to extract
first-order and second-order features. The shape features were extracted
from the binary white matter mask. Part 4 includes feature selection based
on the minimum redundancy maximum relevance algorithm and the pre-
diction performance of the model was evaluated by ROC analysis with
the selected radiomics features

Statistical analysis

Continuous variables were found to be nonparametric.
Clinical and imaging characteristics of the neonates with and
without delayed psychomotor development were compared
using the Mann-Whitney U test. To find significant clinical
and imaging variables, we performed univariate and multivar-
iate analyses. Results were considered to be statistically sig-
nificant if p < .05. SPSS version 25.0 (IBM) was used for
analysis.

Results
Clinical and imaging characteristics of neonates

A total of 46 neonates (median gestational age, 29 weeks; 26
males) were included. The clinical and imaging characteristics
of'the neonates are summarized in Table 1. Ofthe 46 neonates,
13 (28.3%) showed delayed psychomotor development and
33 (71.7%) showed normal psychomotor development. Birth
weight (p = .002), gestational age (p = .001), corrected gesta-
tional age at MRI scan (p = .049), regional brain volumes (p =
.006—-.021), and FA value in the left PLIC (p = .035) were
significantly different between the neonates with and without
abnormalities. Conversely, gender (p = .749), maternal
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Table 1 Clinical and imaging
characteristics of the preterm Delayed psychomotor Normal psychomotor p
neonates development (N = 13) development (N = 33) value
Gender, male 8 (61.5%) 18 (54.5%) 749
Birth weight, g 890 (480) 1320 (305) .002
Gestational age, wk 28 (4) 30 (2) .001
Corrected gestational age at 39 4) 37 (2) .049
MRI scan, wk
Maternal level of education 497
Primary/secondary 3 (23%) 12 (36%)
Under/postgraduate 10 (77%) 21 (64%)
Regional brain volume, ml
Total brain 241 (51) 203 (75) .021
Cortical GM 104 (16) 84 (40) .006
Deep GM 16 (3) 14 4) .019
WM 97 (15) 84 (23) .014
Diffusion tensor imaging
Rt PLIC FA value 0.432 (0.08) 0.409 (0.03) 262
Lt PLIC FA value 0.462 (0.06) 0.441 (0.03) .035
Visual abnormality 283
None or mild 12 (92%) 33 (100%)
Moderate to severe 1 (8%) 0 (0%)

Values are numbers (%) or medians (interquartile range), PDI psychomotor developmental index; GM gray
matter; WM white matter; PLIC posterior limb of internal capsule; FA fractional anisotropy

education level (p = .497), and FA value in the right PLIC (p =
.262) were not significantly different between the neonates
with and without delayed psychomotor development. The im-
aging characteristics of the neonates assessed by the two radi-
ologists did not significantly differ between the two groups (p
= .283). Among the neonates with delayed psychomotor de-
velopment, there was one neonate (1/13) with moderate to
severe WM abnormality. Among the neonates with normal
psychomotor development, there was no neonate with moder-
ate to severe WM abnormality.

Feature selection

Table 2 shows the top 10 relevant image features extracted
from T1WI and T2WI. Small dependence low gray level em-
phasis (gray level dependence matrix [GLDM]) obtained from
the wavelet transformed with high-low-high-pass filter TIWI
and cluster shade (gray level co-occurrence matrix [GLCM])
obtained from the LoG T2WI ranked as the most relevant
feature in each case. In TIWI, seven features were obtained
from the wavelet-transformed images, two features from the
LoG images and one feature from the original images. In
T2WI, one feature was obtained from the original images,
one feature from the LoG images and eight features from the
wavelet-transformed images. Figure 3 demonstrates the
heatmap of the top 10 features selected from T1WI and
T2WI, respectively, arranged by the binary class of PDI.

Model performance

Figure 4a shows the ROC curves and AUC values for the pre-
diction of poor outcomes in preterm neonates based on T1WI,
T2WI, and combination of TIWI and T2WI. The prediction
model performed best with T1WI, providing an AUC of 0.925
(95% confidence interval [CI]: 0.85-1.0), sensitivity of 84.6%,
specificity of 78.8%, and accuracy of 80.4%. The prediction
model based on T2WI resulted in an AUC of 0.834 (95% CI:
0.72-0.95), sensitivity of 76.9%, specificity of 75.6%, and accu-
racy of 76.1%. The prediction model based on the combination
of TIWI and T2WI resulted in an AUC 0f 0.902 (95% CI: 0.82—
0.99), sensitivity of 92.3%, specificity of 81.8%, and accuracy of
84.8%. The confusion matrix evaluated by each prediction model
is shown in Supplementary Figure S1.

Results from multivariate and univariate analyses using
clinical and imaging variables are shown in the
Supplementary Tables. The significant variable on multivari-
ate analysis was gestational age. Regional brain volumes were
not a significant factor predicting poor psychomotor out-
comes. Higher FA value in left PLIC resulted statistically
insignificant but high odds ratio (134.5). We added gestational
age, FA value in the left PLIC, or both in the prediction model
based on TIWI. Adding gestational age or FA values did not
result in higher prediction performance (Fig. 4b). The predic-
tion model based on T1WI with gestational age resulted in an
AUC of 0.900 (95% CI: 0.81-0.99), sensitivity of 84.6%,
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Table 2  List of significant MR radiomics features to classify psychomotor development in preterm neonates

Order T1-weighted image

T2-weighted image

Image type Feature Radiomics feature Image type Feature Radiomics feature
type type
1 Wavelet-HLH GLDM Small dependence low gray level LoG GLCM Cluster shade (3D, Sigma-5mm)

emphasis

2 Wavelet-HLH GLSZM Low gray level zone emphasis

3 Wavelet-HLH GLSZM Small area low gray level emphasis

4 Wavelet-HLH GLRLM Short run low gray level emphasis

5 Wavelet-HLH GLRLM  Low gray level run emphasis

6 Wavelet-HLH GLDM Low gray level emphasis

7 Wavelet-HLH GLRLM  Long run low gray level emphasis

8 LoG First order Maximum (3D, Sigma-5mm)
Original Shape Maximum 2D diameter column

10 LoG GLRLM Run entropy (3D, Sigma-5mm)

Wavelet-LHL First order
Original Shape
Wavelet-HHL GLSZM

Root mean squared
Maximum 2D diameter column

Large area high gray level emphasis

Wavelet-LHL First order Median
Wavelet-HHL GLDM Large dependence high gray level
emphasis

Wavelet-LHL  First order
Wavelet-LHL  First order
Wavelet-LLH Fist order
Wavelet-HLL GLDM

90 percentile

Mean

Root mean squared
Dependence entropy

LoG Laplacian of Gaussian-filtered images; / high-pass filter; L low-pass filter; GLCM gray level co-occurrence matrix, GLRLM gray level run length
matrix; GLSZM gray level size zone matrix; GLDM gray level dependence matrix

specificity of 78.8%, and accuracy of 80.4%. The model based
on T1WI with FA value in the left PLIC resulted in an AUC of
0.908 (95% CI: 0.82-0.99), sensitivity of 84.6%, specificity of
75.8%, and accuracy of 78.3%. The prediction model based
on T1WI including both gestational age and FA value in the
left PLIC resulted in an AUC of 0.897 (95% CI: 0.81-0.99),
sensitivity of 84.6%, specificity of 78.8%, and accuracy of
80.4%. The confusion matrix evaluated by each prediction
model is shown in Supplementary Figure S2.

Discussion

In this study, we demonstrated that a radiomics analysis of the
WM of preterm neonates on MRI enables the prediction of
poor neurodevelopmental outcomes. This was achieved
through automated extraction of important voxel-wise

imaging features and training of a prediction model for binary
classification. We also found that T1WI is more effective than
T2WTI for predicting poor neurodevelopment when data is fed
into the developed classifier.

It should be noted that our radiomics analysis was per-
formed on preterm neonates and most of the neonates did
not present with moderate to severe WM injury (45 out of
46). The radiomics analysis was able to successfully predict
the neurodevelopmental outcomes of these neonates. The rate
of neurodevelopmental impairment among those with no to
mild WM injury in our study (26.7%) was comparable to the
rate reported in a previous study (15-27%) [29]. This suggests
that although moderate to severe WM injury is a good predic-
tive imaging marker for poor neurodevelopmental outcomes,
about one-fourth of preterm neonates without significant WM
injury will still eventually have problems with their
neurodevelopment. This finding underscores the importance
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Selected radiomics features from T1WI

Selected radiomics features from T2WI

Fig. 3 Heatmap of the top 10 radiomics features of each TI WI and T2WI. Each column corresponds to radiomics features sorted by rank, and each row
corresponds to the patients sorted by binary class. (PDI < 85: delayed psychomotor development, PDI > 85: normal psychomotor development)
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T2WI, and for four cases (b) TIWI, TIWI with gestational age, T1WI
with the DTI parameter, and T1WI with both variables. GA, gestational
age

of predicting neurodevelopmental outcomes in neonates with-
out significant WM injury.

Previous studies which assessed WM to predict
neurodevelopmental impairment in preterm neonates focused
on abnormal signal intensity or volume loss [14, 15, 30]. The
sensitivity of our model using TIWI (84.6%) was higher than
that of previous studies (38—50%) using visual assessments
for WM injury, but the specificity of our model was lower
(78.8% vs 82—100%) [9, 15]. It should be noted that we in-
cluded only one case with significant WM injury per visual
assessment, which makes it difficult to make direct compari-
sons with previous studies that included various degrees of
WM injuries. Nonetheless, the higher performance of our

prediction model in the absence of significant WM injury
may be attributed to the highly quantified WM features which
is a trait not possible with the conventional visual scoring
system [9]. We believe that differences in the extracted
radiomics features between normal and poor
neurodevelopmental outcomes arose mainly from the micro-
structural changes caused by preterm birth.

Including gestational age or DTI parameters did not
have additional benefits for predicting psychomotor out-
comes in this study, emphasizing the value of radiomics
feature analysis. A recent study showed that clinical pa-
rameters such as gestational age and social economic status
had a higher value than imaging parameters of brain vol-
ume when predicting cognitive outcomes [31]. On the oth-
er hand, the same study showed brain volume as a signif-
icant factor when predicting psychomotor outcomes [31].
Although our assessment of regional volumes showed sig-
nificant differences between the normal and poor psycho-
motor outcome groups, these parameters were insignificant
on multivariate analysis. Similarly, although a DTI param-
eter was significantly different between normal and poor
psychomotor outcome groups as in previous studies [25,
26], it was insignificant on multivariate analysis. The
highest AUC for predicting poor psychomotor outcomes
using regional brain volume or clinical variables in the past
study was 0.64 [31]. We can postulate that radiomics fea-
tures derived from WM may have higher predictive values
than regional brain volume, DTI parameters, or clinical
variables such as gestational age.

In our study, the significant radiomics features of TIWI
and T2WI turned out to be GLDM, GLCM, and gray level
size zone matrix (GLSZM). GLDM is a texture feature which
quantifies gray level dependency that is defined as the number
of connected voxels within a certain distance from the center
voxel in an image [32]. GLCM is also a texture feature which
reflects signal heterogeneity by calculating the joint probabil-
ity distributions of pixel pairs [32]. Our results which showed
significant difference in the GLCM of WM according to
neurodevelopmental outcomes were in line with previous
studies that showed the predictive value of WM heterogeneity
in adults [33-35]. GLSZM represents the number of connect-
ed voxels with the same intensity values [32]. Many major
features were significantly more relevant when obtained from
wavelet-transformed images, especially from high-low-high
(HLH) decomposition. We believe that texture analysis will
show better performance when various features are combined.

There are some limitations to this study. First, the data
set was of relatively small size (n = 46). Further validation
with a larger data set is needed before clinical application
is possible. Second, we only validated the model perfor-
mance internally without external validation. Related fu-
ture work should include test data from different institu-
tions for validation and optimization of image acquisition
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and analysis protocols. Third, the use of synthetic TIWI
and T2WI instead of conventional TIWI or T2WI may
limit the transferability of our model to other institutions.
Although synthetic and true contrast images are thought to
be similar in children [36], the exact signal intensity and
distribution of images are different and this would affect
the radiomics features. Therefore, signal intensity needs to
be normalized to a fine degree during the entire procedure
to validate our findings with conventional TI1WI and
T2WI. Finally, we did not subcategorize the study subjects
according to WM injury before analysis. The subjects were
prospectively enrolled and those with high-grade intracra-
nial hemorrhages were excluded from the study popula-
tion. Still, there was one subject with moderate to high-
grade WM injury. This suggests that although few, some
subjects with different degrees of WM injuries might be
included in the radiomics analysis which may affect the
radiomics features.

In conclusion, this study showed that radiomics-driven
analysis of early brain MR images can predict poor psycho-
motor outcomes in preterm neonates. Our prediction model
might be of potential use in quantitative analysis using TIWI
and T2WI and in the absence of significant WM
abnormalities.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-021-07836-7.
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