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Abstract
Objectives To evaluate whether a deep learning (DL) model using both three-dimensional (3D) black-blood (BB) imaging and
3D gradient echo (GRE) imaging may improve the detection and segmentation performance of brain metastases compared to that
using only 3D GRE imaging.
Methods A total of 188 patients with brain metastases (917 lesions) who underwent a brain metastasis MRI protocol including
contrast-enhanced 3DBB and 3DGREwere included in the training set. DLmodels based on 3DU-net were constructed. Themodels
were validated in the test set consisting of 45 patients with brain metastases (203 lesions) and 49 patients without brain metastases.
Results The combined 3D BB and 3DGREmodel yielded better performance than the 3DGREmodel (sensitivities of 93.1% vs
76.8%, p < 0.001), and this effect was significantly stronger in subgroups with small metastases (p interaction < 0.001). For
metastases < 3 mm, ≥ 3 mm and < 10 mm, and ≥ 10 mm, the sensitivities were 82.4%, 93.2%, and 100%, respectively. The
combined 3D BB and 3DGREmodel showed a false-positive per case of 0.59 in the test set. The combined 3D BB and 3DGRE
model showed a Dice coefficient of 0.822, while 3D GRE model showed a lower Dice coefficient of 0.756.
Conclusions The combined 3D BB and 3D GRE DL model may improve the detection and segmentation performance of brain
metastases, especially in detecting small metastases.
Key Points
• The combined 3D BB and 3D GRE model yielded better performance for the detection of brain metastases than the 3D GRE
model (p < 0.001), with sensitivities of 93.1% and 76.8%, respectively.

• The combined 3D BB and 3D GRE model showed a false-positive rate per case of 0.59 in the test set.
• The combined 3D BB and 3D GRE model showed a Dice coefficient of 0.822, while the 3D GRE model showed a lower Dice
coefficient of 0.756.
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Abbreviations
3D Three-dimensional
BB Black blood
CNN Convolutional neural network
DL Deep learning
FP False positive
GRE Gradient echo
iMSDE Improved motion-sensitized driven-equilibrium
SE Spin echo
TE Echo time
TR Repetition time
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Introduction

Brain metastases are the most common type of intracranial
tumors in adults; they occur in 20–40% of patients with sys-
temic cancer and are the major cause of morbidity and mor-
tality [1, 2]. For managing patients with brain metastases,
early and accurate diagnosis is crucial to determine the treat-
ment strategy and patient prognosis. Surgical resection, ste-
reotactic radiosurgery, and whole brain radiation therapy have
been shown to increase survival in eligible patients compared
with untreated ones [2–5]. However, manual detection and
segmentation of brain metastases is not only laborious and
time-consuming but also erroneous; interobserver variability
in target volume delineation has been reported [6], andmanual
segmentation of all of the lesions may be challenging.

Several previous studies have proposed various deep learn-
ing (DL) methods for the detection and/or segmentation of
brain metastases. These studies have applied convolutional
neural networks (CNNs) [7–10], fully convolutional networks
[11], or single-shot detector models [12]; however, most of the
studies showed substantial numbers of false-positive (FP)
findings with generally low segmentation performance (Dice
coefficients lower than 0.8) [9, 10, 12]. Furthermore, the sen-
sitivity was low in detecting small metastases (smaller than 6–
7 mm), with a maximum sensitivity of 70% [9, 12].
Considering the fact that the presence of even small brain
metastases may change the whole treatment plan [13], the
detection of small brain metastases is crucial in the real-
world implementation of DL algorithms.

The low performance and limited clinical feasibility of pre-
vious DL approaches may be partially attributed to the fact
that most previous studies have focused on DL approaches
using contrast-enhanced three-dimensional (3D) gradient ech-
o (GRE) imaging. For the detection of brain metastases, either
contrast-enhanced 3D GRE or spin echo (SE) imaging with
black-blood (BB) imaging techniques, such as motion-
sensitized driven-equilibrium (MSDE) or improved MSDE
(iMSDE), is commonly used [14–16]. A previous meta-
analysis has shown that brain metastases can be more easily
detected in contrast-enhanced SE images than GRE images,
especially small lesions (< 5 mm) [17]. Moreover, a recent
consensus recommendation has stated that 3D SE imaging is
preferable to 3D GRE imaging in a brain metastases imaging
protocol [18]. Compared to 3D GRE images, the 3D SE with
BB imaging technique can suppress blood vessel signals,
which enables clearer delineation and better detection of small
brain metastases [15]. We hypothesized that addition of 3D
BB imaging to 3D GRE imaging in DL models may improve
the detection and segmentation performance of brain
metastases.

Thus, the purpose of this study was to evaluate whether a
DL model using both 3D BB imaging and 3D GRE imaging
may improve the detection and segmentation performance of

brain metastases compared to that using only 3D GRE
imaging.

Materials and methods

Patient population

The institutional review board waived the need for obtaining
informed patient consent and ethical approval was obtained
for this retrospective study. Between January 2018 and
December 2019, 188 consecutive patients who followed our
brain metastasis protocol including 3D BB imaging and were
diagnosed with a newly developed brain metastasis were in-
cluded in the training set. For the test set, between January
2020 and May 2020, 45 consecutive patients with a newly
developed brain metastasis were included. Additionally, 49
patients without a brain metastasis were included after age
and sex matching (detailed information of the exclusion
criteria can be found in Supplementary Material S1). Brain
metastases were determined based on the review of both initial
and follow-up images by two radiologists (4 and 9 years of
experience, respectively). In the rare case of ambiguity, a se-
nior radiologist (with 15 years of experience) was consulted
for the final decision.

MRI protocol

MRI was performed using various 3.0-T MRI scanners
(Achieva/Ingenia/Ingenia CX/Ingenia Elition X, Philips
Medical Systems) with an eight-channel sensitivity-encoding
head coil. Five minutes after administering a gadolinium-
based contrast (0.1 mL/kg gadobutrol; Gadovist, Bayer
Schering Pharma), a 3D fast SE sequence with the iMSDE
(BB imaging) was performed, followed by 3D GRE imaging
(Supplementary Material S2).

Image pre-processing and segmentation

Image resampling to 1-mm isovoxels, low-frequency intensity
non-uniformity correction by the N4 bias algorithm and
coregistration of 3D GRE images to 3D BB images were
performed using Advanced Normalization Tools (ANTs)
(version 2.3.4., http://stnava.github.io/ANTs/). Skull
stripping was performed using the Multi-cONtrast brain
STRipping (MONSTR) [19]. Signal intensity was normalized
using the z-score.

A junior radiologist (with 4 years of experience) indepen-
dently segmented the brain metastases on the 3D BB images
while referring to 3D GRE images, while another neuroradi-
ologist (with 9 years of experience) modified the segmented
lesions if necessary or confirmed the segmented lesions. In the
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rare case of ambiguity, a senior radiologist (with 16 years of
experience) modified and confirmed the segmented lesions.

DL architecture

To segment the brain metastasis, 3D U-net-based DL models
were used. The overall architecture of our DL model is pre-
sented in Fig. 1. The input of the model was 3D GRE, 3D BB,
or combined 3D GRE and 3D BB images, and the output was
the segmentation maps. The size of the inputs and outputs of
the model was 184 × 184 × 152 by cropping the background
areas of the brain. Three DLmodels were constructed depend-
ing on the input images (combined 3D BB and 3D GRE mod-
el, 3D BB model, and 3D GRE model). For a combined 3D
BB and 3D GRE model, two 3D images were concatenated
along a channel dimension (184 × 184 × 152 × 2). The model
was trained with a fivefold cross-validation.

The original U-net consists of (1) an encoder that extracts
the features of the input images using several convolutional
blocks and max-pooling layers and (2) a decoder (“segmenta-
tion decoder”) that reconstructs the desired segmentation
maps using the extracted features, convolutional blocks, and
up-scale layers [20]. To regularize the encoder, an additional
decoder (“reconstruction decoder”) that reconstructed the in-
put images from the extracted features was added at the end of
the encoder, inspired by an autoencoder network [21]. The
model reconstructed both the segmentationmaps and the input

images using the shared encoder. The reconstruction decoder
was used only during the training phase and not used during
the inference phase.

The encoder and decoders had several convolutional
blocks, and each convolutional block consisted of a 3D
convolutional layer, leaky rectified linear unit (ReLU), and
group normalization layer (detailed information of the DL
architecture in Supplementary Material S3) [22, 23].

The DL model was implemented using the Python Keras
library with a TensorFlow backend [24]. It was trained using
the Adam optimizer with β1 = 0.9 and β2 = 0.999 for 500
epochs with a learning rate of 0.0001 [25]. The training took
approximately 48 h using an Intel i9-9820X central processing
unit (CPU) and an Nvidia TITAN RTX graphics processing
unit (GPU) with CUDA version 10.0. In addition, training
data augmentation and test-time augmentation were per-
formed during the training and inference phase, respectively
(detailed information of data augmentation in Supplementary
Material S3).

Statistical analysis

The performances of the three models, including the models
trained with both 3D BB and 3D GRE images, and with 3D
BB only or 3D GRE only, were assessed by using lesion-
based sensitivity, precision, and Dice coefficient (definitions
are shown in Supplementary Material S4). The sensitivities

Fig. 1 Structure of the deep learning (DL) algorithm. The DL model is
based on 3D U-net, which consists of an encoder and two decoders: a
segmentation decoder that reconstructs the segmentation maps and a

reconstruction decoder that regularizes the shared encoder by
reconstructing the input images
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were also evaluated with respect to the size of the metastases
(< 3mm, ≥ 3mm and < 10mm, and ≥ 10mm). For patient-by-
patient analysis, area under the receiver operating characteris-
tic curve, sensitivity, and specificity were obtained. In addi-
tion, the detection performance was also evaluated by calcu-
lating the number of FPs per patient. Because all MRI scans
from test patients were integrated as one data set, the within-
patient correlation for patients with multiple lesions was not
considered.

The sensitivities of the combined 3D BB and 3D GRE
model and the other two models were compared pairwise
using a logistic regression analysis with the generalized esti-
mating equation in a per-lesion analysis [26]. We also ana-
lyzed the interaction between the subgroups with different
sizes of metastases (< 3 mm, ≥ 3 mm and < 10 mm, and ≥
10 mm) and DL models in the logistic regression analysis to
assess whether the sensitivities differed based on the different
subgroups on the DL models. Identical analysis was per-
formed in subgroups with different numbers of metastases (1
to 3, 4 to 10, > 10). The FPs per patient among DL models
were compared by using Poisson regression with a general-
ized estimating equation in a per-patient analysis [27].

Results

Patient characteristics and characteristics of the brain
metastases

A total of 282 patients were included in our study (mean
age, 61.7 ± 13.1; 129 females and 153 males). The total
number of brain metastases was 1120 (917 and 203 in the
training and test sets, respectively). The distributions of the
number and sizes of the metastases across patients are
shown in Fig. 2. Clinical characteristics and characteristics
of the brain metastases (mean volume, number, and size)
are shown in Table 1.

Detection performance of the DL models

The detection sensitivities and precisions for the DLmodels in
the patients with brain metastases are summarized in Tables 2
and 3. The combined 3D BB and 3D GRE model achieved an
overall detection sensitivity of 93.1% and precision of 84.8%
for the patients with brain metastases in the test set.
Specifically, for metastases < 3 mm, ≥ 3 mm and < 10 mm,
and ≥ 10 mm, the sensitivities were 82.4%, 93.2%, and 100%,
respectively. Examples of true-positive inferences in various
sizes that were detected on all three models are shown in
Supplementary Figure 1.

The overall sensitivity of the combined 3D GRE and 3D
BB model was significantly higher than that of the 3D GRE
model (93.1% vs 76.8%, p < 0.001) (Fig. 3), and this effect

was significantly stronger in subgroups with small metastases,
but not in subgroups according to number of metastases
(p interaction < 0.001 and p interaction = 0.686, respectively).
Specifically, the sensitivities of the combined 3DGRE and 3D
BB model were significantly higher than those for the 3D
GRE model in the subgroup with metastases < 3 mm
(p < 0.001) as well as the subgroup with metastases ≥ 3 mm
and < 10 mm (p = 0.014). The sensitivities of the combined
3D GRE and 3D BB model were significantly higher than
those for the 3D GRE model in the subgroup with 4 to 10
metastases (p = 0.014) as well as the subgroup with > 10
metastases (p < 0.001). On the other hand, the overall sensi-
tivity of the combined 3D GRE and 3D BBmodel was similar
to that of the 3D BB model (93.1% vs 92.6%, p = 0.847).

The overall area under the curve, sensitivities, and speci-
ficities for the DL models in patient-by-patient analysis are
summarized in Supplementary Table 1. The overall sensitivity
and specificity for the combined 3D BB and 3D GRE model
in detecting brain metastases in the patient-by-patient analysis
were 100% and 69.4%, respectively, in the entire test set (in-
cluding both patients with and without brain metastases).

The number of FP lesions for the DL models is shown in
Table 4. The FP per patient was 0.59 in the test set. The
majority of FP lesions were insufficiently suppressed blood
signals from peripheral vessels (48 of 55 [87.3%] FP lesions)
as shown in Fig. 4 (detailed information of FP lesions in
Supplementary Material S5). The number of FP lesions per
patient was significantly lower in the combined 3D BB and
3D GRE model compared with that in the 3D BB model (p =
0.004). However, the number of FP lesions per patient was
significantly higher in the combined 3D BB and 3D GRE
model compared with that in the 3D GRE model (p < 0.001).

Segmentation performance of the DL models

The Dice coefficients for the DL models for the patients with
brain metastases are summarized in Table 5. Compared to the
combined 3D BB and 3D GRE model with a Dice coefficient
of 0.822, the 3D BB and 3D GRE models showed similar or
lower Dice coefficients of 0.827 and 0.756, respectively.

Discussion

In our study, the combined 3D BB and 3D GRE model
showed promising results for detecting and segmenting brain
metastases. The DL model was able to detect 189 of 203
(93.1%) brain metastases in the test set, with a Dice coefficient
of 0.822. The Response Assessment in Neuro-Oncology
Brain Metastases (RANO BM) suggests a target lesion size
criterion of 10 mm [28]. Therefore, our model showing a
sensitivity of 100% and Dice coefficient of 0.822 in detecting
and segmenting brain metastases ≥ 10 mmmay be suitable for
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response assessment of brain metastases. Furthermore, com-
pared with previously reported DL studies for detecting and
segmenting brain metastases, there were three major findings

in the current study. First, we combined both 3D BB and 3D
GRE imaging in our DL algorithm, resulting in a high sensi-
tivity of 82.4% for detecting small metastases (smaller than 3

Fig. 2 Bar charts showing the distribution of the (a) sizes and (b) number of brain metastases in the training and test sets, respectively

Table 1 Patient clinical
characteristics and brain
metastases information

Variables Training set (n = 188) Test set (n = 94)

With metastases (n = 188) With metastases
(n = 45)

Without
metastases (n = 49)

Age (years) 61.3 ± 13.3 62.8 ± 12.8 62.4 ± 12.4

Female sex 90 (47.6) 20 (44.4) 19 (38.8)

Primary cancer types

Lung 118 (62.8) 24 (53.3) 35 (71.5)

Breast 27 (14.4) 7 (15.6) 4 (8.1)

Renal 11 (5.8) 2 (4.4) 2 (4.1)

Colorectal 8 (4.3) 3 (6.7) 0 (0)

Melanoma 2 (1.1) 0 (0) 0 (0)

Miscellaneous 22 (11.6) 9 (20) 8 (16.3)

Mean no. of brain metastases 4.9 ± 5.7 4.5 ± 4.8 -

Volume of brain metastases (cm3) 1.6 ± 6.5 1.9 ± 6.5 -

Size of brain metastases (mm) 8.7 ± 10.5 9.9 ± 10.9

< 3 mm 273 (29.7) 34 (16.7) -

≤ 3 to < 10 mm 415 (45.3) 117 (57.7) -

≥ 10 mm 229 (25.0) 52 (25.6) -

Number of brain metastases

1 to 3 112 (59.6) 28 (62.2) -

4 to 10 51 (27.1) 11 (24.5) -

> 10 25 (13.3) 6 (13.3) -

Data are presented as either mean ± standard deviation or numbers of patients (%)
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mm), which is the highest reported sensitivity, to the best of
our knowledge. Second, we demonstrated that the combined
3D BB and 3D GRE model shows superior performance over
the 3D GRE models. Third, the Dice coefficient of 0.822
shows the highest performance reported in segmenting brain
metastases [8, 9, 11].

Several studies have attempted to identify methods and
algorithms for the detection and/or segmentation of brain me-
tastases [8–12, 29], but a majority of the previous DL models
on the detection and segmentation of brain tumors were fo-
cused on gliomas [30–33]. Compared with gliomas [34], brain
metastases present several unique challenges. Brain metasta-
ses may be smaller than gliomas; however, it is important to
note that the detection of even small lesions is essential for
treatment planning [35]. Moreover, brain metastases near the
peripheral vessels may be missed or, conversely, peripheral
vessels may be mislabeled as metastases [14, 36, 37]. Our
combined 3D BB and 3D GRE model showed a sensitivity
of 93.1% and precision of 84.8% in detecting brain metasta-
ses, indicating that this model is one of the best performing
models among previously reported ones [8–12, 29]. Although
a previous DL model showed a slightly higher sensitivity of
96% [10] in detecting brain metastases, it also showed a
higher number of FP lesions per patient of 19.9 [10]; however,
we showed a substantially lower number of FP lesions (0.59)
per patient in the test set. Considering the trade-off between
sensitivity and precision, our model may be more optimal for
clinical application. Compared to previous studies that used
2D- or 2.5D-based detection models [9, 10, 12], our model
was based on 3D U-net, which utilizes 3D information for
detecting and segmenting brain metastases. In our model,
deep supervision loss, which was computed at the low-
resolution feature maps, and an additional reconstruction de-
coder could guide the final segmentation of metastases. In
addition, by using test-time augmentation as well as data aug-
mentation, it was possible to increase the sensitivity in detect-
ing metastases and reduce the number of FP lesions.

In our study, a substantial proportion of brain metastases
were small in size (< 3 mm). Specifically, the overall propor-
tion of small metastases (< 3 mm) in our dataset was 27.4%
(307 of 1122 lesions), whereas previous studies have either
reported a lower proportion of small metastases (< 3 mm)
(11.1%, 127 of 1147 lesions) [12] or did not report on the
proportion of small metastases [8–11]. A previous meta-
analysis has shown that BB images show superior perfor-
mance for detecting small lesions (< 5 mm) [17]. In accor-
dance with this, the 3D GRE model showed a substantially
lower performance of 23.5% in detecting metastases < 3 mm
than the 3D BB model or the combined 3D BB and 3D GRE
model. Because 3D GRE imaging does not suppress blood
signals and has a lower contrast-to-noise ratio compared to
3D BB imaging, brain metastases that are small in size may
be easily missed in the DL model [17]. When 3D BB wasTa
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added into the model, the sensitivity in detecting metastases
< 3 mm increased to 82.4%, highlighting the importance of
3D BB imaging in detecting small metastases. Our reported
sensitivity of detecting small metastases is by far the highest
among previous studies, some of which reported sensitivities
of 15% for identifying brain metastases < 3 mm [12] and 50%
for identifying lesions smaller than < 7 mm [9]. On the other
hand, the sensitivities of the combined 3D BB and 3D GRE
model as well as the 3D BB model for small metastases (< 3
mm) were similar, but the number of FPs was significantly
lower when the former model was used. This may be due to
the fact that, when only 3D BB imaging is used, some blood
vessels that are incompletely suppressed may mimic brain

metastases [36], leading to an increased number of FPs. A
previous study implemented multiparametric MRI, which in-
cluded 3D BB, 3D GRE, and 3D fluid-attenuation inversion
recovery imaging, for the detection and segmentation of brain
metastases [9]; however, the overall performance was lower,
with a sensitivity of 83% and FP lesions per patient of 8.3;
furthermore, the model’s performance with and without 3D
BB was not compared.

Our study showed a Dice coefficient of 0.822 in
segmenting brain metastases, which suggests that our
model performed well. Previous studies have reported
Dice coefficients of 0.77 [8], 0.79 [9], and 0.85 [11] in
segmenting brain metastases, respectively. However, the

Table 3 Diagnostic performance of the deep learning (DL) models per lesion according to different numbers of brain metastases in the test set

Model 1 to 3 (n = 43) 4 to 10 (n = 72) > 10 (n = 88)

Sensitivity (%) p value* Sensitivity (%) p value* Sensitivity (%) p value*

3D BB + 3D GRE 90.7 (82, 99.4) Reference 90.3 (83.4, 97.1) Reference 96.6 (92.8, 100) Reference

3D BB 95.3 (89.1, 100) 0.389 87.5 (79.9, 95.1) 0.596 95.5 (91.1, 99.8) 0.700

3D GRE 81.4 (69.8, 93) 0.199 75 (65.0, 85.0) 0.014 76.1 (67.2, 85.0) < 0.001

*p value refers to the significance among the differences of sensitivities between the combined 3D BB and 3D GRE model and the other model

3D three-dimensional, BB black blood, FP false positive, GRE gradient echo

Fig. 3 Examples of true-positive inferences that were detected on the
combined three-dimensional (3D) black-blood (BB) and 3D gradient
echo (GRE) model on representative test patients. a A 4.4-mmmetastasis

and b a 1.7-mm metastasis that were missed on the 3D GRE model but
detected on the 3D BB model as well as the combined 3D BB and 3D
GRE model
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previous study that had reported a Dice coefficient of 0.85
had not included brain metastases smaller than 5 mm for
this calculation [11]. Thus, we speculate that the Dice
coefficient in their study might have been lowered if small
metastases had been included, because smaller lesions
have shown to be associated with lower Dice coefficients
[38, 39]

In the test set, we included not only patients with brain
metastases but also those without brain metastases to evaluate

specificity. Previous studies onDLmodels of brain metastases
did not include patients without brain metastases, which may
limit the evaluation of true performance of the DLmodel. The
reported incidence of brain metastases in patients during the
diagnosis of primary cancer is low [40], and many patients
undergoing an MRI for brain metastases may not have brain
metastases. Our results show that there are FP lesions in pa-
tients without brain metastases; most of these are insufficient-
ly suppressed blood signals. Thus, the DL results should be
reviewed by the radiologist with caution.

Our study has several limitations. First, this was a single
center, retrospective study with a relatively small data size.

Table 4 Number of false-positive (FP) lesions for all patients in the test
set according to different deep learning (DL) models

Model FP/patient p value*

3D BB + 3D GRE 0.59 (0.42, 0.81) Reference

3D BB 1.06 (0.83, 1.36) 0.004

3D GRE 0.12 (0.06, 0.22) < 0.001

Numbers in parentheses are 95% confidence intervals

*p value refers to the significance among the differences of FP/patient
between the combined 3D BB and 3D GRE model and the other model

3D three-dimensional, BB black blood, FP false positive, GRE gradient
echo

Fig. 4 Examples of false-positive (FP) inferences. a An FP inference of
an insufficiently suppressed blood signal from the peripheral vessel that
was misclassified as a brain metastasis on the three-dimensional (3D)
black-blood (BB) model but not on the combined 3DBB and 3D gradient

echo (GRE) model or the 3D GRE model. b An FP inference of an
insufficiently suppressed blood signal from the peripheral vessel that
was misclassified as a brain metastasis on the 3D BB model as well as
the combined 3D BB and 3D GRE model but not on the 3D GRE model

Table 5 Segmentation performance of the deep learning models in the
test set

Model Dice coefficient

3D BB + 3D GRE 0.822 ± 0.152

3D BB 0.827 ± 0.129

3D GRE 0.756 ± 0.223

The data are indicated as mean ± standard deviation

3D = three-dimensional, BB = black blood, GRE = gradient echo
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Evaluations of patients at external locations with different
hardware implementations are necessary to validate the
model’s robustness. Second, our approach implemented both
3D BB and 3D GRE imaging, which may have limited avail-
ability in certain MRI scanners. Although 3D BB imaging is
ideally recommended in MRI protocols for brain metastases
[18], it is not technically available in all MRI instruments sold
by all vendors; furthermore, it may require additional scan
time. Future DL models implementing synthetic 3D BB im-
aging without additional scan time may be an alternative ap-
proach [41]. Third, because our model was mostly trained and
tested on patients with brain metastases, our results may be
unlikely to represent true systematic model inaccuracies.
Nonetheless, we believe that our results could establish a
foundation for future prospective research for the verification
of our DL model in actual clinical practice. Fourth, segmen-
tation of the lesions was performed in consensus rather than
by multi-readers, which may limit the robustness and reliabil-
ity of deep features.

In conclusion, the combined 3D BB and 3D GRE DL
model may improve the detection and segmentation perfor-
mance of brain metastases, especially for the detection of
small metastases.
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