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Abstract
Objectives The aim of this meta-analysis was to estimate the clinical use value of 11C-FMZ and 18F-FDG in PET for the
localization of epileptogenic zone and to provide evidence for practitioners’ clinical decision-making.
Methods We searched PubMed and Embase in a time frame from inception toMay 31, 2020. Studies utilizing FMZ or FDG-PET
or FDG-PET/MRI used in patients with epilepsy, with EEG or surgical outcomes as the gold standard and corresponding
outcomes such as concordance rates of PET or PET/MRI scan compared with reference standard, absolute numbers of partic-
ipants with true-positive (TP), false-positive (FP), true-negative (TN), and false-negative (FN) results in FDG or FMZ PET.
Pooled concordance rates, overall sensitivity, and specificity of 11C-FMZ-PET and 18F-FDG-PET were calculated.
Results In total, 44 studies met the inclusion criteria. The pooled concordance rates of FDG-PET, FMZ-PET, and FDG-PET/MRI
coregistration compared with reference standard were 0.67 (95% CI: 0.60–0.73), 0.75 (95% CI: 0.57–0.93), and 0.93 (95% CI: 0.89–
0.97), respectively. The concordance rate of 18F-FDG-PET in patients with temporal lobe epilepsy (TLE) was 0.79 (0.63; 0.92). The
overall sensitivity and specificity of 18F-FDG-PET were 0.66 (95% CI: 0.58–0.73) and 0.71 (95% CI: 0.63–0.78), respectively. 11C-
FMZ-PET displayed an overall sensitivity of 0.62 (95% CI: 0.49–0.73) and specificity of 0.73 (95% CI: 0.59–0.84).
Conclusions Both 11C-FMZ PET and 18F-FDG PET are the choice of modalities for the localization of epileptogenic zone,
especially when coregistered with MRI.
Key Points
• 11C-FMZ-PET may be more helpful than 18F-FDG-PET in the localization of epilepsy foci.
• Coregistration of FDG-PET and MRI is recommended in the localization of epileptogenic zone.

Keywords Humans . Fluorodeoxyglucose F18 . Carbon-11 . Positron emission tomography . Epilepsy
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MRI Magnetic resonance imaging
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studies
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Introduction

Epilepsy is one of the most common and serious chronic ce-
rebral disorders, which affects over 70 million people world-
wide [1, 2]. Almost 80% of patients with epilepsy reside in
low- and middle-income countries or districts [3]. Among
infants < 1 year old and people > 50 years old, the perfor-
mances of epilepsy which appear a bimodal distribution with
two peaks are more implicated than people in other age groups
[4, 5]. Clinically, epileptic seizures vary widely in manifesta-
tion from abnormal sensations to motor symptoms.

Epilepsy is a multi-symptom disease with complex risk fac-
tors and in many cases has a strong inherited tendency, instead
of a situation with a single cause and a single expression [3, 6].
For decades, the etiology, pathophysiology, and antiepileptic
drugs (AEDs) are continually being explored and investigated
[2, 7–9]. Currently, AEDs are effective in only about two-thirds
of patients in developed countries, and despite being available
of more than 25medications worldwide, only a few of them are
considered first-line [10]. Furthermore, epilepsy surgery is con-
sidered to be the most efficacious way to attain long-term sei-
zure freedom, but it has been confined to individuals with drug-
resistant epilepsy and still underused [11–14].

Nowadays, the insufficient understanding and absence of spe-
cific biomarkers of the epileptogenic process are the major con-
straints in the research and development of new AEDs that are
able to prevent the underlying disease or improve prognosis [15].
The rapid advances in neuroimaging modalities have expanded
our chances to investigate the disease of epilepsy by means of
noninvasive research modalities. The field of neuroimaging has
been remarkably developed in recent years. Neuroimaging tech-
niques used in clinical settings for the assessment of patients with
epilepsy include but not limited to non-contrast computerized
tomography (CT), structural and functional MRI (fMRI), elec-
troencephalograph combinedwith fMRI (EEG/fMRI),MR spec-
troscopy (MRS), positron emission tomography (PET), single-
photon emission computed tomography (SPECT), and magne-
toencephalography (MEG) [16]. The utilities of these modalities
depend on specific circumstances and clinical questions to be
addressed [17]. Currently, chronic intracranial EEG monitoring
remains the gold standard in defining epileptic foci, but it also has
boundedness and its application is highly dependent on other
localization information [18, 19].

PET is manifested to be an available noninvasive method
to guide intracranial electrode placement, and it can also re-
duce the number of patients requiring invasive EEG [20]. PET
also plays a very important role in the evaluation of epilepsy.
The most commonly used PET tracer in epilepsy is [18F]2-
fluoro-2-deoxy-D-glucose (18F-FDG), usually performed in
the seizure-free interval and aimed at the identification of ce-
rebral regions with decreased glucose metabolism; it is con-
sidered to partially reflect the reduction of synaptic activity
[21]. However, the epileptic areas are commonly smaller than

the hypometabolic regions [18, 22, 23]. Besides 18F-FDG-
PET, the GABA-A receptor ligand 11C-flumazenil (11C-
FMZ) has displayed promising results in epileptic foci local-
ization and lateralization [15, 24, 25]. Other potential PET
tracers for detecting epileptic regions include [11C]a-methyl-
L-tryptophan (AMT) which detects tryptophan metabolism,
most recently 5-hydroxytryptamine type 1A (5-HT-1A) re-
ceptor ligands, and other radioligands that bind to opioid,
histamine,N-methyl-D-aspartate (NMDA), “peripheral benzo-
diazepine” or acetylcholine receptors. Although the clinical
application of most of them in epilepsy has not been system-
atically established, they have very important research value.

However, to our knowledge, only a few studies limited to
small sample size directly compared the clinical performance of
18F-FDG-PET or 11C-FMZ PET compared with EEG or surgi-
cal outcome in localization of epileptogenic areas. We firstly
did a meta-analysis by collating the available evidence to gen-
erate a precise estimation of the clinical utility of 18F-FDG-PET
and 11C-FMZ-PET for the localization of the epileptogenic foci
in patients with epilepsy, and secondly to provide evidence or
clues for practitioners’ clinical decision-making and practice.

Methods

Search strategy and selection criteria

This meta-analysis was performed on the basis of the
Preferred Reporting Items for Systematic Review and Meta-
analysis (PRISMA) guidelines [26]. The research question of
this study was raised in terms of PICOS, populations (partic-
ipants with diagnosed epilepsy), interventions (FMZ or FDG-
PET or coregistration of FDG-PET and MRI), comparators
(EEG or surgical outcomes), outcomes (absolute numbers of
participants with true-positive (TP), false-positive (FP), true-
negative (TN), and false-negative (FN) results), and study
designs (retrospective and prospective studies). The search
strategy was restrictively based on the pre-designed protocol.
We did a systematic search on PubMed and Embase to assay
studies from inception to May 31, 2020, with articles in
English considered. The following search terms were used:
(11C-flumazenil OR 18F-FDG) AND (epilepsy OR epilepsies
OR seizure disorder OR seizure disorders OR cryptogenic
epilepsy) AND ((positron emission tomography) OR PET).
We supplemented the online search with manual screen of
the reference lists of all primary studies as well as relevant
review articles. We considered studies using FMZ or FDG-
PET or coregistration of FDG-PET and MRI for the assess-
ment of patients with epilepsy. Inclusion criteria were as fol-
lows: FMZ or FDG-PET or FDG-PET/MRI used in partici-
pants with diagnosed epilepsy; use of EEG or surgical out-
comes as the gold standard to evaluate diagnostic perfor-
mance; corresponding outcomes such as concordance rates
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of PET or PET/MRI scan compared with the reference stan-
dard, absolute numbers of participants with TP, FP, TN, and
FN results via FDG or FMZ PET. If studies recruited partic-
ipants over the same period of time or from the same study
center, only the research with the largest sample size or yield-
ing the most pertinent outcomes was included to avoid dupli-
cations. Both retrospective and prospective studies were con-
sidered. Studies in abstract form, case reports, and successive
cases seen in a unit were excluded.

Two independent investigators (Haiqun Xing and Meiqi
Wu) conducted the process of literature search and study in-
clusion. When disagreement occurred, they discussed their
arguments, and a third reviewer (Na Niu) was involved in case
that no consensus was achieved.

Data extraction and quality assessments

Data were extracted from each selected publication by two
investigators (Yanru Ma and Yimin Liu) independently. The

following information were recorded: name of the first inves-
tigator, year of publication, number of participants, duration of
epilepsy, age, gender ratio, type of epilepsy, reference stan-
dard, concordance rates of PET or PET/MRI compared with
the reference standard, TP, FP, TN, and FN. To assess the
methodological quality of the included studies and risk of bias
and applicability concerns, we used the checklist of
QUADAS-2: a revised tool for the quality assessment of di-
agnostic accuracy studies. This tool contains components in
terms of patient selection, index test, and reference standard,
as well as flow and timing.

Statistical analysis

All analysis was performed at the study level with the
Stata15.0, R4.0.2 software and Review Manager 5.3 soft-
ware. p < 0.05 was considered to be statistically signifi-
cant. We calculated pooled concordance rates, sensitivity,
specificity, positive likelihood ratio (LR) and negative

Fig. 1 Search results and flow
chart of the meta-analysis
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LR, odds ratio (OR) with their respective 95% confidence
intervals (CIs), and area under the summarized receiver
operating characteristic (sROC) curves (AUCs). We used
the Cochran Q and the I2 statistics to evaluate the hetero-
geneity of results between studies included. I2 values of
0–25%, 25–50%, 50–75%, and 75–100% indicate insig-
nificant, low, moderate, and high heterogeneity, respec-
tively. We created funnel plots to assess publication and
related bias. Deeks’ method was used to statistically
check the asymmetry of the funnel plot and detect publi-
cation bias. Moreover, subgroup analysis was performed
to explore the potential sources of heterogeneity of differ-
ent studies and influence analysis was used for the detec-
tion of outliers (studies) which affected the pooled results
statistically.

Results

Study selection and characteristics

A total of 606 articles were identified from the databases
searched. One hundred seventy duplicates were removed
and 347 studies were excluded through an initial screening.
After a full-text assessment for eligibility of the remaining 89
articles, 44 studies were identified for inclusion in this meta-
analysis. No additional studies were found through the screen-
ing of references of the included full-text articles (see Fig. 1).
The selected 44 studies containing a total of 2246 patients

with diagnosed epilepsy. These articles were published from
1995 to 2020. More details of the studies included are shown
in Table 1.

Comparison between PET and reference standard

The pooled concordance rate of FDG-PET compared with
the reference standard was 0.67 (95% CI: 0.60–0.73); as
for FMZ-PET, the concordance rate was 0.75 (95% CI:
0.57–0.93). Concordance rate for FDG-PET/MRI
coregistration was 0.93 (95% CI: 0.89–0.97) (see
Figs. 2, 3, and 4). Subgroup analysis revealed that 18F-
FDG-PET showed the highest concordance rate in chil-
dren 0.84 (0.75; 0.92); 11C-FMZ had the highest concor-
dance rate in the subgroup of adults 0.92 (0.74; 1.00). In
patients with TLE, the pooled concordance rate of 18F-
FDG-PET was 0.79 (0.63; 0.92) (see Table 2).

Diagnostic performances of 11C-FMZ and 18F-FDG PET

Data from the 12 studies were used in the bivariate
mixed-effects regression model to compute the pooled
results on the basis of threshold analysis on FDG-PET
(p = 0.67) and 7 studies with respect to FMZ-PET (p =
0.94) were analyzed. FDG-PET demonstrated an overall
sensitivity of 0.66 (95% CI: 0.58–0.73) and specificity of
0.71 (95% CI: 0.63–0.78), with an AUC of 0.71 (95% CI:
0.67–0.75), positive LR of 2.3 (95% CI: 1.7–3.0), nega-
tive LR of 0.48 (95% CI: 0.38–0.61), and diagnostic OR

Table 2 Subgroup analysis for the pooled concordance rate of 18F-FDG-PET, 11C-FMZ-PET, and FDG-PET/MRI

18F-FDG-PET 11C-FMZ-PET FDG-PET/MRI

Characteristic Pooled concordance rate p value Pooled concordance rate p value Pooled concordance rate p value

Age (years)

< 30 0.70 (0.60; 0.79) 0.493 – 0.906 0.90 (0.80; 0.97) 0.264

≥ 30 0.62 (0.54; 0.70) 0.72 (0.18; 1.00) –

NR 0.67 (0.53; 0.80) 0.75 (0.66; 0.84) 0.95 (0.89; 0.99)

Duration of epilepsy (years)

< 20 0.74 (0.62; 0.84) 0.346 0.44 0.009 0.92 (0.82; 0.98) 0.847

≥ 20 0.60 (0.39; 0.80) 0.94 –

NR 0.65 (0.56; 0.73) 0.75 (0.66; 0.84) 0.93 (0.85; 0.99)

Type of epilepsy

TLE 0.79 (0.63; 0.92) 0.155 – – – –

Others 0.66 (0.59; 0.72) 0.74 (0.54; 0.91) 0.93 (0.88; 0.97)

Population

Children 0.84 (0.75; 0.92) 0.001 – 0.011 0.86 0.245

Adults 0.68 (0.45; 0.87) 0.92 (0.74; 1.00) –

Adults and children 0.60 (0.54; 0.66) 0.44 0.94 (0.89; 0.98)

NR 0.68 (0.61; 0.76) 0.73 –
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of 5 (95% CI: 3–8) for the localization of epileptogenic
zone in patients with epilepsy. FMZ-PET showed an over-
all sensitivity of 0.62 (95% CI: 0.49–0.73) and specificity
of 0.73 (95% CI: 0.59–0.84), with an AUC of 0.71 (95%
CI: 0.67–0.75), positive LR of 2.3 (95% CI: 1.3–4.0),
negative LR of 0.52 (95% CI: 0.36–0.77), and diagnostic
OR of 4 (95% CI: 2–11) (Fig. 5). The results of subgroup
analysis manifested that there was no statistical signifi-
cance in different subgroups of 18F-FDG-PET perfor-
mance. 11C-FMZ-PET showed better diagnostic perfor-
mance in the TLE subgroup and adults, respectively.
Besides, pooled sensitivity and specificity for FDG-PET
were 0.67 (0.55–0.79) and 0.76 (0.64–0.87) (Table 3).

Heterogeneity and quality of studies

A forest plot showed no heterogeneity for the sensitivity of
18F-FDG PET (Cochran Q = 1.82, p = 0.38, I2 = 6.9%), and
there was no heterogeneity for the specificity of 18F-FDG PET
(CochranQ = 11.65, p = 0.38, I2 = 5.6%). As for the results of
11C-FMZ PET, no significant heterogeneity of sensitivity
(Cochran Q = 9.13, p = 0.17, I2 = 34.3%) and specificity
(Cochran Q = 9.85, p = 0.13, I2 = 37.1%) were found (see
Fig. 5).

Quality assessment by QUADAS-2 scale showed that 37
studies had low risk of bias for patient selection, 2 studies had
high risk of bias, and 5 studies had unclear risk of bias. Thirty-

Fig. 2 Forest plot of pooled
concordance rate for FDG-PET
compared with the reference
standard. The pooled concor-
dance rate of FDG-PET was 0.67.
Heterogeneity was high and sta-
tistically significant
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one studies had low risk of bias for index test, 3 studies had
high risk of bias, and 10 studies had unclear risk of bias.
Thirty-seven studies had low risk of bias for reference stan-
dard and 7 studies had unclear risk of bias. Clinical applica-
bility concerns of each study included were also evaluated
(Supplementary Figures 1 and 2).

The results of subgroup analysis demonstrated statistical
difference between subgroups of population in the concor-
dance rate analysis for FDG PET (p = 0.001). As for FMZ
PET, difference was present in subgroups of duration and
population (p = 0.009, p = 0.011). Subgroup analysis of diag-
nostic performance of 11C-FMZ-PET showed statistically

significant difference in the TLE patients and adults (see
Tables 2 and 3).

Influence analysis showed that no single study had
significant impact on the overall outcomes in all pooled
analysis.

Publication bias

Deeks’ funnel plot asymmetry tests yielded a p value of 0.59
for 18F-FDG PET and a p value of 0.24 for 11C-FMZ PET,
respectively (see Fig. 6).

Fig. 3 Forest plot of pooled
concordance rate for FMZ-PET
compared with the reference
standard. The pooled concor-
dance rate of FMZ-PET was 0.75.
Heterogeneity was high and sta-
tistically significant

Fig. 4 Forest plot of pooled
concordance rate for PET/MRI
coregistration compared with the
reference standard. The pooled
concordance rate of PET/MRI
coregistration was 0.93.
Heterogeneity was statistically
insignificant
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Discussion

PET is considered to be a neuroimaging technique that pro-
vided satisfactory insights into the molecular functioning of
the brain in a living human [27]. 18F-FDG was developed to
assess brain glycometabolism, which led to the original appli-
cation of PET in epilepsy [28]. Although 18F-FDG is widely
used in patients with epilepsy, unfortunately, it is not a desired
tracer: the distribution of glucose hypometabolism regions is
not related accurately to the level of hippocampal sclerosis, as
results from MRI or histopathological test [29]. Since the
1990s, plentiful researches have assayed the implementation
of 11C-FMZ PET in the field of epilepsy [25]. Interestingly, it
was demonstrated that the increase of seizure frequency cor-
related inversely with the tracer intake in the frontalis piriform
cortex in an 11C-FMZ PET study in epilepsy patients [30].
The site was inconsistent with the location of seizure onset
and has been consistent with the results of morphometric MRI
and EEG-fMRI researches [31]. Nevertheless, the tracer has
not seenwidely clinical utility, mainly due to its short half-life.

For decades, endeavors have been made to compare the
utility of 18F-FDG and 11C-FMZ in the localization of epilep-
togenic zone [18, 32–37]. Nonetheless, the conclusions were
less powerful to be extrapolated to clinical practice due to
limited sample sizes and heterogeneity of different studies.
We performed a meta-analysis to generate a more precise
effect size of performances of FDG and FMZ in epilepsy
localization and to provide a convincing evidence for
healthcare professionals in counseling patients with epilepsy.

In this meta-analysis, we did a detailed literature search to
improve the potential to capture all relevant studies as we can.
Data extraction was conducted by two independent investiga-
tors using a pre-designed form. Furthermore, we assessed the

heterogeneity between studies included, source of heteroge-
neity, quality of each study, and publication bias. The quality
of individual study included in this meta-analysis was evalu-
ated as high according to the QUADAS-2 scale. Furthermore,
no significant heterogeneity between studies was observed;
the analysis of threshold indicated that the results of studies
can be consolidated with sufficient reasons. The influence
analysis showed no single study had significant impact on
the overall results. However, as we performed subgroup anal-
ysis, the results revealed that as for 11C-FMZ-PET, there was
statistically significant difference in the TLE patients and
adults. This contradiction may be attributed to the small num-
bers of studies in subgroups. Deeks’ funnel plot asymmetry
tests indicated that publication bias may not affect the results
between studies in either 18F-FDG or 11C-FMZ PET. This
meta-analysis showed higher sensitivity of FDG-PET over
FMZ-PET for the localization of epilepsy; however, the spec-
ificity of FDG-PET was lower than that of FMZ-PET. With
respect to the type of epilepsy, both modalities showed better
performance in patients with TLE compared with other epi-
lepsy types. In consideration of clinical applications, given the
positive and negative LRs of FMZ-PET (2.3 (95% CI: 1.3–
4.0) and 0.52 (95%CI: 0.36–0.77)), it might help in excluding
and confirming the localization of epilepsy foci in contrast to
relevant indicators of FDG-PET. With respect to concordant

Table 3 Subgroup analysis for the diagnostic performance of 18F-FDG-PET and 11C-FMZ-PET

18F-FDG-PET 11C-FMZ-PET

Characteristic Number of studies Sensitivity Specificity p value Number of studies Sensitivity Specificity p value

Age (years)

< 30 5 0.65 (0.55–0.76) 0.66 (0.54–0.79) 0.57 3 0.58 (0.40–0.76) 0.68 (0.49–0.88) 0.74

≥ 30 7 0.66 (0.57–0.76) 0.74 (0.65–0.83) 4 0.65 (0.49–0.80) 0.77 (0.62–0.92)

Duration of epilepsy (years)

< 20 2 0.68 (0.47–0.89) 0.76 (0.57–0.95) 0.84 1 0.64 0.67 0.91

≥ 20 10 0.66 (0.58–0.73) 0.70 (0.62–0.79) 6 0.61 (0.47–0.75) 0.74 (0.61–0.87)

Type of epilepsy

TLE 6 0.67 (0.55–0.79) 0.76 (0.64–0.87) 0.63 6 0.68 (0.56–0.79) 0.73 (0.59–0.87) 0.04

Others 6 0.65 (0.56–0.74) 0.68 (0.58–0.78) 1 0.22 0.73

Population

Adults only 5 0.65 (0.55–0.75) 0.73 (0.61–0.85) 0.89 4 0.70 (0.57–0.83) 0.81 (0.69–0.92) 0.04

Others 7 0.67 (0.57–0.77) 0.70 (0.59–0.80) 3 0.46 (0.26–0.66) 0.61 (0.40–0.82)

�Fig. 5 Forest plots of studies included in the meta-analysis for localiza-
tion of epilepsy with 18F-FDG PET (a) and 11C-FMZ PET (b). FDG-PET
demonstrated an overall sensitivity of 0.66 and specificity of 0.71; het-
erogeneity for pooled sensitivity and specificity was statistically insignif-
icant. FMZ-PET demonstrated an overall sensitivity of 0.62 and specific-
ity of 0.73; heterogeneity for pooled sensitivity and specificity was sta-
tistically insignificant
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detection results compared with reference standards (EEG/
surgery outcome), FDG-PET/MRI coregistration reached a
concordance rate of 93%; FMZ-PETmanifested superior con-
cordance rate over FDG-PET imaging. FMZ-PET showed
higher concordance rate than FDG-PET.

Nevertheless, there are limitations in this meta-analysis. All
analysis was performed at the study level, so we were unable
to extract information at individual level based on the infor-
mation in each study. Therefore, the division of subgroups for
age of participants and the duration of epilepsy was deemed to
be less specific. Although we detailed the inclusion and ex-
clusion criteria, heterogeneity in studies still existed. Even
though the subgroup analysis was conducted, the correspond-
ing interpretation should be made with caution.

On the basis of our findings in this analysis, we may con-
clude that both 11C-FMZ PET and 18F-FDG PET can provide
helpful complementary information for the localization of ep-
ileptogenic zone, especially when combined with other non-
invasive technologies such as MRI. Interestingly, the recent
development of 18F-FMZ, an alternative tracer of 11C-FMZ,
might overcome the issues including short half-life [38].
Further assessments of potentially powerful tracers such as
18F-FMZ are needed.
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