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Value of bone suppression software in chest radiographs
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Abstract
Objectives To compare image quality and radiation dose between dual-energy subtraction (DES)–based bone suppression
images (D-BSIs) and software-based bone suppression images (S-BSIs).
Methods Chest radiographs (CXRs) of forty adult patients were obtained with the two X-ray devices, one with DES and one with
bone suppression software. Three image quality metrics (relative mean absolute error (RMAE), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM)) between original CXR and BSI for each of D-BSI and S-SBI groups were
calculated for each bone and soft tissue areas. Two readers rated the visual image quality for original CXR and BSI for each of D-
BSI and S-SBI groups. The dose area product (DAP) values were recorded. Paired t test was used to compare the image quality
and DAP values between D-BSI and S-BSI groups.
Results In bone areas, S-BSIs had better SSIM values than D-BSI (94.57 vs. 87.77) but worse RMAE and PSNR values (0.50 vs.
0.20; 20.93 vs. 34.37) (all p < 0.001). In soft tissue areas, S-BSIs had better SSIM values than D-BSI (97.56 vs. 91.42) but similar
RMAE and PSNR values (0.29 vs. 0.27; 31.35 vs. 29.87) (all p < 0.001). Both readers gave S-BSIs significantly higher image
quality scores than D-BSI (p < 0.001). The mean DAP in software-related images (0.98 dGy·cm2) was significantly lower than
that in the DES-related images (1.48 dGy·cm2) (p < 0.001).
Conclusion Bone suppression software significantly improved the image quality of bone suppression images with a relatively
lower radiation dose, compared with dual-energy subtraction technique.
Key Points
• Bone suppression software preserves structure similarity of soft tissues better than dual-energy subtraction technique in bone
suppression images.

• Bone suppression software achieves superior image quality for lung lesions than dual-energy subtraction technique in bone
suppression images.

• Bone suppression software can decrease the radiation dose over the hardware-based image processing technique.

Keywords Radiographic image enhancement . Radiation dosage . Image processing, computer-assisted . Radiography,
dual-energy scanned projection

Abbreviations
aPSNR Adjusted value of peak signal-to-noise ratio
aRMAE Adjusted value of relative mean absolute error
aSSIM Adjusted value of structural similarity index
BSI Bone suppression image
CXR Chest radiograph
DAP Dose area product
D-BSI Dual-energy subtraction-based bone suppression

images
DES Dual-energy subtraction
PSNR Peak signal-to-noise ratio
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RMAE Relative mean absolute error
S-BSI Software-based bone suppression images
SSIM Structural similarity index

Introduction

For various lung diseases, bone suppression image (BSI) tech-
nique in chest radiography has been proven to be useful for
radiologists and in computer-aided diagnosis [1–11]. However,
since the introduction of the dual-energy subtraction (DES) for
the generation of BSI, DES has not achieved broad clinical ap-
plication. A possible reason is the additional radiation exposure,
although it is minimal in DES [12]. Moreover, double-shot DES
provides BSIs with unstable image quality because DES-based
BSI may contain motion artifacts associated with patients’ respi-
ration and cardiac motion [13]. Maintaining a stable quality of
BSIs generated by DES may be especially difficult for older
patients with lung lesions because they cannot hold their breath
during the long acquisition time.

To overcome these issues, deep learning–based algorithms
or software have been developed to generate BSIs. These tech-
niques have been validated by observer performance tests.
BSIs derived from this technique improved readers’ accuracy
in detecting lung lesions on standard chest radiographs (CXRs)
[7, 10, 11, 14–17]. Li et al [7] showed that the supplementary
use of software-based BSIs with CXRs can improve radiolo-
gists’ accuracy for detecting small lung cancers on CXRs com-
pared with DES-based BSI. However, there is always a risk of
artificially adding or removing findings when using software-
based techniques, which may increase false-positive and false-
negative rates in the BSIs [15, 16, 18]. In this respect, bony
structures must be removed effectively while maintaining soft
tissues in the BSIs. Moreover, the validation of the quality of
images generated by newly introduced software or techniques
is a prerequisite for using these images in medicine. However,
there has been no study on image quality for anatomical struc-
tures and lung lesions in BSIs generated by software.

Therefore, our study compared the image quality and radi-
ation dose of software-based BSI (S-BSI) with dual-energy
subtraction-based BSI (D-BSI).

Methods

Patients

This prospective study enrolled 40 patients (male-to-female ratio
of 23:17;mean age ± standard deviation (SD): 57.7 ± 14.3 years)
who met the following eligibility criteria, from Aug 2018 to
Jun 2019. The inclusion criteria were as follows: (1) adults over
19 years of age; (2) those with a scheduled routine follow-up for
CXRs; (3) those with abnormal CXRs; (4) those who agreed to

participate in the study. The exclusion criteria were as follows:
(1) patients with space-occupying lesions; (2) pregnant women.
The space-occupying lesions were defined as lesions replacing
one lung field (i.e., huge mass, lobar consolidation, a large
amount of pleural effusion, or pneumothorax with total lung
collapse) on CXR because the space-occupying lesions can ob-
scure the appearance of normal anatomical structures, making it
difficult to evaluate the image quality of CXR and BSI.

Image acquisition and generation of bone
suppression images

Before the present prospective study, a preliminary phantom
study was conducted to set up imaging protocols for minimiz-
ing the radiation dose while maintaining the optimal image
quality for each X-ray device (see Appendix 1 for details).

All participants underwent CXRs with the posterior-anterior
projection. Initially, all CXRs were acquired using the GE ma-
chine (Discovery XR656, GE Healthcare) with 120 and
60 kVp for consecutive exposures at two different energy
levels, and the speed of 400 with individualized automatic ex-
posure control. These parameters (chosen in the present study
based on the results of the phantom study) were consistent with
the parameters recommended by the manufacturer. In the
follow-up imaging, all CXRs were acquired using a Samsung
digital radiography (DR) system (GC85A) (Samsung
Electronics Co., Ltd.) at 120 kVp and 1–2 mAs with individu-
alized automatic exposure control. The device contains a ded-
icated deep learning–based software (Bone Suppression™
software, version 1.0, Samsung Electronics Co., Ltd.) to auto-
matically generate BSI (see Appendix 2 for details).

Quantitative analysis of image quality

The study analyzed 160 images from 40 CXRs and 40 BSIs
for each image processingmethod. The lung field in CXRwas
divided into six lung regions (i.e., bilateral upper, middle, and
lower lung regions). First, in the original CXRs, square re-
gions of interest (ROIs) with diameters of 15 × 15 mm were
drawn on the rib (bone area) and intercostal area (soft tissue
area) at the lateral, middle, and medial portions of each lung
region using an in-house annotation tool (Fig. 1). As two
images (paired CXRs and BSIs) were already aligned in the
same coordinate system, the ROIs in CXRs were sequentially
overlaid on the bone suppression images in order to calculate
the metrics.Moreover, ROIs were drawn around the margin of
each lung lesion in the CXR and then overlaid on the BSI and
divided by grids (diameters of 15 × 15 mm) to calculate the
metrics. Three image quality metrics were chosen based on a
previous study [19]: relative mean absolute error (RMAE),
peak signal-to-noise ratio (PSNR), and structural similarity
index (SSIM). The metrics were calculated from the extracted
ROIs. The adjusted values of RMAE (aRMAE), PSNR

5161Eur Radiol  (2021) 31:5160–5171



(aPSNR), and SSIM (aSSIM) were calculated in the lung
fields, excluding the lung areas with visible motion artifacts.
If RMAE is close to 0, PSNR is higher, or SSIM is close to
100; these values imply that the quality of the generated image
is better. The metrics were defined as follows:

RMAE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where z and bz are the original CXR and BSI, respectively.
Ω denotes the valid regions (ROIs) in z which are com-
posed of the anatomical landmarks and lesions, and N is
the number of pixels in Ω. zmin and zmax are the minimum
and maximum values of the pixels in image z, and we set
the 0.1 and 99.9 percentiles as the values of zmin and zmax.
SSIM is a weighted combination of three comparison mea-
surements between zΩ and bzΩ: luminance (l), contrast (c),
and structure (s). μ

bzΩ
is the average ofbzΩ, μzΩ is the average

of zΩ, σ
bzΩ

2 is the variance of bzΩ, σzΩ
2 is the variance of zΩ,

and σ
bzΩ

zΩ is the covariance ofbzΩ and zΩ. C1 and C2 are two

variables to stabilize the division with a weak denominator,
and C3 = C2/2.

Fig. 1 Illustration of quantitative image quality analysis (a and b) and
ROI-based visual image quality analysis (c) of paired image data. a Data
set 1: original chest radiograph and dual-energy subtraction-based bone
suppression image. b Data set 2: original chest radiograph and software-
based bone suppression image (S-BSI). Square regions of interest (ROIs)
in red indicate soft tissue areas and those in yellow indicate bone areas.
Three image quality metrics are calculated for the extracted ROIs. c

Randomly mixed ROIs (selected from data sets 1 and 2 so as to contain
each anatomical structure) were presented individually, and readers ana-
lyzed the quality of soft tissues in the images. DES dual-energy subtrac-
tion, BSS bone suppression software, CXR chest radiograph, D-BSI dual-
energy subtraction-based bone suppression images, S-BSI software-
based bone suppression images
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Visual analysis of image quality

All images were available on a picture archiving and communi-
cation system (PACS). In analysis using full chest images, two
board-certified radiologists (G.S. Hong and J. Choe with 12 and
8 years of experience in chest radiography, respectively) inde-
pendently scored the image quality of a pair of CXRs and BSIs
according to themodified evaluation criteria with reference to the
previous study [20]. In the modified evaluation criteria of human
chest radiographs, the visibility of the ribs and intervertebral discs
was excluded from the evaluation criteria of the phantom study
mentioned above (see Appendix, Supplementary Table 2 for
details) because of the suppressed bone structures in BSIs. The
modified evaluation criteria included the visibility of blood ves-
sels in the lung field, myocardial area, and diaphragm area and
the visibility of the proximal airway and diaphragm. In addition,
the readers independently scored the image quality for lung le-
sions in CXRs and BSIs, according to the visibility scale of lung
lesions: (1) very well-visualizedmargin of lesions (score = 6); (2)
partially poorly visualized margin of lesions (score = 3); (3) not
visualized lesions (score = 0). In addition, to mitigate the bias in
the visual quality analysis using full CXRs, ROI-based visual
image quality analysis was performed (Fig. 1). (see Appendix
3 for details).

Radiation dose estimations

For each X-ray device, the dose area product (DAP [dGy·
cm2]) was calculated from the recorded exposure factors.

Sample size calculation and statistical analysis

The sample size was calculated using G* 3.1.9.2 program
for paired data sets with 0.5 of the effective size, 5% of
type I error, 80% of power, and 15% dropout. The normal
distribution of DAP was confirmed by the Kolmogorov–
Smirnov test. The paired t test was used to compare the
aforementioned quantitative image quality metrics, visual
image quality scores, and DAP between two groups (D-
BSI and S-BSI). All the statistical tests were two-sided
with a significance level of 0.05. Unlike the visual quality
test, compared with D-BSI, S-BSI had a high range of
standard deviation in image quality metrics. Therefore,
the distribution of the SSIM data was investigated using a
boxplot because the SSIM of the proposed metrics is
known to match very well with the human’s perceived
visual quality [21]. All the statistical analyses were per-
formed using SPSS (SPSS version 21.0; IBM Corp.).

Fig. 1 continued.
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Results

Quantitative analysis of image quality

Table 1 shows that S-BSIs achieve better quantitative im-
age quality indices than D-BSIs. In bone areas, S-BSIs
had better SSIM values than D-BSI (94.57 vs. 87.77,
p < 0.001) but worse RMAE and PSNR values (0.50 vs.
0.20; 20.93 vs. 34.37; p < 0.001, respectively). In soft tis-
sue areas, S-BSIs had better SSIM values than D-BSI
(97.56 vs. 91.42, p < 0.001) but similar RMAE and
PSNR values (0.29 vs. 0.27; 31.35 vs. 29.87; p < 0.001,
respectively). After excluding the lung regions with visi-
ble motion artifacts, the adjusted quantitative metrics did
not essentially differ from the quantitative indices. A rep-
resentative case is illustrated in Fig. 2. Boxplots show the
distribution of SSIM values and outliers according to the
lung regions for image processing methods (Fig. 3). Ten
outliers (2 in bone area and 8 in soft tissue area) were
identified in D-BSI and 35 (17 in bone area and 18 in
soft tissue area) in S-BSI. All outliers in S-BSI were iden-
tified in one case. The representative cases with outliers
are illustrated in Fig. 3. The mean values ± SD of SSIM
were 96.06 ± 8.83 in S-BSI and 89.59 ± 5.03 in D-BSI;
with the exclusion of the outliers of the SSIM, the mean
values ± SD were 97.32 ± 2.46 in S-BSI and 89.74 ± 4.54
in D-BSI. For lung lesions, the RMAE and PSNR at S-
BSIs were inferior to D-BSI (0.04 vs. 0.03; 46.80 vs.
51.68; p < 0.001, respectively). However, the SSIM at S-
BSI was significantly higher than D-BSI (93.52 vs. 84.70,
p < 0.001). For lung lesions, the adjusted quantitative in-
dices did not essentially differ from the quantitative indi-
ces (Table 2).

Visual analysis of image quality

Table 3 compares the visual image quality between D-BSI and
S-BSI with the paired CXRs. In analysis using full chest X-ray
images, for all anatomical landmarks of chest images, the
difference in visual quality scores between paired CXRs and
BSIs for S-BSI was significantly lower than that for D-BSI
(reader 1, 1.2 vs. 13.98; and reader 2, 0.53 vs. 20.9; p value
< 0.001, respectively). For lung lesions, the difference in vi-
sual quality scores between paired CXRs and BSIs for S-BSI
was significantly lower than that for D-BSI (reader 1, 0.44 vs.
0.94, p value = 0.028; reader 2, 0.56 vs. 1.11, p value = 0.017).
Results of the ROI-based visual quality analysis were identical
to those obtained using full chest X-ray images.
Representative cases are illustrated in Figs. 4 and 5.

Radiation dose

Details on radiation doses are summarized in Table 4. The
radiation dose in software-based images was significantly
lower than that in the DES-based images (p < 0.001). The
mean DAP was 1.48 dGy·cm2 in DES-based images and
0.98 in software-based images. In the dual-energy systems,
the acquisition of a low-energy radiograph for dual-energy
subtraction increased the total examination dose by 91.8%.
Compared with the software-based technique, dual-energy
systems increased the total examination dose by 48.7%.

Discussion

To the best of our knowledge, no study has focused on the
image quality of S-BSIs for anatomical structures and lung

Table 1 Comparison of quantitative image quality for the entire lung fields between dual-energy subtraction-based and software-based bone suppres-
sion images

D-BSI S-BSI D-BSI S-BSI D-BSI S-BSI
Total (n = 1440) Soft tissue areas (n = 720) Bone areas (n = 720)

RMAE (%) 0.23 ± 0.06 0.39 ± 0.14 0.27 ± 0.04 0.29 ± 0.09 0.20 ± 0.04 0.50 ± 0.07

PSNR (db) 32.12 ± 3.58 26.14 ± 7.35 29.87 ± 2.27 31.35 ± 6.59 34.37 ± 3.22 20.93 ± 3.18

SSIM (%) 89.59 ± 5.03 96.06 ± 8.83 91.42 ± 4.17 97.56 ± 8.51 87.77 ± 5.16 94.57 ± 8.76

Total (n = 1152) Soft tissue areas (n = 576) Bone areas (n = 576)

aRMAE (%) 0.23 ± 0.06 0.39 ± 0.14 0.27 ± 0.04* 0.28 ± 0.09* 0.20 ± 0.05 0.50 ± 0.08

aPSNR (db) 32.21 ± 3.65 26.42 ± 7.64 29.90 ± 2.27 31.88 ± 6.78 34.51 ± 3.3 20.96 ± 3.31

aSSIM (%) 89.88 ± 4.95 95.72 ± 9.79 91.95 ± 3.34 97.26 ± 9.48 87.8 ± 5.41 94.19 ± 9.69

All p values are < 0.001 except for the comparison of aRMAE in soft tissue areas (*)

All data are mean values ± standard deviation of metrics

aRMAE, aPSNR, and aSSIM are the adjusted metrics of RMAE, PSNR, and SSIM, respectively, in the lung fields after excluding lung regions with
visible motion artifacts

D-BSI dual-energy subtraction-based bone suppression image, S-BSI software-based bone suppression image,RMAE relative mean absolute error, PSNR
peak signal-to-noise ratio, SSIM structural similarity index
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lesions, and compared it with a traditional method using hard-
ware. Several recent studies on BSI only used image quality
metrics as criteria to validate the developed deep learning–
based models [19, 22–24]. Moreover, their results were not
validated by chest experts, even considering the existing gap
between the metrics and human perception in the super-
resolution field.

This study clarified the superiority of S-BSI to D-BSI in
terms of image quality. In the bone and soft tissue areas, S-
BSI had superior SSIM than D-BSI. These results imply that
bone suppression software preserves structural similarity of
soft tissues after removing bones better than DES. These
results were consistent with the visual quality analysis. All
the readers preferred S-BSI rather than D-BSI. These results
were expected, considering the aforementioned motion-
related instability of D-BSI [13]. However, interestingly,
the adjusted metrics did not substantially change after

excluding the lung areas with visually detected motion arti-
facts. A reasonable explanation for this is that the cardiac and
respiratory movements do not affect the localized lung area
with visually detected motion artifacts but rather the entire
lung fields. In the present study, there were no advantages in
using S-BSI over D-BSI in terms of the RMAE and PSNR.
This is because the traditional approach for evaluating image

Fig. 2 Comparison of image quality of bone suppression images in a 32-
year-old male with pneumonia. a, b Original chest radiograph and dual-
energy subtraction-based bone suppression image (D-BSI). c, d Original
chest radiograph and software-based bone suppression image (S-BSI).
The mean SSIM values were marked in D-BSI and S-BSI, respectively.

D-BSI shows the visibly detected motion-related artifact in the left middle
and lower lung. However, this motion affects the entire lung fields, not
the localized lung area. Note poorly visualized lung lesions (arrows) in D-
BSI when compared with S-BSI

�Fig. 3 Boxplots show the distribution of SSIM in the entire data set at (a)
dual-energy subtraction-based bone suppression images (D-BSI) and (d)
software-based bone suppression image (S-BSI). The number under the
boxplot represents the case number and location (in parentheses) of the
identified outliers. b, c A representative case with an outlier in D-BSI.
Note the outlier located near the cardiac margin in D-BSI, which contains
a cardiac motion artifact. e, f One case with outliers in S-BSI. Chest
radiography shows coarse reticular opacity with a cystic change and fi-
brosis in both lungs. This case was diagnosed with a humidifier-
disinfectant inhalation injury
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quality, which is based onRMAEandPSNR, compares orig-
inal and processed images on a point-by-point basis. As a
result, they are not well suited to perceive visual quality
[25, 26]. Although there was no definite advantage in terms
of the RMAE and PSNR, the change in image quality indi-
cated by these traditional metrics cannot be deemed signifi-
cant if humans are unable to observe these changes in the
processed images [27]. Therefore, it is reasonable to con-
clude that S-BSI offers superior perceptual image quality as
compared to D-BSI.

Compared with D-BSI, S-BSI had a high range of the stan-
dard deviation of quantitative metrics, which may be caused
by the unstable generation of S-BSI. The outliers can indicate
an exceptional result (i.e., an unstable function of bone

suppression software), resulting in increased standard devia-
tion and decreased image quality. In the S-BSI, outliers in
SSIM were identified in one case diagnosed with a
humidifier-disinfectant inhalation injury, which resulted in fi-
brotic interstitial lung disease. The exclusion of these outliers
substantially decreased the variance in the SSIM values for S-
BSI. In this case, the bone suppression software failed to pre-
serve the quality of soft tissue images. This could be attributed
to the inability of the software in clearly distinguishing be-
tween increased or inhomogeneous soft tissue opacity and
bone structures. This could be interpreted as a potential limi-
tation of the software’s clinical application; however, it is not
rational to arrive at this conclusion based on a single data
point. Most of all, its clinical relevance is unclear because

Table 2 Comparison of
quantitative image quality for the
lung lesions between dual-energy
subtraction-based and software-
based bone suppression images

D-BSI S-BSI p value

Metrics for total lung lesions (n = 54) RMAE (%) 0.03 ± 0.02 0.04 ± 0.02 < 0.001

PSNR (db) 51.68 ± 4.65 46.80 ± 7.25 < 0.001

SSIM (%) 84.70 ± 4.04 93.52 ± 7.27 < 0.001

Adjusted metrics for lung lesions (n = 47) aRMAE (%) 0.03 ± 0.02 0.04 ± 0.03 < 0.001

aPSNR (db) 51.75 ± 4.77 46.56 ± 7.17 < 0.001

aSSIM (%) 84.72 ± 4.20 93.17 ± 7.68 < 0.001

All data are mean values ± standard deviation of metrics

aRMAE, aPSNR, and aSSIM are the adjusted metrics of RMAE, PSNR, and SSIM, respectively, for lung lesions
excluding the lung lesions in the lung regions with visible motion artifacts

D-BSI dual-energy subtraction-based bone suppression image, S-BSI software-based bone suppression image,
RMAE relative mean absolute error, PSNR peak signal-to-noise ratio, SSIM structural similarity index

Table 3 Comparison of visual image quality for anatomical landmarks between dual-energy subtraction-based and software-based bone suppression
images with paired original chest radiographs

Reader 1 Reader 2

D-BSI S-BSI p value D-BSI S-BSI p value

Analysis using full chest X-ray images Anatomical
landmarks in the
lung fields
(n = 40)

CXR 48.40 ± 2.86 48.08 ± 2.07 47.95 ± 1.74 47.80 ± 2.20

BSI 34.43 ± 5.03 46.88 ± 3.62 27.05 ± 5.49 47.28 ± 2.85

Difference 13.98 ± 5.36 1.2 ± 3.1 < 0.001 20.9 ± 5.06 0.53 ± 1.65 < 0.001

Lung lesions (n = 54) CXR 5.94 ± 0.41 5.94 ± 0.41 5.89 ± 0.57 6.0 ± 0.0

BSI 5.00 ± 1.54 5.50 ± 1.27 4.78 ± 1.70 5.44 ± 1.31

Difference 0.94 ± 1.52 0.44 ± 1.22 0.028 1.11 ± 1.57 0.56 ± 1.31 0.017

ROI-based analysis Anatomical
landmarks in the
lung fields
(n = 320)

CXR 48.70 ± 1.07 48.80 ± 0.88 48.35 ± 1.53 48.45 ± 1.20

BSI 33.65 ± 5.14 47.90 ± 2.39 26.60 ± 3.79 47.98 ± 1.76

Difference 15.05 ± 4.85 0.90 ± 2.17 < 0.001 21.75 ± 3.58 0.48 ± 1.26 < 0.001

Lung lesions (n = 54) CXR 5.89 ± 0.57 5.83 ± 0.69 5.83 ± 0.69 5.89 ± 0.57

BSI 4.61 ± 1.51 5.28 ± 1.42 4.33 ± 1.90 5.22 ± 1.45

Difference 1.28 ± 1.50 0.56 ± 1.31 0.006 1.50 ± 1.91 0.67 ± 1.39 0.003

All data are mean values ± standard deviation of visual quality scores

D-BSI dual-energy subtraction-based bone suppression image, S-BSI software-based bone suppression image, CXR original chest radiograph, BSI bone
suppression image, ROI region of interest
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there was no difference in the image quality scores between
the original CXR and S-BSI in the visual analysis of readers. It
is well-known that SSIM can reflect substantial point-by-point
distortion imperceptible to humans, although SSIM accounts
for high-level human visual perception [21, 27, 28].
Therefore, additional studies applying the software to cases
involving various diseases are essential to address this issue.

One main finding of this study is that S-BSI achieved better
image quality of lung lesions than D-BSI. When using image
processing techniques, it is important to maintain the image
quality of lung lesions in the generated images as close as
possible to that in the original CXR. The reason is that addi-
tion or removal in the generated images can increase the rates
of false-positives or false-negatives. Freedman et al [15] re-
ported that viewing BSI generated by a software tool in-
creased false-negative decisions by 2% and false-positive
findings by 4% per radiologist in lung cancer patients,
resulting in significant loss of specificity from 96.1 to 91.8.

Bone suppression can suppress ribs and also the lung lesions
or vascular structures. For the image quality of lung lesions,
we noticed that SSIM in S-BSI was significantly higher than
that in D-BSI. This is consistent with the visual analysis by
radiologists. All the radiologists gave higher image quality
scores for lung lesions to S-BSI than D-BSI. However, the
better image quality for lung lesions in BSI does not imply
better performance and confidence of radiologists. Szucs-
Farkas et al [4] found no difference in the false-positive and
true-positive rates between DES-based and software-based
images. Li et al [7] showed that the mean confidence level
of readers regarding the presence of cancer decreased by view-
ing supplementary D-BSI, but there was no change when
using S-BSI. These results are controversial because many
factors influence the reader’s performance [11, 29–31]. It is
not easy to determine whether the improved image quality of
the lesions is more important than other factors. For example,
the reader’s expertise and experience level for newly

Fig. 4 Comparison of image quality for anatomical structures. a, b
Original chest radiograph and dual-energy subtraction-based bone sup-
pression image (D-BSI). c, d Original chest radiograph and software-
based bone suppression image (S-BSI). Note the blurring of vessels

(arrows) in the D-BSI in the right upper lung compared with the paired
chest radiograph. S-BSI shows well-visualized vessels (arrows) in the
corresponding area of right upper lung
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processed images can bemore important than image quality to
distinguish artificial findings from real lesions. In addition, the
presence or absence of lung lesions in BSI is always decided
with a paired original CXR. Nevertheless, maintaining the
image quality of lesions as close as possible to that in the
original image is believed to be essential when using newly
processed images in clinical practice.

As expected, this study showed that the software-based
image processing technique can decrease the radiation dose
over the hardware-based image processing technique.
Fischbach et al [12] reported that DES increased the total
examination dose by only 14% based on the phantom entrance
dose. However, the present study showed that adding a second
exposure in DES increased the total examination dose by

Fig. 5 Comparison of the image quality for the lung lesion in a 71-year-
old male with lung cancer. a, bOriginal chest radiograph and dual-energy
subtraction-based bone suppression image (D-BSI). D-BSI shows a par-
tially poorly visualized margin of the lung lesion (arrows) compared with

the original chest radiograph. c, dOriginal chest radiograph and software-
based bone suppression image (S-BSI). There is no definite change in the
image quality of the lung lesion between the original chest radiograph and
S-BSI

Table 4 Comparison of radiation
dose between devices with dual-
energy subtraction and bone sup-
pression software

Device with dual-energy subtraction Device with bone suppression software p value

High kVp Low kVp Total

Mean DAP 0.77 0.72 1.48 0.98 < 0.001
SD 0.26 0.28 0.53 0.24

Range 0.45–1.67 0.34–1.36 0.79–2.49 0.62–1.54

DAP dose area product (dGy·cm2 ), SD standard deviation
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91.8%. This discrepancy is because the previous study includ-
ed the radiation dose in the lateral chest examination.
Excluding this radiation dose, the results of the current study
are almost identical to those of the previous study. In a dual-
energy system, the radiation dose level is a very important
factor because the image quality of DES images can vary with
the radiation dose [13]. It may cause severe bias in the com-
parison of image quality. To address this, a preliminary phan-
tom study with various radiation levels was performed to de-
termine the optimal radiation dose level before the current
prospective study.

This study has several limitations. First, software-based
bone suppression images can be easily differentiated from
DES-based bone suppression images, which may cause bias.
To address this bias, an ROI-based image quality analysis was
also performed. We believe that this method can mitigate the
impact of the bias and serve as a more objective method of
assessing image quality analyses. Second, the present study
did not include the observer performance test for lesion detec-
tion. As described above, better image quality in BSI does not
guarantee better performance. However, the current study
population is not suitable for the lesion detection test because
it comprised inpatients for the workup of lung lesions. Most
lung lesions can be easily detected. To clarify a relationship
between image quality and observer performance, further
study is needed. Third, general applications of some current
results are limited because of a small number of patients.

In conclusion, bone suppression software significantly im-
proved the image quality of bone suppression images with a
relatively low radiation dose, compared with the dual-energy
subtraction technique.
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