
IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

Deep learning–assisted differentiation of pathologically proven
atypical and typical hepatocellular carcinoma (HCC) versus non-HCC
on contrast-enhanced MRI of the liver

Paula M. Oestmann1,2,3
& Clinton J. Wang1,4

& Lynn J. Savic1,2 & Charlie A. Hamm1,2
& Sophie Stark1,2,5 &

Isabel Schobert1,2 & Bernhard Gebauer2 & Todd Schlachter1 & MingDe Lin1
& Jeffrey C. Weinreb1

& Ramesh Batra6 &

David Mulligan6
& Xuchen Zhang7

& James S. Duncan1,4
& Julius Chapiro1

Received: 30 September 2020 /Revised: 6 November 2020 /Accepted: 23 November 2020
# European Society of Radiology 2021

Abstract
Objectives To train a deep learning model to differentiate between pathologically proven hepatocellular carcinoma (HCC) and
non-HCC lesions including lesions with atypical imaging features on MRI.
Methods This IRB-approved retrospective study included 118 patients with 150 lesions (93 (62%) HCC and 57 (38%) non-
HCC) pathologically confirmed through biopsies (n = 72), resections (n = 29), liver transplants (n = 46), and autopsies (n = 3).
Forty-seven percent of HCC lesions showed atypical imaging features (not meeting Liver Imaging Reporting and Data System
[LI-RADS] criteria for definitive HCC/LR5). A 3D convolutional neural network (CNN) was trained on 140 lesions and tested
for its ability to classify the 10 remaining lesions (5 HCC/5 non-HCC). Performance of the model was averaged over 150 runs
with random sub-sampling to provide class-balanced test sets. A lesion grading system was developed to demonstrate the
similarity between atypical HCC and non-HCC lesions prone to misclassification by the CNN.
Results The CNN demonstrated an overall accuracy of 87.3%. Sensitivities/specificities for HCC and non-HCC lesions were
92.7%/82.0% and 82.0%/92.7%, respectively. The area under the receiver operating curve was 0.912. CNN’s performance was
correlated with the lesion grading system, becoming less accurate the more atypical imaging features the lesions showed.
Conclusion This study provides proof-of-concept for CNN-based classification of both typical- and atypical-appearing HCC
lesions on multi-phasic MRI, utilizing pathologically confirmed lesions as “ground truth.”
Key Points
• A CNN trained on atypical appearing pathologically proven HCC lesions not meeting LI-RADS criteria for definitive HCC
(LR5) can correctly differentiate HCC lesions from other liver malignancies, potentially expanding the role of image-based
diagnosis in primary liver cancer with atypical features.

• The trained CNN demonstrated an overall accuracy of 87.3% and a computational time of < 3 ms which paves the way for
clinical application as a decision support instrument.
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Abbreviations
AUC Area under the curve
CNN Convolutional neural network
FNH Focal nodular hyperplasia
HCC Hepatocellular carcinoma
HIPAA Health Insurance Portability and

Accountability Act
ICC Intrahepatic cholangiocarcinoma
LI-RADS Liver Imaging Reporting and Data System
MELD Model for End-Stage Liver Disease
NPV Negative predictive value
PACS Picture archiving and communication system
PPV Positive predictive value

Introduction

Hepatocellular carcinoma (HCC), the fourth most common
cause of malignancy-related death worldwide, represents the
most frequent primary liver cancer and its incidence rates con-
tinue to rise [1]. Other liver lesions to be differentiated on
diagnostic imaging include intrahepatic cholangiocarcinoma
(ICC), metastases, and various types of benign lesions.
Contrast-enhanced multi-phasic computed tomography (CT)
and magnetic resonance imaging (MRI) play a central role for
diagnosis and classification of these lesions. Standardized im-
aging features of HCC summarized in Organ Procurement and
Transplantation Network (OPTN) or Liver Imaging Reporting
and Data System (LI-RADS) criteria provide the framework
for clinical diagnostic workup [2, 3]. In lesions not meeting
typical imaging criteria, the diagnosis can be challenging.
High inter-reader variability depending on the radiologist’s
experience may lead to unnecessary tissue biopsies [4] prone
to complications such as hemorrhage, sepsis, carcinoid crisis
[5], or tumor seeding [6]. These may compromise orthotopic
liver transplantation which is the only established curative
therapy for HCC [7, 8].

In recent years, deep learning has gained considerable trac-
tion in the field of medical image analysis. The most common
tool to classify lesions on radiologic imaging is the
convolutional neural network (CNN) [9]. Unlike other ma-
chine learning methods, CNNs do not require definition of
specific radiological features to learn how to interpret images.
After being shown imaging examples with and without the
disease, the CNN automatically learns features through
backpropagation using multiple layers [10].

Recently, several studies used CNNs on CT/MRI focusing
on liver lesions with typical appearances, allowing for distinc-
tive image-based diagnosis according to the standardized
criteria [11–13]. However, in order to be used in clinical man-
agement, CNNs should also correctly diagnose lesions that do
not fit into established classification systems. As the number
of heterogeneous input samples grows, CNNs have the

potential to recognize atypical lesions, thus reducing the need
for biopsies and subsequent post-biopsy complications.

The aim of this study was to prove the capability of CNNs
to handle a wider spectrum of HCC and non-HCC lesions on
multi-phasic contrast-enhanced MRI, using pathologically
proven liver lesions as the “ground truth.”

Materials and methods

This retrospective, single-center study was approved by the
Institutional Review Board and Health Insurance Portability
and Accountability Act (HIPAA). It was conducted according
to the Standards for Report of Diagnostic Accuracy guide-
lines. Informed consent was waived.

Study cohort selection

HCC and non-HCC lesions from patients older than 18 years
diagnosed between 2010 and 2018 were identified using a
picture archiving and communication system (PACS) as well
as the electronic medical record. Only patients with histopath-
ological diagnosis were included. Pathological proof was
established for all through biopsies (n = 72), resections (n =
29), liver transplants (n = 46), and autopsies (n = 3). In case of
transplants/autopsies, the liver was subject to gross
pathological/histopathological analysis including full histo-
logical assessment of the HCC lesion. H&E staining was used
to assess lesions and additional histopathological surface
markers were applied. Lesions indicated in pathology reports
were identified by a radiology trainee supervised by a board-
certified radiologist sub-specialized in abdominal imaging
with approximately 25 years of experience in body imaging.
The lesions were qualified regarding size and intrahepatic lo-
calization. A multi-phasic T1-weightedMRI dataset including
contrast-enhanced late arterial, portal venous, and delayed/
equilibrium phases had to be present to meet inclusion criteria.
Clear correspondence between pathology and imaging was
achieved collaboratively with a pathologist and side-by-side
review of location for each tumor. If more than one lesion was
visible on MRI in the segment described by the pathologist,
images of CT-guided biopsy were used to ascertain the
biopsied lesion. If these were unavailable, all lesions in the
segment were excluded. Lesions that were biopsied before the
MRI scan were excluded if procedure-related hemorrhage was
leading to significant alteration of T1 signal. Up to 4 lesions
per patient were used. In the non-HCC class, only primary
liver neoplasms were included. HCC lesions with loco-
regional therapy performed between MR imaging and
resection/transplantation were included only if residual viable
tumor was present on histology that would allow confirmation
of etiology. Tumors with complete necrosis were excluded.

4982 Eur Radiol (2021) 31:4981–4990



MRI acquisition protocol

MRI examinations were conducted on 1.5-T or 3-TMRI scan-
ners including Signa Excite®, GE Discovery®, Siemens
Aera®, Espree®, Verio®, Avanto®, Skyra®, and Trio Tim®

scanners. Non-contrast T1 imageswere acquired in all patients
prior to administration of intravenous contrast. After the ad-
ministration of intravenous gadolinium-based contrast agent
(including Gadavist® (Bayer), Dotarem® (Guerbet),
Magnevist® (Bayer), ProHance® (Bracco Diagnostics), and
Optimark® (Covidien), dosed at 0.1 mmol/kg), three T1-
weighted three-dimensional (3D) gradient-echo (GRE)
breath-hold imaging series (acquisition times of 12–18 s, with
fat suppression) were acquired reflecting CT/MRI LI-RADS
recommendations: (1) late arterial, (2) portal venous, and (3)
delayed or equilibrium phase. Bolus tracking was applied in a
large proportion of patients. Imaging parameters were in the
range of TR 3–5 ms, TE 1–2 ms, flip angle 9–13°, bandwidth
300–500 Hz, slice thickness 3–4 mm, image matrix 256 × 132
to 320 × 216, and field of view 300 × 200 to 500 × 400 mm. If
a patient received multiple MRI scans, then the MRI per-
formed closest to the date of pathological confirmation was
used.

Image processing

After MR imaging studies were retrieved from an institutional
database, the x, y, and z coordinates of each lesion were man-
ually recorded to define a 3D bounding box around the lesion
(Fig. 1). Only the image volumewithin this bounding box was
analyzed by the model. Images were processed using code
written in Python 3.5 (Python Software Foundation). Affine
registration with a mutual information metric was used to
register portal venous and delayed phase MRI sequences to
the late arterial phase. The images were cropped to the
bounding box defined above and normalized to an intensity
range of − 1 to 1 to reduce bias field effects. The images were
further resampled to 36 × 36 × 12 voxels.

To increase the number of training samples, the training set
was augmented by a factor of 100 (n = 14,000) in standard
fashion (Fig. 2). Briefly, images were randomly rotated,
shifted, scaled, flipped, shifted between phases, and scaled
or shifted in intensity. This allows for the model to learn im-
aging features that are invariant to rotation or translation [14].

Neural network architecture

The model was trained on a GeForce GTX 1060 (NVIDIA)
graphics processing unit. It was built using Python 3.5 and
Keras 2.2 (https://keras.io/) on a Tensorflow backend
(Google, https://www.tensorflow.org/). The CNN consisted
of three convolutional layers (64, 128, and 128 channels,
respectively; kernel size 3 × 3 × 2), two maximum pooling

layers (size 2 × 2 × 2 and 2 × 2 × 1, respectively), and two
fully connected layers (100 and 1 neurons, respectively),
with a sigmoid output corresponding to the probability of a
lesion being HCC. The CNN used rectified linear units, batch
normalization, and 10% dropout.

Training and evaluation

The CNNwas trained on 70 HCC examples and 70 non-HCC
examples, drawn randomly from the augmented dataset. An
Adam optimizer was used with a minibatch size of 20 and
learning rate of 0.01. The model was tested on its ability to
correctly classify ten lesions in the test dataset, which was
created by randomly selecting 5 HCC lesions and 5 non-
HCC lesions. In total, 150 independent runs with different
splits of training and test datasets (i.e., Monte Carlo cross-
validation rather than k-fold cross-validation in order to bal-
ance HCC/non-HCC cases within each set) were used to esti-
mate the model’s performance. This approach in conjunction
with a 14:1 training:test ratio is consistent with machine learn-
ing best practice [15, 16].

Lesion grading

As the dataset contained lesions with atypical appearances on
MRI, a lesion grading system was developed based on the
established LI-RADS major imaging criteria [17] using imag-
ing features typical of HCC: arterial hyperenhancement,
washout, and enhancing rim/pseudocapsule (Fig. 3). A super-
vised radiology trainee credited lesions 1 point for every ap-
plicable imaging feature so that a lesion could be graded on a
scale of 0 to 3 points. According to this grading system, both
HCC and non-HCC lesions were staged to demonstrate the
similarity between HCC and non-HCC lesions prone to mis-
classification by the CNN. On the one hand, lesions receiving
3 points could either be typical LI-RADS-applicable HCC or
pathologically proven non-HCC lesions that presented like
HCC on imaging. On the other hand, HCC lesions graded
with 1 point showed atypical contrast dynamics with only
one of these features. The differences of the grading scores
between the well (> 90% accuracy) and poorly (< 90% accu-
racy) classified lesions were analyzed to provide possible ex-
planations for misclassifications of lesions by the CNN.

Statistics

Sensitivity, specificity, and overall accuracy were calculated
in order to validate the performance of the deep learning mod-
el. These metrics were averaged over 150 runs with random
sub-sampling to yield class-balanced test sets. The receiver
operating characteristic curve was obtained and the area under
the curve (AUC) was calculated (Fig. 4).
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Results

Study population

This study included 118 patients with HCC (n = 73, 62%) and
non-HCC lesions (n = 45, 38%). The HCC cohort contained
57 (78%) men and 16 (22%) women, whereas 23 (51%) men
and 22 (49%) women were included in the non-HCC cohort.
The mean age of the HCC patients was 61 ± 8 (mean, standard

deviation), and the mean age of the non-HCC patients was 59
± 13 years. The cohort contained 87 patients with cirrhosis,
including 73 (84%) in the HCC class and 14 (16%) in the non-
HCC class. The majority of these patients were classified as
Child-Turcotte-Pugh-Score A (n = 50, 57%) and the most
common etiology was hepatitis C infection (n = 61, 59%).
The median Model for End-Stage Liver Disease (MELD)
score for all patients was 9. The exact values can be obtained
in Table 1.

Fig. 1 Determination of coordinates and bounding boxes. (1) All coor-
dinates were determined manually in the late arterial phase using a
DICOM viewer (Radiant®). The maximum extent of each lesion within
an axis was determined using 2 coordinates. (2) Bounding boxes were
automatically built according to the defined coordinates. (3) Bounding
boxes were checked manually to ensure that they are aligned correctly in

all phases. (4) In the few cases where bounding boxes were misaligned
due to breathing motion artifact, coordinates were manually specified
separately for the portal venous and delayed/equilibrium phases accord-
ing to step 1. (5) After all bounding boxes were correctly aligned, model
training/validation was conducted according to Fig. 2
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Fig. 2 Flowchart of the lesion classification approach, including model training and testing

Fig. 3 HCC as well as non-HCC lesions were graded with 0 to 3 points in
order to demonstrate the similarity between HCC and non-HCC lesions
prone to misclassification of lesions by the CNN. HCC hepatocellular
carcinoma, pv/dl portal venous/delayed. (a) HCC with arterial enhance-
ment, (b) HCC with washout and enhancing rim, (c) HCC with arterial

enhancement, washout, and enhancing rim, (d) cyst with no fulfilled
criterion, (e) hemangioma with enhancing rim, (f) hemangioma with en-
hancing rim and washout, and (g) cyst with arterial enhancement, wash-
out, and enhancing rim
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A total of 93 (62%) HCC lesions and 57 (38%) non-HCC
lesions were analyzed. The non-HCC group consisted of 19
(33%) ICCs, 16 (28%) hemangiomas, 15 (26%) cysts, 2 (4%)
regenerative nodules, 2 (4%) dysplastic nodules, 2 (4%)
FNHs, and 1 (2%) bile duct adenoma.

The median diameter for all lesions was 2.3 cm. The me-
dian timeframe between theMRI study and pathological proof
was 1.6 months (range, 0–25 months) for HCC lesions if
imaging was obtained prior to the pathological confirmation.
Imaging after pathological confirmation was performed with-
in 1 day. For non-HCC lesions, the median time between the
MRI study and pathological confirmation was 1.4 months
(range, 0–73 months), if imaging was obtained prior to the
pathological confirmation. Imaging after pathological confir-
mation was performedwithin a median time of 5.5 months (0–
24 months) (Table 2). One to four lesions per patient (medi-
an = 1) and one to three lesions per imaging set (median = 1)
were included (Table 3).

Deep learning model performance

The deep learning model demonstrated a training accuracy of
94.1% ± 2.0 (19,766/21,000 volumetric samples). The perfor-
mance was validated on a test set after 30 iterations, where the
CNN demonstrated an overall accuracy of 87.3% ± 10.5
(1310/1500). The sensitivity to classify HCC and the non-
HCC class was 92.7% and 82.0%, respectively, and the spec-
ificity for HCC and the non-HCC class was 82.0% and 92.7%,
respectively (Table 4). The receiver operating characteristic
curve demonstrated an AUC of 0.912 (Fig. 4). The CNN
was trained in 3.2 min ± 0.9, and the computing time to clas-
sify each lesion in the test dataset was 2.9 ms ± 1.7.

Evaluation of lesion grading

According to the grading system, 23 (25%) of the HCC le-
sions were scored with 1 point, 28 (30%) with 2 points, and 42
(45%) with 3 points (Fig. 5). In the non-HCC class, 16 (28%)
lesions were scored with 0, 24 (42%) with 1, 11 (19%) with 2,
and 6 (11%) with 3 points. The Kruskal-Wallis test showed a
significant positive correlation of the grading score with im-
proved classification accuracy in HCC lesions (p = 0.012) and
reduced classification accuracy in non-HCCs (p < 0.001).
Specifically, in the HCC class, 1 of 42 (2%) lesions graded
with 3 points, 4 of 28 (14%) lesions with 2 points, and 5 of 23
(22%) lesions graded with 1 point were poorly classified
(≤ 90% accuracy in 150 runs) by the CNN. The one poorly
classified 3-point HCC lesion as well as 3 of 4 poorly classi-
fied 2-point HCC lesions showed poor image quality.
Moreover, 2 of the 4 poorly classified 2-point HCC lesions
were in close proximity to the liver margin. In the non-HCC
class, none of the lesions with 0 point, 2 of 24 (8%) lesions
graded with 1 point, 3 of 11 (27%) lesions with 2 points, and 6
of 6 (100%) lesions graded with 3 points (100%) (6/6) were
poorly classified.

Discussion

This study establishes a histopathologically validated deep
learning approach capable of differentiating between HCC
and non-HCC lesions on multi-phasic contrast-enhanced
MRI. The model achieved an overall accuracy of 87.3%, with
high sensitivity (92.7%) and moderate specificity (82.0%) for
HCC. The CNN’s short computation time could allow for
practical integration into a radiologist’s workflow without
producing delays.

A few recent studies have focused on classifying different
types of liver lesions using a deep learning approach. A pre-
vious study [11] utilized a CNN trained to differentiate be-
tween six different types of liver lesions with an overall accu-
racy of approximately 90%. This proof-of-concept study only
used lesions with typical imaging features. However, inclu-
sion of atypical lesions may provide a more representative
dataset and increased translatability to clinical practice.
Another study investigating deep learning–based liver tumor
classification also included atypical/indeterminate lesions.
However, all indeterminate lesions were grouped into one
class without further sub-classification [13]. The CNN devel-
oped in the current study was trained on a majority of atypical
lesions to further classify those lesions as HCC or non-HCC as
verified by pathology. This binary differentiation is a signifi-
cant step towards classifying indeterminant lesions non-
invasively in clinical practice. The decision HCC versus
non-HCC is particularly important since HCC is a malignant
disease which can be treated curatively if diagnosed early.

Fig. 4 Model receiver operating characteristic curve for distinguishing
hepatocellular carcinoma (HCC) from non-HCC lesions. AUC area under
the curve
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Moreover, the aforementioned study was based on CT where-
as the current study utilized MRI, providing a wider variety of
imaging features for the CNN to capture. In the present study,

47% of HCC lesions did not meet LI-RADS criteria for defin-
itive HCC (LR5) and 48% of all lesions were biopsied, gen-
erally suggesting indeterminate appearance on imaging. A

Table 1 Patient characteristics. The numerical data are summarized as
mean ± standard deviation or median (*) and the categorical data are
shown as frequency (percentage). HCC hepatocellular carcinoma, ICC
intrahepatic cholangiocarcinoma, FNH focal nodular hyperplasia,MELD
Model for End-Stage Liver Disease, Child-Pugh Child-Turcotte-Pugh

Score, NASH non-alcoholic fatty liver disease, PSC primary sclerosing
cholangitis, ECOG Eastern Cooperative Oncology Group, BCLC
Barcelona Clinic Liver Cancer, HKLC Hong Kong Liver Cancer classi-
fication system

HCC Non-HCC

ICC Regenerative nodule Dysplastic nodule Hemangioma Cyst FNH Bile duct adenoma

Number of patients 73 12 2 2 16 10 2 1

Gender

Male
Female

57 (78)
16 (22)

9 (75)
3 (25)

1 (50)
1 (50)

1 (50)
1 (50)

7 (44)
9 (56)

3 (30)
7 (70)

1 (50)
1 (50)

1 (100)
0 (0)

Age at imaging 61 ± 8 69 ± 13 37* 61* 57 ± 10 56 ± 9 42* 53*

Ethnic

Caucasian
African American
Asian
Other

53 (73)
9 (12)
1 (1)
10 (14)

9 (75)
2 (17)
0 (0)
1 (8)

1 (50)
0 (0)
0 (0)
1 (50)

2 (100)
0 (0)
0 (0)
0 (0)

11 (69)
2 (13)
0 (0)
3 (19)

8 (80)
0 (0)
0 (0)
2 (20)

1 (50)
1 (50)
0 (0)
0 (0)

1 (100)
0 (0)
0 (0)
0 (0)

MELD 10* 13 ± 6 20* 10* 8 ± 2 6* 10* 10*

Cirrhosis 73 1 2 2 6 2 0 1

Child-Pugh

A
B
C

44 (60)
26 (36)
3 (4)

0 (0)
1 (100)
0 (0)

0 (0)
1 (50)
1 (50)

1 (50)
1 (50)
0 (0)

4 (67)
2 (33)
0 (0)

0 (0)
2 (100)
0 (0)

0 (0)
0 (0)
0 (0)

1 (100)
0 (0)
0 (0)

Cause

Hepatitis B
Hepatitis C
Alcohol
NASH
PSC

2 (3)
53 (62)
21 (25)
8 (9)
1(1)

0 (0)
1 (50)
0 (0)
0 (0)
1 (50)

1 (50)
0 (0)
0 (0)
1 (50)
0 (0)

0 (0)
2 (100)
1 (50)
0 (0)
0 (0)

0 (0)
2 (33)
2 (33)
1 (17)
1 (17)

0 (0)
2 (100)
1 (50)
0 (0)
0 (0)

0 (0)
0 (0)
1 (100)
0 (0)
0 (0)

0 (0)
1 (100)
0 (0)
1 (100)
0 (0)

Malignancy related

ECOG

0
1
2
3
Unknown

55 (75)
16 (22)
1 (1)
1 (1)
0 (0)

3 (25)
4 (33)
2 (17)
1 (8)
2 (17)

Extrahepatic spread 1 (14) 0 (0)

HCC related

BCLC

0
A
B
C
D

12 (16)
45 (62)
0 (0)
13 (18)
3 (4)

HKLC

1
2
3
4
5

43 (58)
26 (36)
1 (1)
0 (0)
3 (4)
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grading system was used to evaluate the representation of
atypical-appearing lesions, assigning 1 point for each classical
imaging feature of HCC (arterial hyperenhancement, wash-
out, and pseudocapsule). According to this grading system,
25% of the HCC lesions scored 1 point because of their atyp-
ical appearances, and 30% of non-HCC lesions scored 2 or
more points, mimicking typical appearances of HCC lesions.
While the present study showed a slightly lower overall accu-
racy than the previous study with classical-appearing lesions,
the results suggest that a CNN model trained with pathologi-
cally proven atypical lesions can still provide relatively high
accuracy.

Classical-appearing lesions generally demonstrated
higher classification accuracy. The lower specificity of

HCC classification is likely related to non-HCC lesions
displaying features of HCC on imaging. However, a small
number of HCC lesions graded with 2 and 3 points were
poorly classified, possibly caused by poor image quality or
lesions in close proximity to the liver margin. The seem-
ingly high standard deviation is a consequence of the num-
ber of validation images in each fold. Vanilla CNNs were
considered appropriate for the small cropped 3D images in
our study, as sophisticated architectures such as ResNet
[18] and DenseNet [19] are designed for larger datasets
and 2D high-resolution images.

This study has several limitations. A relatively small
cohort was used due to the single-center nature and the
requirement for histopathological reference standard.

Table 2 Lesion characteristics. The numerical data are summarized as
mean ± standard deviation or median (*) and the categorical data are
shown as frequency (percentage). HCC hepatocellular carcinoma, ICC

intrahepatic cholangiocarcinoma, FNH focal nodular hyperplasia, TACE
transcatheter arterial chemoembolization, MWA microwave ablation,
RFA radiofrequency ablation

HCC Non-HCC

ICC Regenerative nodule Dysplastic nodule Hemangioma Cyst FNH Bile duct adenoma

Number of lesions 93 19 2 2 16 15 2 1

Pathological proof

Biopsy
Resection
Explant
Autopsy

47 (50)
10 (11)
36 (39)
0 (0)

15 (79)
4 (21)
0 (0)
0 (0)

1 (50)
0 (0)
1 (50)
0 (0)

1 (50)
0 (0)
1 (50)
0 (0)

6 (37)
5 (31)
3 (19)
2 (13)

0 (0)
10 (67)
4 (27)
1 (7)

2 (100)
0 (0)
0 (0)
0 (0)

0 (0)
0 (0)
1 (100)
0 (0)

Cirrhosis 93 1 2 2 6 4 0 1

Timeframe in days (median)

Imaging pre path
Imaging post path

49
1

22
295

42
0

68
0

104
143

181
0

509
0

27
0

Diameter in cm 2,0* 4.2 ± 1.4 3,7* 1.1* 5.0 ± 4.0 4.9 ± 3.5 4,46* 1.4*

Residual tumor 8 0

Treatments 29 0

TACE
Bland embolization
Ethanol ablation
MWA
RFA

22 (76)
3 (10)
2 (7)
6 (21)
3 (10)

LI-RADS

LR5
< LR5

49 (53)
44 (47)

Table 3 Image characteristics. HCC hepatocellular carcinoma, ICC intrahepatic cholangiocarcinoma, FNH focal nodular hyperplasia

HCC Non-HCC

ICC Regenerative nodule Dysplastic nodule Hemangioma Cyst FNH Bile duct adenoma

Number of patients 73 12 2 2 16 10 2 1

Number of imaging studies 80 17 2 2 16 11 2 1

Number of lesions 93 19 2 2 16 15 2 1
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Because the majority of non-HCC lesions in the liver were
benign and did not require surgical therapy, fewer
pathological-proven non-HCCs than HCCs were available
with ground-truth pathological proof and were mostly ac-
quired incidentally in the setting of transplantation for liver
failure or accompanied by secondary HCC in the liver.
Therefore, these non-HCC lesions were grouped into a sin-
gle pooled category. Metastatic lesions were excluded be-
cause pathology proof is frequently unavailable for sec-
ondary malignancies which do not generally undergo sur-
gical resection. Pathological confirmation from various
sources was used, including biopsies, resections, explants,
and autopsies. Additionally, the time interval between MRI
and pathological confirmation was variable and, especially
in benign lesions, relatively large. However, the probabil-
ity of a malignant transformation for a definitively benign
finding is exceedingly low [20]. Additionally, the time in-
terval in this study was less relevant, since pathology was
only used to provide proof of diagnosis. Due to the small
sample size, a large number of non-HCC lesions without
background cirrhosis were used. However, lesions were
cropped which reduced the impact of background liver

tissue on the image analysis. Moreover, using heteroge-
neous imaging sources may seem like a limiting factor,
but demonstrates the robustness of the CNN in the setting
of different MRI scanners and acquisition protocols. The
algorithm does not account for variabilities in contrast
agents/acquisition time/image quality, suggesting that pro-
spective studies should validate those points. Additionally,
the diagnostic performance of CNN versus non-assisted
radiologist versus CNN-assisted radiologist should be in-
vestigated in future studies in order to prove the CNN’s
clinical applicability. Moreover, lesion grading was con-
ducted by single human reader leading to possible bias,
which we tried to minimize through supervision.

In conclusion, this study demonstrates the use of deep
learning for classification of both typical- and atypical-
appearing HCC lesions on multi-phasic MRI, utilizing patho-
logically confirmed lesions as “ground truth.” Currently most
deep learning tools do not provide radiological-pathological
validation in their training dataset. By strictly including only
pathologically confirmed lesions, the underlying biological
validity of deep learning systems can be optimized, paving
the way for integration of decision support tools in clinical
practice. Moreover, this allows for the evaluation of lesions
with more atypical appearances, pushing the boundaries of
non-invasive imaging-based diagnosis. In this manner,
CNNs have the potential to eventually reduce the need for
biopsies and their associated complications, resulting in im-
proved patient care. The short computing time of our CNN
will facilitate the inclusion into clinical routine.
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Table 4 Performance of the neural network on HCC classification.
Performance was averaged over 150 runs with random sub-sampling to
yield class-balanced test sets. HCC hepatocellular carcinoma

HCC Non-
HCC

Overall

Training lesions 88 52 140

Test lesions 5 5 10

Sensitivity 92.7% 82.0% 87.3%

Specificity 82.0% 92.7% 87.3%

Fig. 5 Number of lesions by grading score. HCC hepatocellular
carcinoma
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