
CARDIAC

Deep learning algorithm to improve hypertrophic cardiomyopathy
mutation prediction using cardiac cine images

Hongyu Zhou1,2,3
& Lu Li4 & Zhenyu Liu2,3

& Kankan Zhao1
& Xiuyu Chen4

& Minjie Lu4
& Gang Yin4

& Lei Song5
&

Shihua Zhao4
& Hairong Zheng1

& Jie Tian2,3,6,7

Received: 4 August 2020 /Revised: 28 September 2020 /Accepted: 2 November 2020
# European Society of Radiology 2020

Abstract
Objectives The high variability of hypertrophic cardiomyopathy (HCM) genetic phenotypes has prompted the establishment of
risk-stratification systems that predict the risk of a positive genetic mutation based on clinical and echocardiographic profiles.
This study aims to improve mutation-risk prediction by extracting cardiovascular magnetic resonance (CMR) morphological
features using a deep learning algorithm.
Methods We recruited 198 HCM patients (48%men, aged 47 ± 13 years) and divided them into training (147 cases) and test (51
cases) sets based on different genetic testing institutions and CMR scan dates (2012, 2013, respectively). All patients underwent
CMR examinations, HCM genetic testing, and an assessment of established genotype scores (Mayo Clinic score I, Mayo Clinic
score II, and Toronto score). A deep learning (DL) model was developed to classify the HCM genotypes, based on a
nonenhanced four-chamber view of cine images.
Results The areas under the curve (AUCs) for the test set were Mayo Clinic score I (AUC: 0.64, sensitivity: 64.29%, specificity:
47.83%), Mayo Clinic score II (AUC: 0.70, sensitivity: 64.29%, specificity: 65.22%), Toronto score (AUC: 0.74, sensitivity:
75.00%, specificity: 56.52%), and DL model (AUC: 0.80, sensitivity: 85.71%, specificity: 69.57%). The combination of the DL
and the Toronto score resulted in a significantly higher predictive performance (AUC= 0.84, sensitivity: 83.33%, specificity:
78.26%), compared with Mayo I (p = 006), Mayo II (p = 022), and Toronto score (p = 0.029).
Conclusions The combination of the DL model, based on nonenhanced cine CMR images and the Toronto score yielded
significantly higher diagnostic performance in detecting HCM mutations.
Key Points
• Deep learning method could enable the extraction of image features from cine images.
•Deep learning method based on cine images performed better than established scores in identifying HCM patients with positive
genotypes.

• The combination of the deep learning method based on cine images and the Toronto score could further improve the
performance of the identification of HCM patients with positive genotypes.
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Abbreviations
AUC Area under the (receiver-operating characteristic)

curve
CMR Cardiac magnetic resonance
DL Deep learning
FHHCM Family history of hypertrophic cardiomyopathy
FHSCD Family history of sudden cardiac death
HCM Hypertrophic cardiomyopathy
LSTM Long short-term memory
LVMWT Left ventricular maximal wall thickness
LVPWT Left ventricular posterior wall thickness
ROC Receiver-operating characteristic
ROIs Regions of interest
SCD sudden cardiac death
VUS Variants of uncertain significance

Introduction

Hypertrophic cardiomyopathy (HCM) is the most frequent
cause of sudden cardiac death (SCD) in young adults [1].
HCM is characterized by heterogeneities in morphological
expressions and clinical courses [2]. Additionally, it is the
most common autosomal dominant inherited cardiovascular
disorder. In up to 60% of HCM patients, more than 1400
mutations in genes encoding sarcomere proteins have been
detected [3]. Genetic testing has a limited impact on the treat-
ment strategies for individual patients, but a positive genetic
test result could confirm the etiology of the disease and enable
cascade genetic screening of their relatives [4]. Moreover,
compared with conventional regular clinical screening, the
addition of genetic testing is cost-effective [5]. However,
based on the current genetic testing studies in HCM popula-
tions, the yield of causative mutations was viable (15–70%)
[6–8]. Thus, it should be noted that the selection of patients
who have high probability of positive HCM genotypes can
maximize the cost-effectiveness for genetic testing.

Although precise correlations have not been established
between the phenotype and genotype in HCM patients, pa-
tients with mutations were considered to show significant dif-
ferences in both clinical and imaging features compared to
those without mutations, such as a family history of HCM
and SCD, and the left ventricular maximal wall thickness
(LVMWT) [9, 10]. Previous studies [11] have proposed sev-
eral scores to predict positive genotypes in HCM based on the
linear regression modeling of clinical and imaging variables;
however, these scores were not fully validated in clinical prac-
tice and could not directly reflect the dynamic and physiolog-
ical complexity of the myocardium.

Radiomics have demonstrated the potential to achieve or
surpass visual detection in image analysis. Cardiovascular
magnetic resonance (CMR) is not only applicable to the clin-
ical diagnosis and management of HCM [4] owing to its ex-
cellent high spatial resolution and superior contrast ability, it
also lends itself to radiomic analysis. Radiomic signatures
based on magnetic resonance sequences have been associated
with particular genetic expressions in glioma, EGFR expres-
sion [12], and p53 status [13].

Deep learning (DL) is a subset of machine learning algo-
rithms that can learn features and transform them into class
labels for classification. DL is currently reported to recognize
risk stratification in a variety of CMR studies [14–17]. In
particular, nonenhanced cardiac cine sequence is routinely
used in clinical practice to visualize cardiac motion, which is
also free from renal impairment due to contrast agents. DL
based on nonenhanced cardiac cine image–based DL has ac-
curate fully automated LV segmentations [18] and can effi-
ciently detect myocardial infarction [14]. In this study, we aim
to improve the HCMmutation-risk prediction by developing a
nonenhanced cine image–based DL model to enable cost-
effective genetic testing for HCM patients.

Material and methods

Study population

The study population consisted of 198 HCM patients from
January 2012 to December 2013 in our referral center. HCM
was defined as the presence of increased LVwall thickness (≥
15 mm or ≥ 13 mm with a family history) that is not solely
explained by abnormal loading conditions. All patients
underwent CMR examinations and evaluations of genotype
status by three established scores (Mayo Clinic score I,
Mayo Clinic score II, Toronto score) [11, 19, 20] to predict
HCM genotype (Table 1). Patients with HCM phenocopies
(n = 4) and poor image quality (n = 6) were excluded. All pa-
tients provided informed consent, and the local ethics commit-
tee approved this retrospective observational study (2017-
923).

Genetic testing

Genetic testing was performed at two centers: Biotechnology
Corporation (n = 147) and the State Key Laboratory of
Cardiovascular Disease in Fuwai Hospital (n = 51).
Peripheral blood–derived DNA from all HCM patients were
used for panel sequencing of the eight sarcomere protein-
encoding genes including myosin-binding protein C
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(MYBPC3), β-myosin heavy chain (MYH7), essential and
regulatory myosin light chains (MYL2, MYL3), cardiac tro-
ponin T (TNNT2), cardiac troponin I (TNNI3), α-
tropomyosin (TPM1), and cardiac actin (ACTC1), as well as
3 HCM phenocopy genes (GLA for Fabry disease, LAMP2
for Danon disease , and PRKAG2 for PRKAG2
Cardiomyopathy). All coding exons and their flanking
intronic regions were captured using Agilent probes (Agilent
Technologies) and analyzed using the Illumina HiSeq X-ten
platform (n = 147) and HiSeq 2500 (n = 51) (Illumina Inc.),
respectively. Data analysis was performed using a custom
bioinformatics workflow [21] (details are provided in
Supplement 1).

CMR cine data

CMR images of all the HCM patients were obtained using
a clinical 1.5-T MR scanner (MAGNETOM Avanto,
Siemens Healthcare), which implemented an electrocar-
diographic and respiratory gating with a unified protocol.
A balanced steady-state free precession cine sequence
with a breath-hold technique was performed in the LV
two-chamber, three-chamber, four-chamber, and short-
axis orientation. The typical imaging parameters were rep-
etition time (TR) = 2.8–3.0 ms, echo time (TE) = 1.1–

1.5 ms, flip angle = 60–70°, temporal resolution = 30–
55 ms, field of view (FOV) = 360 × 315 mm2, matrix =
192 × 162, slice thickness = 8 mm, and slice gap = 2 mm.
The LVMWT and left ventricular posterior wall thickness
(LVPWT) were measured at the thickest segment on the
short-axis cine image in the LV end-diastole and the ratio
of LVWMT/LVPWT was calculated. The septal morpho-
logical subtypes (sigmoid, reverse curve, apical, and neu-
tral) were assessed from the three-chamber long-axis
views [22].

Cine image segmentation

Cine images of a four-chamber view were retrieved from
the picture archiving and communication system and
loaded onto the free ITK-SNAP 3.6.0 software. The
end-systolic and end-diastolic phases of the four-
chamber-view cine images in the DICOM format were
selected for further segmentation by a radiologist (G.Y.
with 10 years of experience in CMR). Regions of interest
(ROIs) were manually drawn, encircling the LV myocar-
d ium on end-sys to l ic and end-dias to l ic phases .
Furthermore, the propagation of the ROIs to the entire
cardiac cycle was completed using the DL model, as
detailed in the next subsection.

Table 1 Mayo Clinic score I,
Mayo Clinic score II, and Toronto
score for reflection of HCM
genotype

Mayo Clinic
score I

Scores Mayo Clinic
score II

Scores Toronto score Scores

Age of diagnosis, year ≤ 45 1 ≤ 45 1 < 20 0

20–29 − 1
30–39 − 2
40–49 − 3
50–59 − 4
60–69 − 5
70–79 − 6
≥ 80 − 7

LVMWT, mm ≥ 20 1 ≥ 20 1 – –

Asymmetry of
hypertrophy

– – – – < 1.46 0

1.47–1.70 1

1.71–1.92 2

1.93–2.26 3

≥ 2.27 4

Septal morphology – – Reverse 1 Reverse or
neutral

5

FHHCM Yes 1 Yes 1 Yes 6

FHSCD – – Yes 1 – –

Hypertension – Yes −1 Yes −4
Female – – – – Yes 1

Abbreviations: FHHCM, family history of hypertrophic cardiomyopathy; FHSCD, family history of sudden
cardiac death; HCM, hypertrophic cardiomyopathy; LVMWT, left ventricular maximal wall thickness
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Deep learning model

In this study, the establishment of the DL network was
divided into three stages, as shown in Fig. 1. The original
cine images were used as the input to the network, and the
probability of a gene-positive expression was obtained as
the output. In the first stage, the ROIs of the end-systolic
and end-diastolic LV myocardium were propagated to all
phases throughout the cardiac cycle using a DL image
segmentation model DeeplabV3+ [23]. In the second
stage, to form a three-channel input image, the original
cine image (occupying two channels) and segmentation
(occupying one channel) were combined to obtain both
LV myocardial texture and morphological information.
The three-channel input image was then input into the
frozen-weight InceptionResnetV2 [24] model, which was
pre-trained on the ImageNet dataset [25] to extract image
features (n = 1536) in the ROI regions (Fig. 2). Moreover,
to minimize excessive redundant information, these fea-
tures underwent supervised dimensionality reduction
(from 1536 to 32) through the last two fully connected
layers in this model. In the third stage, predictions were

performed by analyzing the image features obtained from
the entire cardiac cycle using a long short-term memory
(LSTM) network. The image features of 25 cine images
(25*32) were respectively loaded onto the LSTM network
[26]; the network was able to learn the subtle changes
between different frames of a time-dependent series so
that a regression analysis could determine the HCM mu-
tation probability. Figure 3 presents the visualization of
DL model from two representative cases.

The data set was divided into a training set (n = 147) and a
test set (n = 51) based on different genetic testing institutions
and CMR scan dates (2012 and 2013, respectively) (Table 2).
To evaluate the stability of the DL model, we repeated the
experiment using random 10-fold cross-validation for the
training set. All three models in the network were trained by
an Adam optimizer (learning rate = 0.0001) [27], using cross-
entropy as a loss function. A total of twenty epochs were
trained in each model, and the results were retained to mini-
mize the loss of the training set. The DL network was imple-
mented using the Keras [28] DL toolkit in Python, version 3.6.
Moreover, model training was performed on graphical proces-
sor units (TITAN XP, NVIDIA).

Fig. 1 Full process of the deep learning network. Firstly, the original
images with ROI encircling the LV myocardium on end-diastolic and
end-systolic phases were propagated to the entire cardiac cycle by using
the deeplabV3 + model. Secondly, the ROIs were cropped and combined
with the original cine images; image features were subsequently extracted
using a classification model: InceptionResnetV2 model. Finally, the

image features of the entire frames were placed into a LSTM model to
evaluate the motion state of each patient and to obtain the probability of
an HCM gene-positive expression. Abbreviations: HCM, hypertrophic
cardiomyopathy; LV, left ventricular; ROIs, regions of interest; LSTM,
long short-term memory
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Statistical analysis

Data were presented as a mean ± standard deviation, median
(quartiles 25–75%), or n (%), as appropriate. The
Kolmogorov–Smirnov test was used to assess the normal dis-
tribution of continuous data. The Student t test was utilized to
compare the continuous variables between the two groups.
Nonparametric parameters were compared using the Mann–
Whitney U test. Frequencies were compared using the chi-
squared test or Fisher’s exact test, as appropriate. The predic-
tive performance of the Mayo Clinic score I, Mayo Clinic
score II, Toronto scores, and DLmodel was evaluated through
receiver-operating characteristic (ROC) analysis to identify
positive HCM genotypes. Logistic regression was performed
using the scikit-learn package in Python. All statistical calcu-
lations were performed using the R software version 3.4.

Results

Clinical and CMR parameters

The study population consisted of 198 HCMpatients (n = 198,
48% men; aged 47 ± 13 years). Unlike genotype-negative pa-
tients, genotype-positive patients included a significantly
higher proportion of female patients (37.76% vs 24.00%,
p = 0.036), patients aged < 45 years at the time of diagnosis
(48.98% vs 35.00%, p = 0.046), and patients with a family
history of HCM (29.59% vs 15.00%, p = 0.014). Moreover,
these patients had a significantly lower prevalence of hyper-
tension (23.47% vs 47.00%, p = 0.001) than genotype-
negative patients. In terms of CMR data, the HCM morpho-
logical subtypes were categorized as follows: sigmoid (n =
111), reverse curve (n = 56), apical (n = 27), and neutral (n =

Fig. 3 Four-chamber view of cine images (odd frames) and visualization
of model features from a genotype-positive (upper two rows) and a
genotype-negative (lower two rows) HCM patient, respectively. The
color differences represented the intensity of each pixel in the entire

model, which may reflect the probability of HCM gene expression in
each patient. Red indicated a higher probability (p = 0.87) and blue
indicated a lower probability (p = 0.28). Abbreviations: HCM,
hypertrophic cardiomyopathy

Fig. 2 Flow chart for image
feature extraction. In this part,
single image features were
extracted from the pre-trained
InceptionResnetV2 model and
underwent targeted
dimensionality reduction (from
1536 to 32) by the last two fully
connected layers
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4). Unlike genotype-negative patients, genotype-positive pa-
tients exhibited greater LVMWT (23.70 ± 5.66 mm vs 21.53
± 5.56 mm, p = 0.007) and higher LVMWT/LVPWT ratios
(2.90 ± 1.02 vs 2.38 ± 0.68, p < 0.001) (Table 3).

HCM genotype

The overall yield of the genetic testing in this study was
49.49% (98/198). In this subset of genotype-positive patients,
variants were distributed in MYBPC3 (n = 41; 41.84%),
MYH7 (n = 34; 34.69%), MYL2 (n = 2; 2.04%), TPM1

(n = 2; 2.04%), TNNI3 (n = 5; 5.10%), TNNT2 (n = 3;
3.06%), ACTC1 (n = 3; 3.06%), MYL3 (n = 3; 3.06%), and
compound mutations (n = 5; 5.10%).(Table 4 and Supplement
2).

Model performance

Training set

To evaluate the stability of the models, we used the network to
perform a 10-fold cross-validation on the internal dataset. The

Table 3 Clinical and imaging
parameters from three established
scores in genotype (+) and
genotype (−) patients

Genotype (+), n = 98 Genotype (−), n = 100 p values

Age, year 44.89 ± 13.23 49.31 ± 12.22 0.015

Age of diagnosis ≤ 45, n (%) 48 (48.98) 35 (35.00) 0.046

Female, n (%) 37 (37.76) 24 (24.00) 0.036

Morphological subtypes, n (%) 0.056

Sigmoid 56 (57.14) 55 (55.00)

Reverse curve 33 (33.67) 23 (23.00)

Apical 8 (8.16) 19 (19.00)

Neutral 1 (1.02) 3 (3.00)

Hypertension, n (%) 23 (23.47) 47 (47.00) 0.001

LVMWT, mm 23.70 ± 5.66 21.53 ± 5.56 0.007

LVMWT > 20 mm, n (%) 74 (75.51) 60 (60.00) 0.020

LVMWT/LVPWT ratio 2.90 ± 1.02 2.38 ± 0.68 < 0.001

Family history of HCM, n (%) 29 (29.59) 15 (15.00) 0.014

Family history of SCD, n (%) 3 (3.06) 1 (1.00) 0.599

Values are presented as n (%) or mean ± standard deviations. Abbreviations: FHHCM, family history of HCM;
FHSCD, family history of sudden cardiac death; LVMWT, left ventricular maximal wall thickness; LVPWT, left
ventricular posterior wall thickness

Table 2 Baseline data in training
and test set Training set (n = 147) Test set (n = 51) p values

Genotype (+), n (%) 70 (47.62) 28 (54.90) 0.373

Age, year 47.71 ± 12.80 44.98 ± 13.33 0.198

Female, n (%) 48 (32.65) 13 (25.50) 0.342

NYHA class, n (%) 0.138

I/II 131 (89.12) 49 (96.08)

III/IV 16 (10.88) 2 (3.92)

Hypertension, n (%) 58 (39.46) 12 (23.53) 0.040

Hyperlipidemia, n (%) 54 (36.73) 9 (17.65) 0.012

Diabetes, n (%) 15 (10.20) 2 (3.92) 0.169

Coronary artery disease, n (%) 5 (3.40) 0 (0) 0.184

Family history of HCM, n (%) 38 (25.85) 6 (11.76) 0.037

Family history of SCD, n (%) 3 (2.04) 1 (1.96) 0.306

Atrial fibrillation, n (%) 21 (14.28) 6 (11.76) 0.653

Values are presented as n (%) or mean ± standard deviations. Abbreviations:NYHA, New York Heart Association
class; HCM, hypertrophic cardiomyopathy; SCD, sudden cardiac death
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area under the curve (AUC) value for theMayo I score and the
Mayo II score, the Toronto score, and DL model were 0.63 ±
0.04, 0.67 ± 0.04, 0.68 ± 0.04, and 0.81 ± 0.01, respectively.

Test set

The diagnostic performance in the test set was computed at the
optimal thresholds that maximize the Youden index, which
were as follows (Table 5 and Fig. 4): Mayo Clinic score I
(AUC: 0.64, sensitivity: 64.29%, specificity: 47.83%,, accu-
racy: 56.86%), Mayo Clinic score II (AUC: 0.70, sensitivity:
64.29%, specificity: 65.22%, accuracy: 64.71%), Toronto
score (AUC: 0.74, sensitivity: 75.00%, specificity: 56.52%,
false-positive rate: 43.48%, accuracy: 66.67%), and DLmodel
(AUC: 0.80, sensitivity: 85.71%, specificity: 69.57%,

accuracy: 78.43%). Although the DL model exhibited a
higher predictive performance, no statistical significance was
achieved compared with theMayo Clinic score I, Mayo Clinic
score II, and Toronto score. However, the combination of DL
and Toronto score resulted in significantly higher predictive
performance (AUC = 0.84, sensitivity: 83.33%, specificity:
78.26%, accuracy: 84.31%) compared with Mayo I (p =
006), Mayo II (p = 022), and Toronto score (p = 0.029).
Furthermore, the false-positive rate was 52.17%, 34.78%,
43.48%, and 30.43% in Mayo I, Mayo II, Toronto score,
and DL model, respectively, resulting in 12, 8, 10, and 7
genotype-negative HCM patients misclassified in the
genotype-positive group, respectively. The combination of
the DL model and Toronto score resulted in only five
genotype-negative HCM patients misclassified in the
genotype-positive group.

Discussion

In this study, to maximize the cost-effectiveness of HCM ge-
netic testing and explore the potential value of CMR in
reflecting HCM genotype status, we developed a
nonenhanced cine CMR image–based DL model. The under-
lying hypothesis is that cine images can provide internal myo-
cardial structural and motional information, which is routinely
used in clinical practice, without the administration of contrast
agents. Our results indicate that a HCM mutation may be
predicted with an AUC of 0.80 and an accuracy of 78.43%
using the DL model. Reasonable consistency of the results
was noted among the 10-fold cross-validation, thereby sug-
gesting a stable network performance. In addition, the combi-
nation of the DL model and the Toronto score (with an AUC
of 0.84 and an accuracy of 84.31%) yielded significantly
higher diagnostic performance than that of a single score.

Table 5 Diagnostic performance
of three established scores andDL
model for prediction of HCM
mutation

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

FPR
(%)

FNR
(%)

Accuracy
(%)

Mayo I 64.29 47.83 60.00 52.38 52.17 35.71 56.86

Mayo II 64.29 65.22 69.23 60.00 34.78 35.71 64.71

Toronto 75.00 56.52 67.74 65.00 43.48 25.00 66.67

DL model 85.71 69.57 77.42 80.00 30.43 14.29 78.43

DL model+
Mayo I

74.19 65.22 74.19 65.22 34.78 25.81 74.51

DL model+
Mayo II

74.19 65.22 74.19 65.22 34.78 25.81 74.51

DL model+
Toronto

83.33 78.26 83.33 78.26 21.74 16.67 84.31

Abbreviations: DL, deep learning; FPR, false-positive rate; FNR, false-negative rate; HCM, hypertrophic cardio-
myopathy; NPV, negative predictive value; PPV, positive predictive value

Table 4 Distribution of
sarcomere protein gene
mutations

Genetic mutations n = 98

MYBPC3 41 (41.84%)

MYH7 34 (34.69%)

TNNT2 3 (3.06%)

TNNI3 5 (5.10%)

TPM1 2 (2.04%)

MYL2 2 (2.04%)

MYL3 3 (3.06%)

ACTC1 3 (3.06%)

Multiple 5 (5.10%)

Va lue s a r e p r e s en t ed a s n (%) .
Abbreviations: MYH7, beta-myosin heavy
chain; MYBPC3, cardiac myosin binding
protein C; TNNT2, cardiac troponin T;
TNNI3, cardiac troponin I; ACTC, cardiac
actin; TPM1, alpha-tropomyosin; MYL3,
essential myosin light chain; MYL2, regu-
latory myosin light chain
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Clinical and CMR parameters

The overall yield of genetic testing was 49.5%, which was
within the range of yields reported in previous literature
(15–70%) [6–8]. Similar to the results of previous studies
[29], 76.5% of causative mutations were detected in
MYBPC3 andMYH7 in this study. Furthermore, several clin-
ical and imaging parameters were reported to be associated
with HCM genotypes. In this study, HCM patients with pos-
itive gene expressions were associated with diagnosis at a
young age, high prevalence of family history of HCM, low
prevalence of hypertension, and great LVMWT, which is con-
sistent with previous literatures [9]. Three scores have been
established to predict HCM genotypes by combining different
clinical and imaging parameters. Mayo Clinic score I only
considered age at diagnosis, LVMWT, and family history of
HCM. Mayo Clinic score II added septal morphology, family
history of SCD, and hypertension. In the Toronto score, fur-
ther details, with different risk weights, were attached to inde-
pendent predictor variables. Among the three traditional
scores, the Toronto score provided the best predictive perfor-
mance. However, the traditional scores had a limited accuracy
(56.86–66.67%). This may be because the traditional scores
were established based on the linear regression modeling of
clinical and imaging variables and a single score cannot reflect
the dynamic physiological complexity of this heart disease.

Deep learning model

Compared with a human visual inspection, the DL technique
may detect subtle motional changes in cardiovascular dis-
eases, e.g., myocardial infarction, with higher precision and
sensitivity [14, 30]. The DL model was also used to achieve a
fully automated and accurate LV functional analysis of CMR
cine images [31]. In our DL model, the differences in the

internal myocardial structure were reflected in the intensity
changes in the myocardial features in each frame of the image.
A.H. Ellims et al [32] detected more regional, but less diffuse
myocardial fibrosis in HCM patients with genetic mutations
than those without genetic mutations, suggesting different
pathological features in HCM patients with positive and neg-
ative genotypes. Furthermore, the difference in myocardial
motion was reflected in the temporal state of the myocardial
features. This may be owing to the different HCM genetic
status, which may lead to subtle differences in both the inter-
nal structure and motion states of the myocardium. It was
emphasized that the combination of the DL model and
Toronto score resulted in the best predictive performance with
an AUC of 0.84 and a lower false-positive rate (approximately
20%) than single scores. This implies a significant comple-
mentation between internal myocardial characterization and
clinical features.

Clinical implications

CMR should be considered for patients that fulfill the diag-
nostic criteria for HCM, to assess cardiac anatomy, ventricular
function, and the presence and extent of myocardial fibrosis
(IIa) [4]. However, CMR is underutilized in HCM, primarily
owing to the length of the CMR examination, lack of clini-
cians experienced in cardiac imaging, and relatively high cost
(approximately 286USD, 70% covered by social medical in-
surance in China). Thus, it is impractical to perform CMR for
all HCM patients. We developed a DL model based on cine
images of those patients who have undergone CMR examina-
tions, to identify genotype information and assist in selecting
patients with a higher probability of a positive genotype to
maximize the cost-effectiveness of genetic testing. For exam-
ple, using the combined DL model and Toronto score, five of
fifty-one (< 10%) patients were misclassified in the genotype-

Fig. 4 ROC curves of the three
established scores, DL, and DL +
Toronto score for the reflection of
HCM genotypes in the test set.
Abbreviations: AUC, area under
the (receiver-operating
characteristic) curve; DL, deep
learning; HCM, hypertrophic
cardiomyopathy; ROC,
receiver-operating characteristic;
T, Toronto score
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positive group, which was significantly lower than the mis-
classifications by established scores (15–25%). The identifi-
cation of causative mutations in an HCM probands could fa-
cilitate the detection of asymptomatic HCM patients and mu-
tation carriers among their family members. Although the
genotype-phenotype relationship in HCM has not been clearly
established, it has been widely accepted that HCM patients
with a positive genotype are associated with malignant prog-
nosis, compared to those with a negative genotype [10, 33,
34]. Thus, the DL-based technique on nonenhanced CMR
cine images also has the potential to improve the interpretation
of the genotype-phenotype correlation in the HCM
population.

Study limitation

We acknowledge that the preliminary study has several limi-
tations. First, the DL network exhibits difficulty in obtaining
stable image features directly from the data, owing to the
limited dataset. A larger set of training and test data may
facilitate further improvement. Second, multi-center valida-
tion was not performed because the available data were ob-
tained from a single tertiary hospital. Third, we focused on the
classification of positive and negative genotypes; therefore,
the performance of LV segmentation is not evaluated in this
study. An anatomically constrained neuronal network may
improve the segmentation and performance of the DL model
in future studies. Fourth, although CMR is characterized by
multi-sequence imaging, only four-chamber-view cine images
were analyzed in this study owing to their reliable position,
and no radiation as well as renal fibrosis due to contrast
agents. Other sequences in different orientations may be in-
vestigated in future studies.

Conclusion

The combination of the DL model, based on cine images and
the Toronto score, may aid in identifying HCM patients with
positive genotypes, which can also potentially enhance the
interpretation of the genotype and phenotype on CMR in the
HCM population. Multivendor, multi-center participation,
and a larger sample size are imperative to evaluate the feasi-
bility and clinical application of this model.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-020-07454-9.

Author contributions Lu Li made contributions to the conception and
design of the study; Lu Li and Hongyu Zhou drafted the manuscript;
Kankan Zhao and Lu Li were responsible for statistical analysis of the
data, Zhenyu Liu, Min-jie Lu, and Xiuyu Chen made critical revisions to
the manuscript; Lu Li and Lei Song collected conventional CMR and
genetic data; Gang Yin was in charge of image segmentation; Shihua

zhao, Jie Tian, and Hairong Zheng made a contribution to study conduc-
tion. All authors read and approved the final manuscript.

Funding This paper is supported by the National Natural Science
Foundation of China under Grant Nos. 81922040, 81930053,
81227901, 81527805, and 81772012; the major international (regional)
joint research project of National Science Foundation of China under
Grant No. 81620108015; Beijing Natural Science Foundation (under
Grant No. 7182109); National Key Research and Development Plan of
China (under Grant Nos. 2017YFA0205200, 2016YFA0100900, and
2016YFA0100902); and Youth Innovation Promotion Association CAS
(Grant No. 2019136).

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Shihua Zhao.

Conflict of interest The authors of this manuscript declare no relation-
ships with any companies whose products or services may be related to
the subject matter of the article.

Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was obtained from all sub-
jects (patients) in this study.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• Retrospective

References

1. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic re-
view. JAMA 287:1308–1320

2. Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy.
Lancet 381:242–255

3. Maron BJ, Maron MS, Semsarian C (2012) Genetics of hypertro-
phic cardiomyopathy after 20 years: clinical perspectives. J Am
Coll Cardiol 60:705–715

4. Elliott PM, Anastasakis A, Borger MA et al (2014) 2014 ESC
guidelines on diagnosis and management of hypertrophic cardio-
myopathy: the task force for the diagnosis and management of
hypertrophic cardiomyopathy of the European Society of
Cardiology (ESC). Eur Heart J 35:2733–2779

5. Wordsworth S, Leal J, Blair E et al (2010) DNA testing for hyper-
trophic cardiomyopathy: a cost-effectiveness model. Eur Heart J
31:926–935

6. Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ
(2005) Sarcomeric genotyping in hypertrophic cardiomyopathy.
Mayo Clin Proc 80:463–469

7. Andersen PS, Havndrup O, Hougs L et al (2009) Diagnostic yield,
interpretation, and clinical utility of mutation screening of sarco-
mere encoding genes in Danish hypertrophic cardiomyopathy pa-
tients and relatives. Hum Mutat 30:363–370

8. Girolami F, Olivotto I, Passerini I et al (2006) A molecular screen-
ing strategy based on beta-myosin heavy chain, cardiac myosin
binding protein C and troponin T genes in Italian patients with
hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown) 7:
601–607

3939Eur Radiol (2021) 31:3931–3940



9. Lopes LR, RahmanMS, Elliott PM (2013)A systematic review and
meta-analysis of genotype-phenotype associations in patients with
hypertrophic cardiomyopathy caused by sarcomeric protein muta-
tions. Heart 99:1800–1811

10. Lopes LR, Syrris P, Guttmann OP et al (2015) Novel genotype-
phenotype associations demonstrated by high-throughput sequenc-
ing in patients with hypertrophic cardiomyopathy. Heart 101:294–
301

11. Gruner C, Ivanov J, Care M et al (2013) Toronto hypertrophic
cardiomyopathy genotype score for prediction of a positive geno-
type in hypertrophic cardiomyopathy. Circ Cardiovasc Genet 6:19–
26

12. Li Y, Qian Z, Xu K et al (2018) MRI features predict p53 status in
lower-grade gliomas via a machine-learning approach. Neuroimage
Clin 17:306–311

13. Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR
expression in lower grade gliomas: a voxel-based radiomic analy-
sis. Eur Radiol 28:356–362

14. Zhang N, Yang G (2019) Deep learning for diagnosis of chronic
myocardial infarction on nonenhanced cardiac cine MRI.
Radiology 291:606–617

15. Baessler B, Luecke C, Lurz J et al (2018) Cardiac MRI texture
analysis of T1 and T2 maps in patients with infarctlike acute myo-
carditis. Radiology 289:357–365

16. Cheng S, Fang M, Cui C et al (2018) LGE-CMR-derived texture
features reflect poor prognosis in hypertrophic cardiomyopathy pa-
tients with systolic dysfunction: preliminary results. Eur Radiol 28:
4615–4624

17. Bello GA, Dawes TJW, Duan J et al (2019) Deep learning cardiac
motion analysis for human survival prediction. Nat Mach Intell 1:
95–104

18. Bai W, Sinclair M, Tarroni G et al (2018) Automated cardiovascu-
lar magnetic resonance image analysis with fully convolutional net-
works. J Cardiovasc Magn Reson 20:65

19. Bos JM, Will ML, Gersh BJ, Kruisselbrink TM, Ommen SR,
AckermanMJ (2014) Characterization of a phenotype-based genet-
ic test prediction score for unrelated patients with hypertrophic
cardiomyopathy. Mayo Clin Proc 89:727–737

20. Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ
(2005) Yield of genetic testing in hypertrophic cardiomyopathy.
Mayo Clin Proc 80:739–744

21. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for
the interpretation of sequence variants: a joint consensus recom-
mendation of the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology. Genet
Med 17:405–424

22. Binder J, Ommen SR, Gersh BJ et al (2006) Echocardiography-
guided genetic testing in hypertrophic cardiomyopathy: septal mor-
phological features predict the presence of myofilament mutations.
Mayo Clin Proc 81:459–467

23. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H (2018)
Encoder-decoder with atrous separable convolution for semantic
image segmentation. European Conference on Computer Vision
(ECCV), Munich. Available via https://doi.org/10.1007/978-3-
030-01234-2_49. Accessed 06 October 2018

24. Szegedy C, Ioffe S, Vanhoucke VAlemi A (2016) Inception-v4,
Inception-ResNet and the impact of residual connections on learn-
ing. National Conference on Artificial Intelligence(AAAI) ,
Phoenix. Available via arXiv:1602.07261. Accessed: February
2016

25. Deng J, Dong W, Socher R, Li LJ, Li K, Li FF (2009) ImageNet: a
large-scale hierarchical image database. Computer Vision& Pattern
Recognition (CVPR), Miami. Available via https://doi.org/10.
1109/CVPR.2009.5206848. Accessed 18 August 2009

26. Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget:
continual prediction with LSTM. Neural Comput 12:2451–2471

27. Kingma DP, Ba J (2015) Adam: a method for stochastic optimiza-
tion. International Conference on Learning Representations
(ICLR), SanDiego. Available via arXiv:1412.6980. Accessed 2015

28. Chollet F (2018) Keras: the python deep learning library.
Astrophysics Source Code Library. Available via https://keras.io/
getting-started/faq/#how-should-i-cite-keras. Accessed June 2018

29. Bos JM, Towbin JA, Ackerman MJ (2009) Diagnostic, prognostic,
and therapeutic implications of genetic testing for hypertrophic car-
diomyopathy. J Am Coll Cardiol 54:201–211

30. Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R
(2018) Subacute and chronic left ventricular myocardial scar: accu-
racy of texture analysis on nonenhanced cine MR images.
Radiology 286:103–112

31. Tao Q, Yan W, Wang Y et al (2019) Deep learning-based method
for fully automatic quantification of left ventricle function from cine
MR images: a multivendor, multicenter study. Radiology 290:81–
88

32. Ellims AH, Iles LM, Ling LH et al (2014) A comprehensive eval-
uation of myocardial fibrosis in hypertrophic cardiomyopathy with
cardiac magnetic resonance imaging: linking genotype with fibrotic
phenotype. Eur Heart J Cardiovasc Imaging 15:1108–1116

33. Fujita T, Fujino N, Anan R et al (2013) Sarcomere gene mutations
are associated with increased cardiovascular events in left ventric-
ular hypertrophy: results from multicenter registration in Japan.
JACC Heart Fail 1:459–466

34. Olivotto I, Girolami F, Ackerman MJ et al (2008) Myofilament
protein gene mutation screening and outcome of patients with hy-
pertrophic cardiomyopathy. Mayo Clin Proc 83:630–638

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

3940 Eur Radiol (2021) 31:3931–3940

https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://keras.io/getting-tarted/faq/#how-houlditeeras
https://keras.io/getting-tarted/faq/#how-houlditeeras

	Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Study population
	Genetic testing
	CMR cine data
	Cine image segmentation
	Deep learning model
	Statistical analysis

	Results
	Clinical and CMR parameters
	HCM genotype
	Model performance
	Training set
	Test set


	Discussion
	Clinical and CMR parameters
	Deep learning model
	Clinical implications
	Study limitation

	Conclusion
	References


