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Abstract
Objectives To prospectively investigate the stiffness and fluidity of pancreatic ductal adenocarcinoma (PDAC) and autoimmune
pancreatitis (AIP) with tomoelastography, and to evaluate its diagnostic performance in distinguishing the two entities.
Methods Tomoelastography provided high-resolution maps of shear wave speed (c in m/s) and phase angle (φ in rad), allowing
mechanical characterization of the stiffness and fluidity properties of the pancreas. Forty patients with untreated PDAC and 33
patients with untreated AIP who underwent diagnostic pancreaticMRI at 3-T together with multifrequencyMR elastography and
tomoelastography data processing were prospectively enrolled. Ten healthy volunteers served as controls. Two radiologists and a
technician measured pancreatic stiffness and fluidity independently. The two radiologists also independently evaluated the
patients’ conventional MR sequences using the following diagnostic score: 1, definitely PDAC; 2, probably PDAC; 3, indeter-
minate; 4, probably AIP; and 5, definitely AIP. Interobserver agreement was assessed. Stiffness and fluidity of PDAC, AIP, and
healthy pancreas, as well as diagnostic performance of tomoelastography and conventional MRI, were compared.
Results AIP showed significantly lower stiffness and fluidity than PDAC and significantly higher stiffness and fluidity than
healthy pancreas. Pancreatic fluidity was not influenced by secondary obstructive changes. The intraclass correlation coefficient
for pancreatic stiffness and fluidity by the 3 readers was near-perfect (0.951–0.979, all p < 0.001). Both stiffness and fluidity
allowed distinguishing PDAC from AIP. AUCs were 0.906 for stiffness, 0.872 for fluidity, and 0.842 for conventional MRI.
Conclusions Pancreatic stiffness and fluidity both allow differentiation of PDAC and AIP with high accuracy.
Key Points
• AIP showed significantly lower stiffness and fluidity than PDAC and significantly higher stiffness and fluidity than healthy
pancreas.

• Both stiffness and fluidity allowed distinguishing PDAC from AIP.
• Pancreatic fluidity could distinguish malignancy from non-malignant secondary obstructive changes.
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Abbreviations
AIP Autoimmune pancreatitis
AUC Area under the curve
CI Confidence interval
ICC Intraclass correlation coefficient
MRE Magnetic resonance elastography
PDAC Pancreatic ductal adenocarcinoma
ROC Receiver operating characteristics

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal
malignancy, with the highest 5-year mortality of all solid ma-
lignant tumors [1]. Autoimmune pancreatitis (AIP) is an
autoimmune-mediated inflammatory disease that attacks the
pancreas. It often causes tumor-like swelling of the pancreas
and obstructive symptoms, resulting in a clinical profile and
radiological appearance highly resembling pancreatic cancer
[2]. Since the treatment strategies and prognosis are absolutely
different, it is of great importance to distinguish these two
disease entities. However, the differential diagnosis remains
challenging nowadays [3, 4]. Although serum CA19-9 is ele-
vated in the majority of patients with pancreatic cancer, for the
Lewis antigen-negative individuals, which composed approx-
imately 5–10% of the population, serum CA19-9 often re-
mains normal even at the presence of pancreatic cancer [5].
The pooled sensitivity and specificity of CA19-9 for diagnos-
ing pancreatic cancer are 79–81% and 82–90%, respectively
[6]. Serum IgG4 is usually normal in type 2 AIP and could be
elevated in patients with pancreatic cancer [7–9]. Some radio-
logical signs at contrast-enhanced CT and MRI have been
considered useful in differentiating AIP from PDAC; howev-
er, the reported interobserver agreement and diagnostic accu-
racy was variable [10–16]. The diagnostic accuracy with ra-
diological signs could be quite low with inexperienced ob-
servers [17].

The mechanical properties of the pancreas provide new
insight for disease characterization. Pancreatic cancer is char-
acterized by dense fibrosis induced by fibroblast activation
and collagen deposition within the tumor [18]. AIP is charac-
terized by periductal lymphoplasmacytic infiltration and
storiform fibrosis [19]. Both the increased cell density and
fibrosis alter the tissue’s mechanical properties. A preliminary
study has shown significant differences in pancreatic stiffness
between pancreatic cancer and AIP, which could be used for
the differentiation of the two entities [20]. Tomoelastography,
a multifrequency magnetic resonance elastography (MRE)
technique with noise-robust data postprocessing, has been in-
troduced to the field of cancer imaging recently [21, 22]. It
provides high-resolution parametric maps, quantifying tissue
stiffness and fluidity. While stiffness is well known as the
property assessed by palpation, fluidity is relatively new to

tumor characterization, which signifies the conversion of solid
behavior into fluid behavior of the tissue, over a continuous
range of values from 0 to π/2. Materials with φ < π/4 have
predominantly solid behavior and materials with φ > π/4 have
predominantly fluid behavior. The use of tomoelastography
and the role of fluidity in characterizing pancreatic lesions
have not been explored so far. Therefore, in this prospective
study, we investigated the stiffness and fluidity of PDAC and
AIP using tomoelastography and determined its diagnostic
performance in differentiating PDAC from AIP.

Materials and methods

Study population

This prospective study was approved by the Institutional
Review Board, and all patients provided written informed
consent. From September 2018 to December 2019, patients
with pancreatic lesions suspected to be AIP or pancreatic can-
cer were prospectively enrolled. Inclusion criteria were as fol-
lows: (1) diagnosis of AIP based on the International
Consensus Diagnostic Criteria (ICDC), or diagnosis of
PDAC based on histopathological findings; (2) patient did
not receive any treatment before the MR examination; (3) a
full diagnostic pancreatic MRI was performed together with
tomoelastography. Patients were excluded for the following
reasons: a final diagnosis other than AIP or PDAC (n = 9);
suspected PDAC without pathological proof (n = 4); neoadju-
vant chemotherapy for pathologically proven PDAC before
the MR examination (n = 2); or short-term steroid trial before
the MR examination (n = 3).

A group of 10 healthy volunteers examined by the same
MR protocol but without contrast medium administration
were included as controls. They had no history of excessive
alcohol consumption, acute pancreatitis, or chronic pancreati-
tis. Their family history of pancreatic disease was also nega-
tive. None of the subjects had any symptoms which might be
related to pancreatic diseases, and their MR examinations did
not reveal any pancreatic lesion.

Imaging technique

MR sequences

The MR examinations were performed on a 3-T MR imaging
system (MAGNETOM Skyra, Siemens Healthcare), using an
18-channel phased-array surface coil. The protocol was iden-
tical for all patients, which included axial volume-interpolated
breath-hold (VIBE) T1WI, axial turbo spin-echo (TSE) fat-
saturated (fs) T2WI, axial and coronal half-Fourier acquisition
single-shot turbo spin-echo (HASTE) T2WI, fat-suppressed
diffusion-weighted imaging (DWI) with single-shot echo-
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planar imaging (EPI), magnetic resonance cholangiopan-
creatography (MRCP, 3D isotropic acquisition, and 2D
single-shot thick-slab acquisition), and the dynamic contrast-
enhanced (DCE) time-resolved imaging with interleaved
stochastic trajectories (TWIST)-VIBE. Details of sequence
parameters are listed in Table 1.

In vivo pancreatic tomoelastography was performed before
intravenous contrast agent administration. Multifrequency
harmonic vibrations were generated by four compressed air-
driven pressure pads, each 8.0 × 4.0 × 1.0 cm3 in size, placed
at the level of the surface projection of the pancreas (2 pads on
the anterior side and 2 on the posterior side). Multifrequency
wavefield data was acquired using a single-shot, spin-echo
EPI sequence with flow-compensated motion-encoding gradi-
ents (MEG) during free-breathing. Three-dimensional wave
fields were sampled at eight equally spaced time instances
for four mechanical frequencies from 30 to 60 Hz with 10-
Hz increment sequentially. The MEG frequencies were
37.26 Hz, 37.26 Hz, 37.48 Hz, and 44.88 Hz for the vibration
frequencies of 30 Hz, 40 Hz, 50 Hz, and 60 Hz, respectively;
the MEG amplitude was 35 mT/m.

Tomoelastography data postprocessing

Multifrequency wave field data was processed using the pro-
cessing pipeline available at https://bioqic-apps.charite.de.
Full field-of-view high-spatial resolution maps of shear wave
speed (c) and loss angle of the complex shear modulus (φ)
were generated using a multifrequency wave number–based
processing algorithm (k-MDEV) [23] and Laplacian
operators-based processing method (MDEV) [24]. As de-
scribed in recent studies using tomoelastography [25, 26],
shear wave speed is referred to as a surrogate marker of stiff-
ness as it is directly linked to the magnitude of the complex

shear modulus. Fluidity parameter φ relates to pure fluid prop-
erties of the tissue. φ ranges from 0 to π/2, marking a fluidity
transition for solid to fluid [22].

Image analysis

Two radiologists (L.Z. and J. X., with 10 and 6 years of ex-
perience in abdominal MRI, respectively) and a technician
(Z.S., with 10 years of experience in clinical MR scanning)
participated in image evaluation, using the ImageJ software
(Version 1.51). The image datasets of the patients and healthy
volunteers were anonymized and assigned with a case number
in random order. The gender, age, and clinical information
were all blinded to the readers. Each reader makes the follow-
ing evaluations independently.

First, based on stiffness characteristics, the pancreatic in-
volvement pattern was determined as type 1, single-focal
“hotspot” lesion on the c map; type 2, multi-focal (≥ 2)
“hotspot” lesions; type 3, heterogenous pancreas texture with-
out identifiable focal lesions; and type 4, homogenous pancre-
as texture without identifiable focal lesions on the c map.

Second, free-hand ROIs were drawn directly on the cmaps
and then directly transferred to the φmaps. The entire pancre-
as was divided into regional segments of pancreatic head,
body, and tail. For pancreas with type 1 and type 2 image
pattern, ROIs were made to cover the lesion only, if the mea-
sured segment was considered involved. Otherwise, the ROI
was made to cover the whole segment, avoiding adjacent
structures and dilated pancreatic duct (if present). For pancreas
with type 3 and type 4 image pattern, ROIs were made to
cover the whole pancreatic head, body, and tail, separately.

After a 2-week interval, the two radiologists evaluated the
conventional MR sequences of the patients independently.
The image sets were also randomized and blinded. For each

Table 1 Sequence parameters of the pancreatic MRI protocol

Sequence Plane Acquisition TR/TE (ms) FA
(°)

Section thickness
(mm)

FOV
(mm)

Acquisition time (s)

T1w-VIBE-Dixon Axial BH 4.11/1.31–2.54 12 3 380 × 380 17

T2w-TSE FS Axial NT 2390/81 90 6 400 × 400 300–400

T2w- HASTE Axial NT 2000/92 90 4 300 × 300 120–180

T2w- HASTE Coronal NT 2000/92 90 4 300 × 300 120–180

ss-EPI-DWI Axial NT 2500/61 – 4 400 × 400 180–240

3D MRCP Coronal NT 1700/425 105 1 384 × 384 120–180

2D thick-slab MRCP Para-coronal BH 4500/735 180 60 400 × 400 3 × 3–6 orientations

3D-EPI-tomoelastrography Axial FB 3270/69 – 2 256 × 256 240–300

TWIST-VIBE DCE Axial BH 3.89/1.23–2.46 10 3 400 × 400 600, multi-phase enhanced im-
aging

VIBE, volume-interpolated breath-hold; TSE, turbo spin-echo; FS, fat-saturated;HASTE, half-Fourier acquisition single-shot turbo spin-echo; EPI, echo
planar imaging; DWI, diffusion-weighted imaging; MRCP, magnetic resonance cholangiopancreatography; TWIST, time-resolved imaging with inter-
leaved stochastic trajectories; DCE, dynamic contrast enhanced
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case, a 5-point diagnostic score (1, definitely PDAC; 2, prob-
ably PDAC; 3, indeterminate; 4, probably AIP; 5, definitely
AIP) was given, based on known imaging findings that could
help distinguishing the two disease entities [13–16].

Statistical analysis

Continuous data was tested for normal distribution with the
Shapiro-Wilk test and expressed as means ± standard devia-
tion if normally distributed. Categorical data was expressed as
frequencies or percentages.

Interobserver agreement was assessed by the intraclass corre-
lation coefficient (ICC) and Bland-Altman analysis. An ICC val-
ue of greater than 0.75 was considered a good agreement [27].

The stiffness and fluidity of PDAC, AIP, and healthy pan-
creas were compared using the Kruskal-Wallis test, with the
post hoc Bonferroni correction for multiple testing.

Receiver operating characteristic (ROC) analysis was per-
formed to determine and compare the diagnostic performance
of tomoelastography and conventional MRI. The area under
the curves (AUC) was calculated, and cutoff values were se-
lected based on Youden’s index. Area under the curve (AUC)
was analyzed using the Hanley McNeil method [28].

The statistical analyses were performed using the MedCalc
software (MedCalc Software Ltd) and GraphPad Prism
(GraphPad Prism for Windows, version 5.01). A double-
sided p < 0.05 indicated a statistically significant difference.

Results

The study included 40 patients with untreated pancreatic can-
cer (24 males, age range 26–78 years, median 58 years), 33
patients with untreated AIP (26 males, age range 37–77 years,
median years 60 years), and 10 healthy volunteers (7 males,
age range 28–65 years, median 52 years). There was no sig-
nificant difference concerning gender (p = 0.226) and age
(p = 0.307) among the groups.

In patients with PDAC, 19 tumors were located in the pan-
creatic head and 21 tumors in the pancreatic body-tail.
Nineteen patients received curative-intent surgery, and 21 pa-
tients received biopsy followed by adjuvant therapy due to
locally advanced cancer or metastases found at diagnosis.

In patients with AIP, 21 had diffuse pancreatic involve-
ment, 2 had multi-focal involvement, and 10 had single-
focal involvement. All the patients received steroid therapy
with clinical and radiological improvement.

Interobserver variability of tomoelastography

The technical setup, data acquisition, and postprocessing were
successful in all participants.

ICCs of pancreatic stiffness were 0.976 (95% confidence in-
terval [CI]: 0.968 to 0.982) between reader 1 and reader 2, 0.958
(95% CI: 0.944 to 0.968) between reader 1 and reader 3, and
0.979 (95% CI: 0.972 to 0.984) between reader 2 and reader 3,
indicating near-perfect interobserver agreement (all p < 0.001).

ICCs of pancreatic fluidity were 0.951 (95% CI: 0.939 to
0.967) between reader 1 and reader 2, 0.974 (95%CI: 0.963 to
0.982) between reader 1 and reader 3, and 0.963 (95% CI:
0.951 to 0.972) between reader 2 and reader 3, which also
indicated near-perfect interobserver agreement (all p < 0.001).

Figure 1 shows the Bland-Altman analysis of pancreatic
stiffness and fluidity measurement by reader 1 (senior radiol-
ogist) and reader 3 (technician).

Stiffness and fluidity characteristics of PDAC, AIP, and
normal pancreas

In healthy subjects, pancreatic stiffness and fluidity did not
differ among pancreatic head, body, and tail (p = 0.64 and
p = 0.71, respectively).

Fig. 1 Bland-Altman analysis of reader agreement (senior radiologist vs.
technician) in pancreatic stiffness (a) and pancreatic fluidity measurement
(b)
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For patients with PDAC, 32 (80%) showed type 1 image
pattern (signal-focal hotspot lesion) on stiffness map, and 8
(20%) showed type 3 image pattern (heterogeneous diffuse
lesion). All the latter had tumors located in the pancreatic
head.

For patients with AIP, all four involvement patterns were
identified: 10 (30.3%) were type 1 (single-focal), 2 (6.1%)
type 2 (multi-focal), 15 (45.5%) type 3 (heterogeneous dif-
fuse), and 3 (9.1%) type 4 (homogeneous diffuse) lesions.

The group mean values and standard deviations of pancre-
atic stiffness and fluidity in PDAC, AIP, and healthy pancreas
are shown in Table 2. The stiffness of PDAC (2.34 ± 0.39m/s)
was significantly higher compared to that of AIP (1.77 ±
0.15 m/s) and healthy pancreas (1.32 ± 0.05 m/s, both
p < 0.001), while the stiffness of AIP was also higher com-
pared to that of normal pancreas (p < 0.001).

Similarly, the fluidity of PDAC (1.20 ± 0.15 rad) was sig-
nificantly higher compared to that of AIP (1.02 ± 0.13 rad)
and healthy pancreas (0.81 ± 0.03, both p < 0.001), while the
fluidity of AIP was also higher compared to that of normal
pancreas (p < 0.001).

Figures 2 and 3 and supplement figures s1-s2 show exam-
ples of tomoelastography findings in patients with PDAC and
AIP.

Scatterplots of group values of pancreatic stiffness and flu-
idity of PDAC, its proximal and distal parenchyma, and AIP
are shown in Fig. 4.While the parenchyma proximal to PDAC
(i.e., parenchyma on the right side of the tumor, towards the
direction of the pancreatic head) had a stiffness of 1.29 ±
0.09 m/s, similar to normal pancreas (1.32 ± 0.05 m/s, p =
0.374), the parenchyma distal to PDAC (i.e., parenchyma on
the left side of the tumor, towards the direction of the pancre-
atic tail) was significantly stiffer than the normal pancreas
(1.65 ± 0.34 m/s, p < 0.001). On the contrary, the pancreatic

parenchyma proximal and distal to PDAC did not show
significant difference in fluidity (0.83 ± 0.05 and 0.86 ± 0.07,
p = 0.167).

Diagnostic accuracy of tomoelastography and
conventional MR sequences

The diagnostic performance of the 3 readers using pancreatic
stiffness, fluidity, and conventional MRI are shown in
Table 3. The AUCs with pancreatic stiffness and fluidity were
not significantly different among the three readers (all
p > 0.20), regardless of the background of diagnostic training
and experience.

For the senior radiologist, diagnostic accuracy with pancre-
atic stiffness was high, with an AUC of 0.906, and diagnostic
accuracy with pancreatic fluidity was also satisfactory, with an
AUC of 0.872. Diagnostic accuracy with conventional MRI
findings was slightly lower with an AUC of 0.842, but the
difference was not significant (p = 0.392 and 0.660 compared
to pancreatic stiffness and fluidity, respectively). For the ju-
nior radiologist, a similar trend was found, with AUCs of
0.912, 0.869, and 0.828 for pancreatic stiffness, fluidity, and
diagnosis derived from conventional MRI, respectively. The
differences were not significant.

Discussion

To the best of our knowledge, this is the first report on the
tomographic mapping of stiffness and fluidity for characteriz-
ing pancreatic lesions.We found that elevated pancreatic stiff-
ness and fluidity allowed separation of PDAC from AIP and
normal pancreas with high diagnost ic accuracy.
Tomoelastography provides high-resolution parameter maps,

Table 2 Pancreatic stiffness and fluidity in PDAC, AIP, and normal pancreas, as measured by the 3 readers

Reader 1
(senior radiologist)

Reader 2
(resident radiologist)

Reader 3
(technician)

p value reader
1 vs 2

p value reader
1 vs 3

p value reader
2 vs 3

Stiffness measurement (m/s)

Pancreatic cancer 2.35 ± 0.39 2.33 ± 0.42 2.31 ± 0.41 0.275 0.083 0.621

Downstream (uninvolved) pancreas 1.29 ± 0.09 1.31 ± 0.13 1.30 ± 0.10 0.085 0.179 0.724

Upstream pancreas 1.65 ± 0.34 1.65 ± 0.40 1.63 ± 0.38 0.772 0.215 0.093

Autoimmune pancreatitis 1.77 ± 0.15 1.76 ± 0.16 1.77 ± 0.16 0.324 0.596 0.832

Healthy pancreas 1.32 ± 0.05 1.32 ± 0.06 1.32 ± 0.05 0.377 0.507 0.827

Fluidity measurement (rad)

Pancreatic cancer 1.20 ± 0.13 1.20 ± 0.16 1.19 ± 0.16 0.535 0.326 0.609

Downstream (uninvolved) pancreas 0.83 ± 0.05 0.82 ± 0.05 0.82 ± 0.04 0.822 0.418 0.791

Upstream pancreas 0.86 ± 0.07 0.85 ± 0.08 0.86 ± 0.09 0.274 0.621 0.188

Autoimmune pancreatitis 1.02 ± 0.13 1.02 ± 0.14 1.02 ± 0.13 0.231 0.539 0.554

Healthy pancreas 0.81 ± 0.04 0.80 ± 0.04 0.80 ± 0.03 0.126 0.473 0.443
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which facilitates ROI selection [25, 29–31], enabling even
less-experienced users to quantify the mechanical characters
of the pancreas. It has been shown that diagnostic accuracy of
AIP based on radiological signs could be quite low with inex-
perienced readers, as investigated by Sugumar et al, with the
famous comment “the eyes do not see what the mind does not
know” [17]. The inter-reader agreement from subjective inter-
pretation of images may be another problem. A multi-reader
study of CT signs for characterizing AIP had kappa values
varying from 0.28 to 0.75, some of which were far from sat-
isfactory [32]. In our study, interobserver agreement for pan-
creatic stiffness and fluidity measurement was near-perfect
among the three readers, and the diagnostic accuracy achieved
by the technician was similar to the senior radiologist. These
results suggest that the determination of mechanical properties
is reader-independent. Moreover, the measurement of me-
chanical properties does not require extensive training. The

quantitative information provided by tomoelastography could
be very useful for institutions other than specialized tertiary
centers. In our study, the diagnostic accuracy with
tomoelastography was higher than 0.90 by all readers, which
was superior compared to the subjective interpretation by the
senior radiologist. This diagnostic accuracy increment means
that more patients who are suspected of having pancreatic
cancer or AIP will be saved from an indeterminate or wrong
diagnosis at the first place. Since the diagnosis of a totally
benign disease or a highly lethal malignancy means “heaven
or hell” for the patient and family, a correct diagnosis from
non-invasive examination will save a long torturous experi-
ence of waiting and multiple invasive procedures.

It is interesting to note that, in patients with PDAC, increased
tissue stiffness was observed not only in the tumor itself but also
in the pancreatic parenchyma distal to the tumor. In our study, 8
cases (20%) of pancreatic cancer were interpreted as diffuse,

Fig. 2 A 43-year-old male patient with biopsy-proven pancreatic ductal
adenocarcinoma. a Axial T2-weighted image shows a heterogeneous
high-signal-intensity mass lesion in the pancreatic body (arrow), with
upstream pancreatic duct dilation and distal parenchyma atrophy (arrow-
head). b On the tomoelastographic cmap, which characterizes pancreatic
stiffness, the tumor in the pancreatic body (arrow) and the distal

pancreatic parenchyma (arrowhead) both showed increased stiffness,
and the tumor border was unclear. c On the tomoelastographic φ map,
which characterizes pancreatic fluidity, only the tumor in the pancreatic
body (arrow) showed increased fluidity, while the distal pancreatic pa-
renchyma (arrowhead) did not

Fig. 3 A 57-year-old male patient with IgG4-related autoimmune pan-
creatitis, which involved the pancreatic body and tail. a Axial T2-
weighted image shows mass-like swelling of the pancreatic body and tail
(arrow), with slightly increased signal intensity. b On the
tomoelastographic cmap, AIP showed increased stiffness (arrow), which

was lower compared to typical pancreatic cancer. c On the
tomoelastographic φ map, which characterizes pancreatic fluidity, AIP
showed increased fluidity (arrow), which was also lower compared to
typical pancreatic cancer
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heterogenous pancreatic involvement on the stiffness map. All
such lesions were located in the pancreatic head. Invasion of
ductal epithelium by the tumor causes mechanical obstruction
and upstream dilation of the pancreatic ducts, which appear as
secondary signs of pancreatic cancer. At histopathological

analysis, the presence of acute pancreatitis in the pancreatic
parenchyma distal to pancreatic cancer was high (70%) [33].
This is probably caused by the increased pressure within the
ducts and stasis of pancreatic juice [34], which exerts a force
onto the distal parenchyma tissue, leading to increased stiffness.
On the contrary, the fluidity of the pancreatic parenchyma distal
to PDAC is not influenced, suggesting that the microenviron-
ment of the pancreatic parenchyma remained stable and there
was little change of solid-fluid biomechanical property of the
parenchyma by obstructive changes. Since fluidity increase is
only responsive to malignancy, not to secondary obstructive
changes, it adds specificity to the characterization of pancreatic
cancer.

Pancreatic stiffness is quite sensitive to the inflammatory
change. It has been reported that MRE could detect acute
pancreatitis at a very early stage, with a higher sensitivity
compared to contrast-enhanced CT [35]. Although the median
pancreatic stiffness value for acute pancreatitis was lower, its
range has considerable overlap with other pancreatic diseases
including pancreatic cancer [20, 36, 37]. Shi et al have
attempted to combine the stiffness value and the pancreatic
involvement pattern on elastogram to increase the diagnostic
accuracy for differentiating AIP from PDAC. In their report,
most patients with pancreatic cancer manifested as solitary
high-stiffness lesions. In our study, however, the presence of
a pseudo-diffuse lesion on the stiffness map was more com-
mon (20%) and could not be ignored. This might be explained
by the selection bias, since Shi’s study only included resect-
able pancreatic cancer.

The fact that pancreatic stiffness is sensitive to both inflam-
matory change and malignancy might cause problems in the
clinical settings. Pancreatic cancer with secondary acute pan-
creatitis could have been overlooked or misdiagnosed, in the
background of diffuse inflammatory change. In contrast, pan-
creatic fluidity is a more specific marker for malignancy, and
combining both stiffness and fluidity could help ruling out
tumor-caused obstruction when diagnosing patients suffering
from acute pancreatitis without known risk factors.

Fluidity reflects the internal mechanical friction of biological
tissue, rather than its gross water content [21]. Research on liver
tumors found that fluidity may serve as a biomarker for aggres-
siveness and invasiveness [22]. Several events during pancreatic
cancer development and progression might contribute to the in-
creased fluidity, such as activation of stellate cells and accumu-
lation of hydrophobic proteins within the tumor extracellular
matrix, the depletion of glycosaminoglycans, and change in col-
lagen content which turned from an organized chained pattern to
a more randomly aligned pattern [21, 22].

Our study has several limitations. First, it is a single-
institutional study carried out in a tertiary pancreatic dis-
ease center. Institutional bias might exist, and a multi-
center validation study is required to confirm our results.
Second, since AIP is a benign inflammatory disease, a

Fig. 4 Scatterplots showing the pancreatic stiffness (a) and fluidity (b) in
pancreatic cancer, its proximal and distal parenchyma (pancreatic
parenchyma on the right and left side of the tumor, respectively), and in
AIP. PDAC had higher stiffness and fluidity compared to AIP. The
pancreatic parenchyma distal to PDAC showed increased stiffness,
while the parenchyma proximal to PDAC was normal. The pancreatic
parenchyma distal and proximal PDAC showed no significant difference
in fluidity. (*** denotes p < 0.001, * denotes 0.01 < p < 0.05, and ns
denotes no significant difference)
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direct correlation with pathological features was not pos-
sible. To better understand the relationship between me-
chanical properties and AIP histopathology, a longitudi-
nal study involving observation of treatment response is
warranted. Third, it was deduced that obstructive change
was the reason for increased stiffness in the distal paren-
chyma of pancreatic cancer, but pathological confirma-
tion of acute pancreatitis was not performed.

In conclusion, tomoelastography facilitated an easy, unbi-
ased, and user-independent analysis of the mechanical prop-
erties of the pancreas, allowing differentiation of PDAC from
AIP with high accuracy.
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