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Abstract
Objectives We sought to build a high-risk plaque MRI-based model (HRPMM) using radiomics features and machine learning for
differentiating symptomatic from asymptomatic carotid plaques.
Materials and methods One hundred sixty-two patients with carotid stenosis were randomly divided into training and test cohorts.
Multi-contrast MRI including time of flight (TOF), T1- and T2-weighted imaging, and contrast-enhanced imaging was done.
Radiological characteristics of the carotid plaques were recorded and calculated to build a traditional model. After extracting the
radiomics features on these images, we constructed HRPMM with least absolute shrinkage and selection operator algorithm in the
training cohort and evaluated its performance in the test cohort. A combined model was also built using both the traditional and
radiomics features. The performance of all the models in the identification of high-risk carotid plaque was compared.
Results Intraplaque hemorrhage and lipid-rich necrotic core were independently associated with clinical symptoms and were used to
build the traditional model, which achieved an area under the curve (AUC) of 0.825 versus 0.804 in the training and test cohorts. The
HRPMM and the combined model achieved an AUC of 0.988 versus 0.984 and of 0.989 versus 0.986 respectively in the two cohorts.
Both the radiomics model and combined model outperformed the traditional model, whereas the combined model showed no
significant difference with the HRPMM.
Conclusions Our MRI-based radiomics model can accurately distinguish symptomatic from asymptomatic carotid plaques. It is
superior to the traditional model in the identification of high-risk plaques.
Key Points
• Carotid plaque multi-contrast MRI stores other valuable information to be further exploited by radiomics analysis.
• Radiomics analysis can accurately distinguish symptomatic from asymptomatic carotid plaques.
• The radiomics model is superior to the traditional model in the identification of high-risk plaques.
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Abbreviations
AUC Area under the curve
CER Contrast enhancement ratio

GLCM Gray-level co-occurrence matrix
GLDM Gray-level dependence matrix
GLRLM Gray-level run-length matrix
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GLSZM Gray-level size-zone matrix
HRPMM High-risk plaque MRI-based model
ICC Intraclass coefficient
IPH Intraplaque hemorrhage
LASSO Least absolute shrinkage and selection operator
LRNC Lipid-rich necrotic core
MLA Minimal luminal area
MRI Magnetic resonance imaging
NDLR Negative diagnostic likelihood ratio
NPV Negative predictive value
PB Plaque burden
PDLR Positive diagnostic likelihood ratio
PPV Positive predictive value
RI Remodeling index
ROC Receiver operating characteristic
TOF Time of flight
VIBE Volume-interpolated breath-hold examination

Carotid atherosclerosis is a major cause of ischemic stroke
accounting for approximately 18–25% of all strokes [1].
Disease severity and risk of stroke are traditionally determined
by luminal stenosis and surface irregularities. However, many
recent studies have suggested the critical importance of iden-
tifying vulnerable plaques by determining their compositions
[2, 3], due to their correlation with higher risks of cerebral
infarction. Multi-contrast MR imaging (MRI) has been
established as an effective method for plaque characterization.
Major relevant applications include the diagnosis of
intraplaque hemorrhage (IPH) [4] and lipid-rich necrotic core
(LRNC), both of which are high-risk features associated with
cerebrovascular events. Despite its reliability and
noninvasiveness, MR plaque imaging is complex and requires
expertise in assessing various plaque components which is a
qualitative and subjective task in nature. Radiomics is a com-
puting process of extracting and analyzing large number of
quantitative features from medical images. The success of
radiomics rests on the assumption that medical images contain
additional information which may not be obvious under visual
inspection [5]. It has proven to be a valuable tool in oncology,
including diagnosis, staging, and grading of cancer; assess-
ment of treatment response; and prediction of clinical out-
comes [6–9]. Recently CT- or ultrasound-based texture anal-
ysis has been employed to discriminate symptomatic carotid
plaques with promising results [10, 11]. Compared with CT
and ultrasound, high-resolution MR plaque imaging provides
inherently superior soft tissue contrasts, and a combination of
multiple contrast weightings potentially confers more valu-
able information. Additional advantages of MRI include its
lack of radiation and operator-independence. However, up
until today, there is no data available regarding MR radiomics
on carotid plaque, except for one initial report on MR texture
analysis of basilar artery plaque [12].

The purpose of this study was to build a high-risk plaque
MRI-based model (HRPMM) using a radiomics approach
combined with machine learning and to evaluate its perfor-
mance in differentiating symptomatic from asymptomatic ca-
rotid plaques by comparing it with traditional MR features.

Materials and methods

Patients

We retrospectively collected 217 patients from January 2015
to June 2019, who had carotid stenosis of > 30% diagnosed by
ultrasound or angiography (NASCET criteria [13]). These pa-
tients underwent both carotid plaqueMRI and headMRIwith-
in the same day. The study was approved by the ethics com-
mittee of our institution and informed consent was obtained
from all patients.

All patients were divided into symptomatic and asymptom-
atic groups according to whether they had clinical symptoms
within 2 weeks before the MRI examination and/or whether
their head MRI showed acute/subacute stroke [14, 15]. The
clinical symptoms included classic TIA (transient ischemic
attack) and ischemic stroke in the anterior circulation (carotid
territory) [16, 17], as well as monocular symptoms (amaurosis
fugax or retinal artery occlusion) ipsilateral to the carotid
plaque [18]. Classic TIA was defined as an abnormal focal
neurologic deficit lasting less than 24 h. A complete ischemic
stroke presented with an abrupt onset of a focal neurologic
deficit lasting > 24 h [17]. Clinical characteristics were record-
ed including gender, age, and atherosclerotic risk factors (hy-
pertension, diabetes, hyperlipidemia, and cigarette smoking).

The exclusion criteria were as follows: (a) evidence of car-
diogenic stroke; (b) bilateral TIA/stroke, brainstem involve-
ment only or undetermined hemispheric involvement; (c) pri-
mary intracranial diseases; (d) radiotherapy-induced carotid
stenosis; (e) contraindications to MRI (such as pacemaker or
severe claustrophobia) or to gadolinium. In total, 55 patients
were excluded and 162 patients were finally included in this
study. Eligible patients were randomly divided into a training
cohort (n = 121) and an independent test cohort (n = 41) in a
ratio of 3:1. From all these enrolled patients with carotid ste-
nosis, if a carotid plaque was found in one with clinical symp-
toms or positive head MRI findings, it was classified as a
symptomatic plaque; otherwise, it was asymptomatic.

Magnetic resonance imaging

All patients were scanned on a 3-T MR scanner
(MAGNETOM Verio, Siemens Healthineers) with a 16-
channel head coil and an 8-channel carotid coil. The following
carotid MR pulse sequences were applied to obtain the cross-
sectional images centered at the carotid bifurcation: (a) 3D
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time-of-flight (TOF), (b) T1W turbo spin-echo (TSE), (c)
T2W TSE, (d) dynamic contrast-enhanced 3D volume-
interpolated breath-hold examination (DCE 3D VIBE), (e)
post-contrast delayed T1W TSE.

Gadopentetate dimeglumine (Magnevist, Bayer) was used
for DCE plaque imaging with a dosage of 0.1 mmol/kg body
weight followed by a 20-ml saline flush through an 18-G
venous catheter positioned in an antecubital vein. The contrast
material was injected by a power injector at an injection rate of
2 ml/s. The DCE acquisition was repeated 16 times continu-
ously with each acquisition of 18 s. The 2nd acquisition was
initiated synchronously with the start of the contrast adminis-
tration. Post-contrast delayed imaging was done immediately
after DCE acquisition. Detailed imaging parameters are in
Table 1. The total scan time was approximately 22 min.

Image analysis and segmentation

Traditional measurements and analysis were performed on a
workstation (Syngo; Siemens Healthineers) by a radiologist
with 4 years of experience in plaque imaging. The slice with
the largest plaque area was chosen to be measured. The inner
lumen and outer wall boundaries were manually outlined on
T1WI to measure the plaque burden (PB), minimal luminal
area (MLA), remodeling index (RI), and contrast enhance-
ment ratio (CER). The related calculation formulas were as
follows:

PB ¼ 1–
lumen area
vessel area

� �
� 100%;

RI ¼ vessel area at the point of maximum stenosis
reference vessel area at the distal portion

� �
;

CER ¼ signal of plaque post−contrast delayed½ �ð Þ
signal of plaque pre−contrast T1WI½ �ð Þ –1

� �
� 100%:

The degree of stenosis was measured on T1WI according
to the NASCET criteria [13]. Plaque major components in-
cluding IPH and LRNC were identified and recorded too [19,
20]. Disrupted luminal surface was identified as a deficit in the
fibrous cap or discontinuous surface of the plaque [17].

Plaque segmentation for radiomics analysis was performed
with an open-source software ITK-SNAP (version 3.8.0,
www.itk-snap.org). After choosing the slice showing the
largest plaque on different sequences including T1W, T2W,
DCE, and post-contrast delayed T1W, regions of interest
(ROIs) were manually drawn by the same radiologist along
the margin of the plaques. For the DCE sequence, we drew
ROI on the 5th phase image due to its highest signal intensity
in the carotid lumen at that phase. Sample patient images were
shown in Fig. 1.

Feature extraction, selection, and model
development

Of all the radiological variables from 162 patients, we chose
those with p < 0.05 in univariate tests to performmultivariable
logistic regression analysis and calculated the odds ratios
(ORs) with 95% confidence intervals (CIs). The variables
with p < 0.05 in multivariate analysis were finally used to
build a linear traditional model.

Before radiomics feature extraction, all MRI images were
subjected to imaging normalization (the intensity of the image
was scaled to 0–100) and resampled to the same resolution
(2 mm × 2 mm × 2 mm) to avoid data heterogeneity bias.
Radiomics features were then extracted on PyRadiomics plat-
form [21, 22]. For each ROI on each sequence, a wavelet filter
was applied.

To build a predictive radiomics model for identifying high-
risk plaques, the following steps were done. Firstly, the meth-

Table 1 Summery of imaging parameters for the multi-contrast MRI protocol

Carotid plaque MRI Head MRI

Sequence T1W T2W TOF DCE POST Axial T1W Axial T2W DWI FLAIR

FOV (mm) 160 × 160 160 × 160 160 × 160 160 × 160 160 × 160 220 × 220 220 × 220 220 × 220 220 × 220

Matrix 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256 320 × 240 384 × 307 164 × 164 256 × 217

Slice thickness (mm) 2 2 2 2 2 5 5 5 5

Resolution (mm2) 0.63 × 0.63 0.63 × 0.63 0.63 × 0.63 0.63 × 0.63 0.63 × 0.63 0.9 × 0.7 1.0 × 0.9 1.3 × 1.3 1.0 × 0.9

TR/TE (ms) 700/9.4 4000/59 26/3.23 5.07/4.79 700/9.4 2000/18 6000/100 6400/86 9000/94

NEX 2 2 1 1 2 1 1 1 1

Bandwidth (Hz/pixel) 407 407 250 390 407 260 221 1172 287

Flip angle (°) 160 160 25 12 160 150 150 / 150

Acquisition time 3 min 34 s 3 min 06 s 2 min 33 s 4 min 52 s 3 min 34 s 1 min 14 s 50 s 48 s 1 min 32 s

TOF, time of flight; DCE, dynamic contrast-enhanced sequence; POST, post-contrast delayed sequence; DWI, diffusion-weighted imaging; FLAIR,
fluid-attenuated inversion recovery; FOV, field of view; TR, repetition time; TE, echo time; NEX, number of excitations
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od of normalization to z distribution ([value –mean value]/
standard deviation) was applied for each extracted feature.
Secondly, t tests were used to select the features with
p < 0.05 in each sequence, and then the features with signifi-
cant differences and an area under the curve (AUC) > 0.65 by
receiver operating characteristic (ROC) were selected.
Thirdly, the least absolute shrinkage and selection operator
(LASSO) algorithm was applied for further feature reduction.
The most significant features with the smallest deviance were
then selected using the LASSO algorithm for the final fea-
tures. The LASSO algorithm is a penalized regression method
which has been successfully applied to some oncologic re-
searches [8, 9, 23, 24]. The LASSO algorithm can estimate
the regression coefficients by maximizing the log-likelihood
function (or the sum of squared residuals) with the constraint,
reduce the coefficients of indistinctive covariates to zero, and
enable the non-zero features to be combined into a radiomics
model [23]. Using these final features after the LASSO algo-
rithm, we constructed a linear radiomics model called high-
risk plaque MRI-based model (HRPMM) in the training co-
hort and then evaluated its performance in the test cohort.
With this model, the risk score for each patient was calculated
by a formula weighted by regression coefficients: Risk
score = constant + coefficients × features. To determine the
optimal cutoff value to classify the plaques into low- and
high-risk, the R software was used to calculate the Youden
index for all possible cutoff values (c) (Youden index =
maxc {Sensitivity + Specificity − 1 }), and the value of c that
achieves the maximized index will be considered the optimal
one [25].

Finally, a combined model was built based on the multi-
variate logistic regression analysis in the R software

combining both the traditional and radiomics features (flow
chart in Fig. 2).

The inter-observer agreement

To evaluate the reproducibility of the radiological and
radiomics analysis, another radiologist with 7 years’ experi-
ence in plaque imaging independently completed the plaque
analysis in 40 patients who were randomly selected from the
study population.

Statistical analysis

All statistical analyses were performed using the R soft-
ware (version 3.5.0) and IBM SPSS Statistics 23.0.
Univariate analysis was performed to assess the relation-
ship between each variable and symptomatic status,
t test was used for continuous variables, and the Chi-
squared test or Fisher’s exact test was for the categori-
cal variables. Variables with statistical significance in
the univariate analysis were used in the multivariate
logistic analysis. The clinical characteristics of the train-
ing and test cohorts were compared appropriately using
t test, Fisher’s exact test, or Chi-squared test. A two-
tailed p value of < 0.05 was considered statistically
significant.

A nomogram of the combined model was established
by the R software. For each model, AUC values were
calculated using ROC analysis to assess the predictive
ability. Accuracy, sensitivity, specificity, negative pre-
dictive value (NPV), positive predictive value (PPV),
positive diagnostic likelihood ratio (PDLR), and

Fig. 1 The procedure of radiomics segmentation. a In one patient with the regions of interest (ROIs) outlining the carotid plaque on T1W, T2W, DCE
(dynamic contrast-enhanced), and POST-contrast delayed images. b The segmentations extracted from the ROIs corresponding to the images on a
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negative diagnostic likelihood ratio (NDLR) were also
measured using the defined optimal cutoff values. The

Delong method was used for comparing the AUCs of
all these models [9].

Fig. 2 Flow chart for building the
models in the identification of
high-risk plaques

Table 2 Clinical and radiological characteristics of the carotid plaques

n/total (%) Symptomatic Asymptomatic p valueb Multivariate OR (95 %CI)c p value c AUC

Gender 162 108 54 0.166d / /

Male 148 (91.4) 101 47

Female 14 (8.6) 7 7

Age a 66.80 ± 7.37 66.41 ± 7.02 67.52 ± 7.96 0.367 e / /

Hypertension 124 (76.5) 80 44 0.294 d / /

Diabetes mellitus 56 (34.6) 38 18 0.815 d / /

Hyperlipidemia 74 (45.7) 61 13 < 0.001 d 2.497 (0.938, 6.643) 0.067

Smoking 53 (32.7) 35 18 0.906 d / /

IPH 53 (32.7) 49 4 < 0.001f 7.568 (1.933, 26.627) 0.004 0.708

LRNC 84 (51.9) 71 13 < 0.001 d 3.835 (1.409, 10.441) 0.009 0.690

Disrupted surface 27 (16.7) 23 4 0.026 f 1.619 (0.375, 7.002) 0.519

MLA (cm2) a 0.19 ± 0.16 0.14 ± 0.14 0.28 ± 0.15 < 0.001e 0.325 (0.002, 47.884) 0.659

Degree of stenosis (%)a 59.69 ± 20.30 67.33 ± 19.55 44.95 ± 12.88 <0.001 e 25.291 (0.341, 1873.499) 0.141

Enhancement ratio (%)a 60.92 ± 67.51 42.26 ± 56.71 98.22 ± 72.27 < 0.001e 0.566 (0.267, 1.199) 0.137

Plaque burden (%)a 78.12 ± 15.20 84.03 ± 13.08 67.43 ± 12.85 < 0.001e 83.978 (0.229, 849.463) 0.141

Remodeling index a 1.22 ± 0.27 1.26 ± 0.27 1.15 ± 0.24 0.009 e 6.579 (0.818, 52.940) 0.077

AUC, area under the curve; CI, confidence intervals; IPH, intraplaque hemorrhage; LRNC, lipid-rich necrotic core; MLA, minimum luminal area; OR,
odds ratio
a Continuous variables shown with mean ± standard deviation (SD), others are categorical variables; b Univariate analysis; c Results from multivariate
logistic analysis; d Chi-squared test; eT test; f Fisher exact test
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To correct overfitting bias, corrected AUCs were calculat-
ed using bootstrapping validation (1000 bootstrap resamples)
in the training cohort. Intraclass coefficients (ICCs) were cal-
culated for the inter-observer agreement [9]: ICC < 0.40, poor
agreement; 0.41–0.60, moderate; 0.61–0.80, substantial; and
> 0.80, excellent.

Results

Patient characteristics

Of all the 162 enrolled patients, there were 108 symp-
tomatic and 54 asymptomatic patients. The clinical and

radiological characteristics are listed in Table 2. These
characteristics in the training and test cohorts show no
significant difference in Table 3.

Traditional assessment of the carotid plaques

Univariate analysis showed that hyperlipidemia, IPH,
LRNC, disrupted surface, MLA, degree of stenosis,
PB, CER, and RI were associated with symptomatic
plaques (p < 0.05, Table 2). Multivariate logistic regres-
sion analysis showed that IPH (OR = 7.568; 95% CI,
1.933–26.627) and LRNC (OR = 3.835; 95% CI,
1.409–10.441) were independent predictors of clinical
symptoms. In the training cohort, the AUC values of

Table 3 Clinical and radiological
characteristics in the training and
test cohort

Training cohort (N = 121) Test cohort (N = 41) p value

Gender 1.000 a

Male 110 (90.9%) 38 (92.68%)

Female 11 (9.1%) 3 (7.32%)

Age 67.09 ± 6.98 65.93 ± 8.44 0.590 b

Hypertension 0.490 c

Yes 91 (75.21%) 33 (80.49%)

No 30 (24.79%) 8 (19.51%)

Diabetes mellitus 0.656 c

Yes 43 (35.54%) 13 (31.71%)

No 78 (64.46%) 28 (68.29%)

Hyperlipidemia 0.792 c

Yes 56 (46.28%) 18 (43.90%)

No 65 (53.72%) 23 (56.10%)

Smoking 0.167 c

Yes 36 (29.75%) 17 (41.46%)

No 85 (70.25%) 24 (58.54%)

IPH 0.586 c

Yes 41 (33.88%) 12 (29.27%)

No 80 (66.12%) 29 (70.73%)

LRNC 0.789 c

Yes 62 (51.24%) 22 (53.66%)

No 59 (48.76%) 19 (46.34%)

Disrupted surface 0.419 c

Yes 18 (14.88%) 9 (21.95%)

No 103 (85.12%) 32 (78.05%)

MLA (cm2) 0.19 ± 0.17 0.17 ± 0.15 0.473 b

Degree of stenosis (%) 59.47 ± 20.05 61.03 ± 22.01 0.823 b

Enhancement ratio (%) 60.00 ± 66.48 61.23 ± 71.24 0.797 b

Plaque burden (%) 77.48 ± 15.40 81.48 ± 14.16 0.135 b

Remodeling index 1.21 ± 0.24 1.26 ± 0.32 0.327 b

a Fisher exact test; b T test; c Chi-squared test

IPH, intraplaque hemorrhage; LRNC, lipid-rich necrotic core; MLA, minimum luminal area
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IPH and LRNC were 0.697 and 0.715 respectively; the
AUC value was improved to 0.825 when combining
IPH and LRNC. In the test cohort, the above values
were 0.668, 0.690, and 0.804 (Table 4).

Radiomics analysis of the carotid plaques

From each ROI on each sequence, we extracted 788 radiomics
features on both the original and filtered images, including 18

Table 4 Predictive ability of all
models Sensitivity

(%)
Specificity
(%)

Accuracy
(%)

AUC NPV
(%)

PPV
(%)

PDLR NDLR

Traditional model—training cohort (n = 121)

LRNC 85.48 54.24 70.25 0.715 78.05 66.25 1.87 0.27

IPH 92.68 47.50 62.81 0.697 92.68 47.50 1.76 0.15

All 86.25 70.73 80.99 0.825 72.50 85.15 2.95 0.19

Traditional model—test cohort (n = 41)

LRNC 81.82 52.63 65.85 0.690 71.43 66.67 1.73 0.34

IPH 91.67 44.83 58.54 0.668 92.85 40.74 1.66 0.18

All 85.19 71.43 80.49 0.804 71.43 85.19 2.98 0.20

Radiomics model—training cohort (n = 121)

T1W 88.06 77.42 84.69 0.861 75.00 89.39 3.9 0.15

T2W 83.58 80.65 82.65 0.869 69.44 90.32 4.32 0.2

DCE 89.55 77.42 85.71 0.907 77.42 89.55 3.97 0.13

Post 76.12 93.55 81.63 0.890 64.44 96.22 11.79 0.25

All 92.54 96.77 93.88 0.988 85.71 98.41 28.68 0.08

Radiomics model—test cohort (n = 41)

T1W 92.59 57.14 80.48 0.894 80.00 80.64 2.16 0.13

T2W 85.18 85.71 89.19 0.897 75.00 92.00 5.96 0.17

DCE 66.67 92.85 75.61 0.965 57.09 94.74 9.33 0.36

POST 88.89 92.85 90.24 0.978 81.25 92.86 12.44 0.12

All 81.48 100.00 90.49 0.984 74.68 100.00 / 0.18

Combined model—training cohort (n = 121)

Combined_
T1W

91.04 77.42 86.73 0.867 80.00 89.70 4.03 0.11

Combined_
T2W

88.06 77.42 84.69 0.877 75.00 89.39 3.90 0.15

Combined_
DCE

100 77.42 92.85 0.935 100 90.54 4.43 0

Combined_
Post

86.57 87.10 86.73 0.899 75.00 93.54 6.71 0.015

Combined_
All

92.53 96.77 93.88 0.989 85.71 98.41 28.68 0.08

Combined model—test cohort (n = 41)

Combined_
T1W

88.89 78.57 85.36 0.892 78.57 88.89 4.15 0.14

Combined_
T2W

77.78 92.85 82.93 0.912 68.42 95.45 10.89 0.23

Combined_
DCE

92.59 85.71 90.24 0.970 85.71 92.59 6.48 0.09

Combined_
Post

92.59 78.57 87.80 0.958 84.61 89.28 4.32 0.09

Combined_
All

92.60 92.86 92.68 0.986 86.67 96.15 12.96 0.08

AUC, area under curve; NPV, negative predictive value; PPV, positive predictive value; PDLR, positive diagnos-
tic likelihood ratio; NDLR, negative diagnostic likelihood ratio; DCE, dynamic contrast-enhanced sequence;
POST, post-contrast delayed sequence; All, all features of the corresponding models; /, default value, unable to
calculate specific value because of the 100% of specificity
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features of first-order statistics, 14 features of shape, 68 fea-
tures of texture (22 gray-level co-occurrence matrix (GLCM)
features, 16 gray-level run-length matrix (GLRLM) features,
16 gray-level size-zone matrix (GLSZM) features, 14 gray-
level dependence matrix (GLDM) features), and 688 features
of wavelet. In total, 510,624 radiomics features were extracted
from all ROIs, and we selected 387 features with significant
association with clinical symptoms, including 85, 68, 72, and
162 radiomics features from T1W, T2W, DCE, and post-
contrast delayed images respectively. After the LASSO algo-
rithm was applied, 33 features were finally retained and used
to build HRPMM (details are shown in the Appendix).

In the training cohort of HRPMM, radiomics features on
T1W, T2W,DCE, and post-contrast delayed images had AUC
values of 0.861, 0.869, 0.907, and 0.890, while AUC values of
the test cohort were 0.894, 0.897, 0.965, and 0.978. When
combining four sequences, in the training cohort, the AUC
value reached 0.988 with a sensitivity of 92.54%, specificity
of 96.77%, and accuracy of 93.88%; in the test cohort, the
AUC was 0.984 with a sensitivity of 81.48%, specificity of
100%, and accuracy of 90.49% (Table 4).

A combined model was finally constructed and shown as a
nomogram (Fig. 3). This combined model exhibited an AUC
value of 0.989 in the training cohort and 0.986 in the test
cohort (Table 4). The ROC curves of the HRPMM and the

combined model outperformed those of the traditional model
in the training cohort (p = 0.000, p = 0.000) and test cohort
(p = 0.021, p = 0.020). However, the combinedmodel showed
no significant difference with the HRPMM in the two cohorts
(p = 0.798, p = 1.000) (Fig. 4).

The corrected AUCs from resamples in the training cohort
were as follows: T1WI (0.860), T2WI (0.863), DCE (0.906),
post-contrast delayed (0.890), and all sequences (0.988),
which were close to those of the radiomics model in Table 4.

The inter-observer agreement

The ICCs for measuring the radiological and radiomics
features ranged from 0.705 to 0.951 and were summa-
rized in the Appendix.

Discussion

With the risk of ipsilateral cerebrovascular events caused by
carotid atherosclerosis, a considerable number of MRI studies
on carotid plaque have been performed to search for relevant
plaque components or characteristics. While previous studies
were mostly focused on the traditional evaluation of the
plaques, in this study, we used a radiomics approach to extract

Fig. 3 A nomogram integrates the radiomics scores and traditional
features of the training sets. The probability scoring of the carotid
plaque being symptomatic is marked on each axis and increases from
the left to right. The following is an example of how to calculate the
total points of a plaque on T1W and predict its risk: a carotid plaque
with LRNC but no IPH receives 7.5 + 0 = 7.5 points from traditional

features. A radiomics score of 2 corresponds to 90. Therefore, this
plaque is scored 97.5 on the nomogram, which indicates a risk of over
95% of exhibiting symptoms. IPH, intraplaque hemorrhage; LRNC,
lipid-rich necrotic core; DCE, dynamic contrast-enhanced sequence;
POST, post-contrast delayed sequence; All, all features including
T1WI, T2WI, DCE, and POST

3123Eur Radiol  (2021) 31:3116–3126



radiomics features from conventional plaque MRI and used
the HRPMM to differentiate symptomatic carotid plaques
from asymptomatic ones. The model consists of 33 radiomics
features after optimization with LASSO and exhibits excellent
diagnostic performance.With HRPMM, the risk score of each
plaque could be computed, and the high-risk plaques could be
identified. Additionally, the radiomics model shows an

improved diagnostic performance compared with the tradi-
tional model, especially in specificity.

We found that independent radiomics features from 4
sequences were different, because different signal char-
acteristics in various sequences were determined by dif-
ferent pathophysiological features. For example, the
high signal on pre-contrast T1W possibly represents

Fig. 4 Receiver operating characteristic (ROC) curves of all the models
(traditional model, radiomics model—high-risk plaqueMRI-basedmodel
(HRPMM) and combined model) in the training and test cohorts respec-
tively. The ROC curves of the radiomics model and combined model
outperform those of the traditional model in both the training (AUC,

0.988/0.989 vs. 0.825) and test (AUC, 0.984/0.986 vs. 0.804) cohorts.
All, all features of each model; DCE, dynamic contrast-enhanced se-
quence; POST, post-contrast delayed sequence; IPH, intraplaque hemor-
rhage; LRNC, lipid-rich necrotic core
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IPH, while the high signal on post-contrast T1W may
be attributed to the contrast uptake by neovasculariza-
tion and inflammation. In the 33 final features, only
sphericity, i.e., a shape feature, appeared in the four
sequences’ final screening results (see Appendix). It im-
plies that sphericity may be the most important feature
to delineate the morphology of the plaques. In both the
training and test cohorts, the contrast-enhanced images
from either the DCE or post-contrast delayed sequence
demonstrated the highest AUC values. After combining
all the radiomics features from four sequences, the AUC
values were further improved in both cohorts. However,
the diagnostic performance of the combined model was
not significantly improved compared to the radiomics
model alone. This could be explained by the relative
weights of the radiomics versus traditional model, and
the combined model was weighted heavily towards the
radiomics features which produced better performances
(Fig. 3). This comparison suggests that the traditional
qualitative indicators might be covered, if not replaced,
by quantitative descriptions by radiomics features. It
further points to the potential of a more standardized
diagnostic process based on objective quantitation. The
reliability of our results was validated by the corrected
AUCs after randomly sampling the training and test
cohorts.

A number of studies have found certain carotid
plaque features, such as IPH and LRNC, that were as-
sociated with an increased risk of plaque rupture and
distal brain embolization. Measurements of stenosis,
plaque burden, and enhancement ratio may also be pre-
dictive of future ipsilateral carotid symptoms. However,
radiomics can provide reader-independent quantitative
data [5] that are not readily apparent or are too numer-
ous for an individual radiologist to assess visually.
Radiomics contains richer information than traditional
features; for example, IPH is a marker of high-risk ca-
rotid plaques, but most previous studies were qualitative
identification in which the quantitative information
about signal intensity, volume/shape, and the complicat-
ed distribution of IPH was lacking. That is why our
HRPMM model was superior to traditional features in
the classification of the high-risk carotid plaques.

To our knowledge, this study is the first investigation of
high-risk carotid plaques with multi-contrast MRI using the
radiomics approach and machine learning. A previous CT
study [11] used discrete wavelet transform and texture fea-
tures to classify carotid plaques with an accuracy of 88%,
sensitivity of 90.2%, and specificity of 86.5%. Texture anal-
ysis was also successfully applied in ultrasound studies to
improve the identification of symptomatic carotid plaques
[10, 26]. Recently, a study [12] using radiomics texture anal-
ysis on MRI accurately distinguished symptomatic basilar

artery plaques with an excellent AUC of 0.936, while clinical
imaging features alone had an AUC of 0.833. Based on these
prior studies supporting the use of radiomics analysis to im-
prove risk estimates, we further developed a MRI-based
radiomics model to classify carotid plaques. Compared with
previous reports, our radiomics model contained not only tex-
ture features but also other first-, second-, and higher-order
statistics, all together contributing to the higher diagnostic
accuracy of this model.

This study has the following limitations. The first was its
relatively small sample size; especially in the test cohort, a
larger data set is needed to evaluate this prediction model in
the future. Secondly, ROIs were manually segmented, not yet
fully automated, despite the excellent reproducibility. Thirdly,
our traditional model only included two final radiological
characteristics (IPH and LRNC), because all the relevant im-
aging features in relation to stroke risk were too mutually
correlated so that they might be eliminated by multivariate
analysis [18]. Fourthly, because of the indistinct boundary of
the plaque on TOF, we did not perform radiomics analysis on
it. Fifthly, the radiomics analysis was done on the slice with
the largest plaque area. 3D analysis from whole image slices
was not used because of the time restriction.

Conclusions

Radiomics analysis and machine learning of carotid plaques
on MRI can accurately distinguish symptomatic from asymp-
tomatic plaques. The radiomics model is better in the detection
of high-risk plaques than the traditional model. Radiomics
analysis has the greatest benefit of providing quantitative var-
iables from the already-acquired imaging data to improve di-
agnostic performance beyond conventional evaluations.
Prospective studies are needed to further examine the ability
of HRPMM for predicting stroke risks.
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