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Abstract
Objective To explore the application of deep learning in patients with primary osteoporosis, and to develop a fully automatic
method based on deep convolutional neural network (DCNN) for vertebral body segmentation and bone mineral density (BMD)
calculation in CT images.
Materials and methods A total of 1449 patients were used for experiments and analysis in this retrospective study, who
underwent spinal or abdominal CT scans for other indications between March 2018 and May 2020. All data was gathered from
three different CT vendors. Among them, 586 cases were used for training, and other 863 cases were used for testing. A fully
convolutional neural network, called U-Net, was employed for automated vertebral body segmentation. The manually sketched
region of vertebral bodywas used as the ground truth for comparison. A convolutional neural network, called DenseNet-121, was
applied for BMD calculation. The values post-processed by quantitative computed tomography (QCT) were identified as the
standards for analysis.
Results Based on the diversity of CT vendors, all testing cases were split into three testing cohorts: Test set 1 (n = 463), test set 2
(n = 200), and test set 3 (n = 200). Automated segmentation correlated well with manual segmentation regarding four lumbar
vertebral bodies (L1–L4): the minimum average dice coefficients for three testing sets were 0.823, 0.786, and 0.782, respectively.
For testing sets from different vendors, the average BMDs calculated by automated regression showed high correlation (r > 0.98)
and agreement with those derived from QCT.
Conclusions A deep learning–based method could achieve fully automatic identification of osteoporosis, osteopenia, and normal
bone mineral density in CT images.
Key Points
• Deep learning can perform accurate fully automated segmentation of lumbar vertebral body in CT images.
• The average BMDs obtained by deep learning highly correlates with ones derived from QCT.
• The deep learning–based method could be helpful for clinicians in opportunistic osteoporosis screening in spinal or abdominal
CT scans.
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Abbreviations
ACR American College of Radiology
BMD Bone mineral density
DCNN Deep convolutional neural network
DSC Dice similarity coefficient
DXA Dual-energy X-ray absorptiometry
ESP European spine phantom
HU Hounsfield units
ISCD International Society for Clinical Densitometry
PET Positron emission tomography
PPV Positive predictive value
QCT Quantitative computed tomography
QUS Quantitative ultrasound
WL Window level
WW Window width

Introduction

Osteoporosis is a common and frequently occurring disease in
the aging population [1]. About 200 million people suffer
from osteoporosis and 89 million fractures occur worldwide
every year [2]. Osteoporosis is a disease of bone metabolism
that shows a decrease in bone mineral density (BMD) and
strength [3], which may lead to low back pain, disc degener-
ation, or an increased risk of fracture of the vertebral body
[4–9]. Hence, the early diagnosis of osteoporosis is very im-
portant to the progress of disease prevention.

Currently, evaluation methods for osteoporosis consist of
the commonly used approaches, such as dual-energy X-ray
absorptiometry (DXA), quantitative computed tomography
(QCT), and quantitative ultrasound (QUS), and emerging im-
aging techniques, such as dual-layer spectral CT [10], 1H-
MRS [11], and positron emission tomography (PET) [12].
BMD measurement is a reliable and ideal method for early
diagnosis of osteoporosis. DXA is a commonly used tool for
measuring spinal BMD [13]. BMD measured by DXA is de-
fined as the sum of cortical bone and cancellous bone, consid-
ering two-dimensional structures. However, DXA could not
eliminate the influence of cortex, hyperosteogeny, and sclero-
sis on BMD measurement [14], which might underestimate
the actual loss of bonemass [15]. QCT is a recognizedmethod
for 3D bone density assessment [16]. Several studies [17–20]
have shown that the detection rate of QCT on osteoporosis is
significantly higher than that of DXA. But it requires calibra-
tion and standardized software, which means complex post-
processing. And compared with DXA, the radiation dose of
QCT is much higher. Thus, application of QCT as a screening
technology is limited so far.

Millions of CT scans covering part or all of spine, are
available from patients with other indications, such as urinary
and / or digestive diseases, every year. These CT scans can be
used for the opportunistic screening of osteoporosis, without

additional exposure and substantial costs [21]. Several litera-
ture studies had shown that conventional diagnostic CT scans
were used to measure BMD by measuring directly the CT
values of cancellous bone, leading to correlation coefficients
ranging from 0.399 to 0.891 [22]. However, CT value not
only depends on internal factors of vertebral body but also
on external factors such as equipment, X-ray tube voltage,
and CT device [23]. Therefore, the CT values obtained from
different devices need to be calibrated, which is why conven-
tional CT scans in diagnosis of osteoporosis are limited.

Deep learning has been increasingly used in medical imag-
ing analysis and even has entered the stage of rapid develop-
ment [24–28]. In terms of osteoporosis, several works on ap-
plication of the deep learning technique have existed.
Sangwoo et al [29] combined machine learning and deep
learning to predict patients with abnormal BMD by incorpo-
rating spine X-ray images. Bergman et al [30] presented a
deep learning method to compute the DXA BMD and T-
Score from standard chest or abdomen CT scans. Pan et al
[31] developed a deep learning–based system to automatically
measure BMD for opportunistic osteoporosis screening using
low-dose chest CT scans obtained for lung cancer screening.
However, in this system, only segmenting all vertebral bodies
into three classes was used by a 3D CNNmodel, while isolat-
ing and labeling each individual vertebral body was then per-
formed by conventional image processing algorithms. Using
BMD values obtained with DXA as reference, Yasaka et al
[32] developed a deep learning model to predict the bone
mineral density of lumbar vertebrae from unenhanced abdom-
inal CT images. This work only focused on BMD prediction,
not provided vertebral body location. To the best of our
knowledge, there are no studies regarding the application of
deep learning on fully automated location of lumbar vertebral
body and calculation of BMD similar to QCT value to date.

In this study, we proposed a deep learning algorithm to
locate lumbar vertebral body in CT scans and calculate
BMD similar to QCT value accordingly. This work is an ex-
ploration on the application of deep learning for diagnosis of
osteoporosis, and aims to assess the performance of the auto-
matic method to locate lumbar vertebral body in terms of
accuracy as well as to calculate BMD.

Materials and methods

Study population

The retrospective study has been approved by the institutional
review board and the ethics committee of the Fifth Affiliated
Hospital of SunYat-senUniversity. To the retrospective of the
study, the informed consent was waived from all patients, and
to protect the patient’s privacy, the data were desensitized
before using. We collected the images and data from
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March 2018 to May 2020 at our hospital. The inclusion
criteria were (a) CT examination images including lumbar
spine, such as lumbar examination and abdominal examina-
tion; and (b) willingness to undergo this clinical study. The
exclusion criteria of patient were (a) with an absence of meet-
ing the post-processing requirements for CT examination; (b)
with secondary osteoporosis, such as osteoporosis caused by
renal failure, diabetes, and hyperparathyroidism; (c) with
compression fracture on L1–L4; and (d) with postoperative
metal or bone cement implant. In total, 1449 patients fulfilled
all criteria were included in this retrospective study. Among
them, 586 patients were used as the training cohort for model
development, and three independent testing cohorts, compris-
ing 463, 200, and 200 patients, respectively, were later col-
lected to provide evaluation and analysis of the trained
models.

CT image acquisition

All CT scans for training and 463 CT scans for testing were
obtained by using 128-channel multi-detector CT scanners
(uCT 760, United Imaging Healthcare). The remaining 400
CT scans for testing were collected from two different ven-
dors’ CT scanners (n = 200, Somatom Definition Flash unit,
Siemens Healthcare; n = 200, Revolution CT scanner, GE
Healthcare). All CT parameters were set, in accordance with
the “China Health Quantitative CT Big Data Project Research
Program” [33], as follows: collimation, 0.625 mm; tube volt-
age, 120 kVp; tube current, automatic. Reconstruction inter-
vals were 1.0 mm. All CT images were reconstructed to 512 ×
512 matrices using iterative reconstruction algorithms avail-
able with the vendor’s CT scanners.

QCT image post-processing

All CT images were post-processed by QCT Pro Model 4
(Mindways Software, Inc.). The quality control analysis was
used by a unified European Spine Phantom (ESP, NO.145).
The central layer of the vertebral body was selected to calcu-
late the average bone density value.

Diagnosis was performed according to the guidelines intro-
duced by the International Society for Clinical Densitometry
(ISCD) and American College of Radiology (ACR), in which
osteoporosis if BMD values blow 80 mg/cm3; osteopenia,
from 80 to 120 mg/cm3; normal, over 120 mg/cm3 [34, 35].

Workflow of method

The proposed method mainly contained two steps: (1) lumbar
vertebral body segmentation and (2) BMD calculation. In this
work, we used deep learning techniques to automatically per-
form these procedures. The automated calculation was based
on accurate segmentation. Specifically, U-Net was employed

to perform segmentation task. After segmentation, lumbar ver-
tebral body had been located and its interior was extracted for
BMD calculation. BMD calculation was executed via a re-
gression model. Figure 1 shows overview of our proposed
framework.

The first stage: segmentation

Images for segmentation and image annotation

In this study, segmentation model was used for determining
the position of the first four lumbar vertebral bodies (L1–L4).
Hence, CT transverse slices of each patient were converted to
sagittal images. We should perform vertebral body detection
to ensure that all sagittal images selected for model training
contain the vertebral bodies of interest. Yet for simplicity, we
performed vertebral foramen detection in the transverse slices.
Specifically, given a transverse slice, a binary image was first
gained via using threshold method, of which the threshold
value was selected by the distribution of HU values in the
training cohort. In our work, the threshold value was 150
HU. After a series of operations, including morphological
close operation, NOT operation, background removal, and
denoising of 3D, only vertebral foramen region remained in
the binary image. Given a series of CT slices from a patient,
the abovementioned detection was followed by getting verte-
bral foramen center of each transverse slice. The mean of
vertebral foramen centers of all slices was seen as spine center
and was used to select sagittal images. Including the sagittal
slice where this mean center was, we finally consecutively
selected 10 sagittal images as candidates for segmentation
tasks.

To reduce time consumption of manual annotation while
ensuring the visibility of all concerned vertebral bodies (L1–
L4) in the image, the average image of 20 consecutive sagittal
images was used for vertebral body contouring on a research
platform provided data annotation, i.e., InferScholar 3.0
(Infervision), by several radiologists. All sagittal images were
first delineated separately by 2 radiologists (JW.L, a resident
with 1 year of experience, and YS.C, a resident with 3 years of
experience, respectively). And then, all annotations were
reviewed and modified by YJ.F, a board-certified radiologist
with 7 years of experience. Sketched region was used for
segmentation ground truth. To make the network directly rec-
ognize the four different vertebral bodies, in each segmenta-
tion ground truth, the labeled region of L1 was filled with “1”
and accordingly L2 with “2,” L3 with “3,” L4 with “4,” and
others with “0.”

Image preprocessing

The pre-processing included three steps. First, all sagittal im-
ages were processed using a window, whose window level
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(WL) and window width (WW) respectively was [350, 1000].
And then, all of pixel values in the images were scaled to [0, 1]
using min-max normalization method. Finally, all the images
were processed to images with 512 × 512 pixels. In the final
step, image was cropped around the center if its size was out of
range; zero padding if inadequate.

Development of the segmentation model in the training
cohort

A 2D U-shaped architecture called U-Net [36], which is fa-
vored in medical segmentation, was adopted in our work. The
U-Net (shown in Fig. 2) employs an encoder-decoder archi-
tecture. The encoder part (the left part) is used for hierarchical
feature extraction, and the decoder part (the right part) is
employed to merge features for obtaining precise results.

Five-fold cross validation was applied to train and valida-
tion segmentation model. And then, a selected model was
applied to the testing cohort. More details of U-Net architec-
ture, model training, and model selection are described in the
Supplementary Material.

When using, given a sequence of CT slices from a patient,
we first convert them to sagittal images and find spine center.
Using the sagittal slice, where spine center was, as the second-
channel image, we then selected three consecutive sagittal
images as a three-channel image to do pre-processing. Given
such a processed three-channel image, the trained model will
output the probability of each pixel for each class via the

softmax function. The final segmentation made by the model
will be performed by assigning each pixel to the class with the
highest probability.

Evaluation of the segmentation model performance
in the independent testing cohort

To evaluate automatic segmentation, the resulting regions of ver-
tebral bodies were compared with the manual ground truth an-
notations. The segmentation performance was evaluated using
(a) the dice similarity coefficient (DSC), a measure of spatial
overlap of segmentations and ground truths, which is defined
as 2TP/(FP + 2TP + FN), where TP, FP, and FN are the numbers
of true-positive, false-positive, and false-negative segmentations,
respectively; (b) the positive predictive value (PPV), a method
for evaluating the numbers of TP segmentations in all positive
predictions, which is defined as TP/(TP + FP); and (c) sensitivity,
which evaluates the numbers of TP segmentations in all positive
truths and is defined as TP/(TP + FN).

The second stage: regression

Images for regression and image labeling

Images for regression were extracted from transverse slices,
and each of them was a three-channel image. To obtain such a
three-channel image, we performed two steps as follows: (1)
determining the second-channel image. It is noted that,

Fig. 1 Overview of our proposed framework
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viewing from 3D space, sagittal image is in the Y-Z plane and
transverse slice is in the X-Y plane. Hence, using sagittal
image, we could attain the transverse slice where the
second-channel image was, and the selective range of the
second-channel image in the transverse slice. Then, using
transverse slice, we could accomplish the second-channel im-
age selection and extraction. Specifically, given a vertebral
body from the sagittal image via covering mask, we located
its center at position (y, z) via related operations of connected
component. In other words, z coordinate of this center
corresponded to the position of the required transverse slice,
and y coordinate of this center mapped to the corresponding y
coordinate of the required transverse slice. Setting the height
of image for model regression as “h” and using the
abovementioned y coordinate as middle point, we then
cropped a narrow strip from the abovementioned transverse
slice, of which the size was h × 512 pixels. Using threshold
method (same as the method of segmentation section), the
binary image of the narrow strip was gained followed by re-
maining the maximum connected region of this image. This
region was in the vertebral body of transverse slice. Setting the
width of image for model regression as “w” and using the
processed binary image as the mask of the narrow strip, we
extracted the needed image, a rectangle region in the narrow
strip of which the size was h × w pixels, to be seen as the
second-channel image. It was noted that when we set “h” and
“w,” we should guarantee the extracted image without cortex.

In our study, both “h” and “w” were 32. (2) Extracting the
first-channel and the third-channel images from correspond-
ing posit ion of the former and later sl ice of the
abovementioned transverse slice, respectively.

After the abovementioned operations, images extracted
from vertebral body interiors, of which the size was 32 × 32
× 3 pixels, were finally used for regression task and the cor-
responding BMDs derived from QCT were used as its refer-
ence standard.

Image preprocessing

All extracted images were pre-processed before feeding into
automatic regression. The processing pipeline included (1)
gray transformation to [0, 255] using the above window and
(2) normalization to [0, 1] using min-max normalization
method.

Development of the regression model in the training cohort

The DenseNet-121 [37] was used to calculate BMD values. Its
structure mainly contains 4 dense blocks and 3 transition
layers. Each dense block is composed of a series of 1 × 1
convolutional layers, 3 × 3 convolutional layers, and skip
connections. Each transition layer includes a 1 × 1
convolutional layer for reducing network parameters and a 2
× 2 average pooling operation with stride 2 for downsampling.

Fig. 2 U-Net architecture with input image matrix size of 512 × 512. Each blue box corresponds to a multichannel feature map. The black text on top of
the box denotes the number of filters. The arrows of different colors indicate different operations
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Five-fold validation was also applied to train and validation
regression model. To speed up network convergence and get
better regression performance, model parameters were pre-
trained on the ImageNet [38].

More details of model training and model selection are
described in the Supplementary Material.

Evaluation of the regression model performance
in the independent testing cohort

To assess goodness of fit, the regression performance was
evaluated using the coefficient of determination (r2) between
automated obtained BMDs and reference standards.

To further evaluate the validity of the regression model, we
additionally calculated average BMDs and classified them
into three categories by the guidelines for evaluating QCT
studies [34]. The number of true-positive, false-positive,
true-negative, and false-negative findings of classification per-
formance via average BMDs on testing cohort was also de-
scribed in a 3 × 3 contingency table representing the confusion
matrix.

Statistical analysis and software

Continuous variables are expressed as means ± standard de-
viations, and categorical variables are represented as frequen-
cies. Categorical variables were compared by using the chi-
square test. Paired BMD values were compared with the
Wilcoxon signed-rank test, without assuming the underlying
distribution. p < 0.05 was considered indicative of a statisti-
cally significant difference. Pearson correlation coefficient
was used to evaluate reliability of BMD calculation. Bland-
Altman analysis was also performed to compare average
BMDs. Cohen’s kappa coefficient was used to measure the
agreement between automated regression and reference. The
level of agreement was interpreted as slight if kappa coeffi-
cient was 0 to 0.20; fair, 0.21 to 0.40; moderate, 0.41 to 0.60;
substantial, 0.61 to 0.80; and almost perfect, 0.81 to 1.

The software used to build the models based on DCNN
was based on an Ubuntu 16.04 operating systemwith the deep
learning toolkit MXNet. The training process was run on an
Intel® Core™ i7-5930K CPU 3.50GHz with GeForce GTX
TITAN X GPU. The overall neural network implementation,
evaluation, and statistical analysis were all performed in the
Python2.7 environment.

Results

Patient characteristics

A total of 1449 patients were eligible for the final analysis.
The patients were aged from 15 to 98 years (average, 53.8

years). Table 1 lists the clinical and demographic features
for the training and testing datasets. According to the guide-
lines, all patients were divided into three categories: osteopo-
rosis (n = 244, 16.8%), osteopenia (n = 605, 41.8%), and
normal (n = 600, 41.4%).

The training and testing datasets demonstrated no statisti-
cally significant differences in age characteristics (p > 0.05),
whereas statistically different in the distribution of BMD
(p < 0.01). There was sex and CT examination position
existing no statistically significant differences between train-
ing dataset and test set 1 (p > 0.05), whereas showing statis-
tically difference and test set 2, as well as test set 3 (p < 0.001).

The performance of the segmentation model in the
independent testing cohort

Table 2 shows the evaluation results of the segmentation mod-
el. According to the results, automated deep learning–based
segmentation and manual segmentation correlated well re-
garding four lumbar vertebral bodies. Of three testing cohorts,
the DSCs for L1 were 0.823 (95% CI [0.815, 0.831]), 0.786
(95% CI [0.773, 0.799], and 0.789 (95% CI [0.780, 0.802]),
respectively; for L2 were 0.825 (95% CI [0.817, 0.833]),
0.793 (95% CI [0.779, 0.807]), and 0.786 (95% CI [0.774,
0.797]), respectively; for L3 were 0.862 (95% CI [0.855,
0.868]), 0.813 (95% CI [0.798, 0.824]), and 0.801 (95% CI
[0.791, 0.812]), respectively; for L4 were 0.899 (95% CI
[0.895, 0.904]), 0.883 (95% CI [0.874, 0.893]), and 0.782
(95% CI [0.769, 0.797]), respectively.

In 69% cases of test set 1, as well as 63.5% of test set 2 and
44% of test set 3, the segmentation model worked well,

Table 1 Participant demographics

Variable Training
cohort

Testing cohort

Test set 1 Test set 2 Test set 3

n 586 463 200 200

Age (year)* 51.7 ± 14.3 56.5 ± 15.1 55.5 ± 13.2 52.3 ± 15.3

Sex

Male 231 197 120 96

Female 355 266 80 104

CT examination position

Spinal 528 401 0 27

Other regions 58 62 200 173

BMD

Osteoporosis 85 89 31 39

Osteopenia 348 124 77 56

Normal 153 250 92 105

All cases of test set 1 were obtained by using uCT 760, test set 2,
Somatom Definition Flash unit, and test set 3, Revolution CT

*Represents mean ± standard deviation
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leading to high DSCs (over 0.90) in at least three of the four
lumbar vertebral bodies. Especially in 58% patients of test set
1, as well as 50% of test set 2 and 30% of test set 3, DSCs in all
of the four lumbar vertebral bodies were 0.90 or better.
Examples of CT images in sagittal view, manual annotations
by the radiologists, and automated segmentation results of our
method are shown in Fig. 3.

Since the segmentation model in this work is used for lo-
cating lumbar vertebral bodies in each image, the segmenta-
tion result is effective if four DSCs are all over 0.5. Based on
this, approximately 86% cases in test set 1 and 81.5% cases in
test set 2, as well as 65.5% cases in test set 3, had good
segmentation results.

The performance of the regression model in the
independent testing cohort

The performance analysis is represented using part of cases in
the three testing cohorts, which had effective segmentation
results, i.e., 86% cases (398/463) in test set 1, 81.5% cases
(163/200) in test set 2, and 65.5% cases (131/200) in test set 3.
The analysis of three whole testing cohorts is described in the
Supplementary Material.

BMDs obtained from the regression model were evaluated
with reference to ones derived from QCT. The evaluation
results of the regression model are illustrated in Table 2.

In this study, only three vertebral bodies of each patient
were post-processed by QCT. Thus, the average BMD was
defined as the mean of predicted BMD values from this three
vertebral bodies. Figure 4 shows that the average BMDs in
three testing cohorts were all highly correlated to references
(r = 0.992, 0.986, and 0.980, respectively; all p < 0.001). The

limit of agreement between the average BMDs obtained by
automated regression and the ones calculated by reference was
− 11.84 to 13.64 mg/cm3 for test set 1, − 16.8 to 12.6 mg/cm3

for test set 2, and − 8.3 to 29.3 mg/cm3 for test set 3. The
Wilcoxon signed-rank test showed that the average BMDs in
test set 1 were not significantly different from reference stan-
dards (p > 0.3), whereas in test set 2 were underestimated and
in test set 3 were overestimated compared with values derived
from QCT (p < 0.001).

Moreover, category according to the average BMDs de-
rived from QCT was used as reference standard. There were
all strong agreements between prediction and reference stan-
dard in three testing cohorts (Cohen’s kappa, 0.888, 0.868,
and 0.879, respectively). The classification confusionmatrices
that report the number of true-positive, false-positive, true-
negative, and false-negative results for the average BMDs
are shown in Table 3.

Discussion

In this study, we proposed a deep learning–based framework
using spinal or abdominal CT scans to segment lumbar verte-
bral body and automatically calculate BMD value.
Specifically, the framework consists of the U-Net trained by
sagittal images to tackle segmentation task and a regression
network to calculate BMD value. Experimental results dem-
onstrated accuracy and robustness of the proposed framework,
and two key findings were further obtained: (1) the model
based on DCNN could achieve a good performance for local-
ization and segmentation of L1–L4. (2) The DCNN could

Table 2 Performance of two
models on all testing cohorts Testing cohort Vertebral body Segmentation model Regression model

DSC Sensitivity PPV r2

Test set 1 L1 0.823 ± 0.267 0.836 ± 0.270 0.823 ± 0.270 0.948 (0.930, 0.960)

L2 0.825 ± 0.266 0.822 ± 0.271 0.843 ± 0.266 0.958 (0.954, 0.962)

L3 0.862 ± 0.202 0.861 ± 0.216 0.891 ± 0.191 0.949 (0.942, 0.956)

L4 0.899 ± 0.153 0.900 ± 0.162 0.909 ± 0.153 0.962 (0.959, 0.965)

Test set 2 L1 0.786 ± 0.290 0.787 ± 0.286 0.798 ± 0.301 -

L2 0.793 ± 0.291 0.783 ± 0.291 0.814 ± 0.305 0.946 (0.937, 0.955)

L3 0.813 ± 0.273 0.792 ± 0.282 0.870 ± 0.256 0.946 (0.938, 0.954)

L4 0.883 ± 0.189 0.870 ± 0.197 0.908 ± 0.192 0.963 (0.959, 0.966)

Test set 3 L1 0.789 ± 0.237 0.764 ± 0.240 0.844 ± 0.237 0.780 (0.724, 0.811)

L2 0.786 ± 0.242 0.759 ± 0.240 0.836 ± 0.250 0.877 (0.862, 0.889)

L3 0.801 ± 0.226 0.771 ± 0.230 0.871 ± 0.222 0.828 (0.780, 0.905)

L4 0.782 ± 0.293 0.758 ± 0.293 0.843 ± 0.294 0.886 (0.870, 0.899)

Segmentation results are results assessed on the three whole testing cohorts, and regression results are results
evaluated on 86% cases of test set 1, 81.5% cases of test set 2, and 65.5% cases of test set 3. Specially, only one
patient’s L1 was post-processed with QCT in the test set 2. Its standard was 148.71 mg/cm3 , while its regression
was 162.167 mg/cm3
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efficiently calculate BMD value, and the average BMD value
was highly correlated with one derived from QCT.

Lumbar vertebral body localization in sagittal images is the
basis for BMD measurement. In this study, we employed U-
Net to conduct vertebral body segmentation. The results on
three independent testing cohorts showed the average DSCs of
four vertebral bodies were all near or over 0.8, indicating
automated segmentation was highly correlated with manual
annotation. Moreover, in most patients (approximately
80.2% in a total of three testing cohorts), automated segmen-
tation performed well, leading to the DSCs of L1–L4 all over
0.5. In other words, in some cases, automated segmentation
did not perform appropriately. There may be several reasons
for this: (1) distinguishing vertebral body with similar

structure from sagittal image remains a challenging task. (2)
We performed semantic segmentation instead of instance seg-
mentation. (3) Even though data were annotated by the do-
main experts, label noise still could be a limiting factor in
developing the model. There may be another reason for the
poor segmentation results in test sets 2 and 3 which were
obtained from other two CT vendors’ scanners that we trained
our model only using CT images from a single CT scanner,
leading to lack of data diversity in deep learning.

BMD measurement is a reliable and ideal method for early
diagnosis of osteoporosis. DXA is the most widely used tech-
nique for diagnosis of osteoporosis and performing serial as-
sessments of BMD, but it is susceptible to abdominal aortic
calcification and spinal degeneration [14]. QCT can

Fig. 3 Visual comparison between the segmentation results of our
method and manual segmentation. From top to bottom: segmentation
results in patients of test sets 1, 2, and 3, respectively. From left to
right: CT sagittal images, manual segmentation, and automated

segmentation, respectively. Red, green, yellow, and blue colors
represent the vertebral bodies of L1, L2, L3, and L4, respectively. The
manual and automated segmentation correlate very well that DSCs in all
of the four lumbar vertebral bodies were over 0.90
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Fig. 4 Correlation (left) and Bland-Altman (right) plots of the average BMDs calculated by reference and automated regression. From a to c: the analysis
of test sets 1, 2, and 3, respectively
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supplement DXA by geometric and septal bone assessment,
and clinically, has gained wide acceptance within the evalua-
tion of osteoporosis. However, QCT is not extensively used in
most hospitals because of the need for post-processing equip-
ment and complex post-processing work. We utilized the
method based on DCNN to automatically calculate BMDs.
For testing sets from different vendors (test set 1, test set 2,
and test set 3), the Pearson correlation coefficients of the av-
erage BMDs calculated by automated regression were all over
0.98. The results in the independent testing cohorts revealed
that strong correlation existed between the average BMD ob-
tained by the automatic method and one derived from QCT.
However, the limits of agreements between the average
BMDs obtained by automated regression and ones calculated
by reference indicated the BMDs obtained by our models had
difference in CT scans from different vendors, which were
acceptable for the clinician. The main reason for the existence
of such differences may be the scarcity of training data diver-
sity, which is essential for the deep learning–based method. In
addition, our automatic method only used a simple and brief
convolutional neural network to estimate BMD. Thus, the
proposed method was more efficient and convenient than
post-processing required by QCT.

Patients, who suffered from other indications, may also be
accompanied by osteoporosis or osteopenia; thus, their ab-
dominal or spinal CT scans could be used to “opportunistic
screening” [16, 25]. However, due to diverse image recon-
struction algorithms and various voltage radiating tubes, the
CT values for evaluating osteoporosis have been limited [16].
In this work, we also focused on the accuracy of osteoporosis
prediction using the BMD values calculated by our method.
Underestimating or overestimating BMD occurred mostly in
CT scans which were obtained from other different CT ven-
dors, due to lack of training data diversity. However, our ex-
perimental results indicated that the proposed method could
detect osteoporosis or osteopenia using conventional CT
scans, which might contribute to the screening of early osteo-
porosis and be beneficial to the prevention of osteoporosis.

In summary, our research has several advantages. First,
we used BMD values derived from QCT as a reference
standard, which was shown to be more accurate in diag-
nosing osteoporosis compared with that of DXA [17–19].

Furthermore, our hospital is one of the participating centers
of the China Health Big Data (China Biobank) project, and
we regularly calibrate parameters to provide accurate QCT
osteoporosis data [33]. Thus, the data used in this study
were valid. Second, we employed a single trained regres-
sion network to calculate BMD, rather than complex and
cumbersome procedures, which might contribute to reduc-
ing the workloads of clinicians. Third, our model could
predict the risk of osteoporosis through image features ex-
tracted from conventional CT scans. So, this method may
provide assistance in diagnosing osteoporosis for many
“opportunistic screening” without additional costs.

It should be noted that there are also several limitations in
our current study. First, the proposed method was established
on the basis of data obtained from a single center, and the
model was only trained on data obtained with a single CT
scanner. This is our preliminary results; studies with training
datasets of increasing variability are needed to further validate
the robustness and reproducibility of our methods. Even pro-
spective multicenter studies with considerably large datasets
are our future works. Second, data from patients with severe
scoliosis were not considered in our study. Therefore, the ap-
plication of our results to populations with this type of disease
is limited. Furthermore, the proposed method was not able to
automatically exclude vertebral bodies with calcification. The
calculated BMD of these vertebral bodies is quite different
from the actual situation, which may have a significant effect
on clinical diagnosis results.

In conclusion, our study demonstrated that the proposed
method based on DCNN could provide accurate segmentation
for lumbar vertebral body and automatic calculation of BMD,
which had a great potential to be an available tool for clini-
cians in opportunistic osteoporosis screening.
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