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Abstract
Objective Test a practical realignment approach to compensate the technical variability of MR radiomic features.
Methods T1 phantom images acquired on 2 scanners, FLAIR and contrast-enhanced T1-weighted (CE-T1w) images of 18 brain
tumor patients scanned on both 1.5-T and 3-T scanners, and 36 T2-weighted (T2w) images of prostate cancer patients scanned in
one of two centers were investigated. The ComBat procedure was used for harmonizing radiomic features. Differences in
statistical distributions in feature values between 1.5- and 3-T images were tested before and after harmonization. The prostate
studies were used to determine the impact of harmonization to distinguish between Gleason grades (GGs).
Results In the phantom data, 40 out of 42 radiomic feature values were significantly different between the 2 scanners before
harmonization and none after. In white matter regions, the statistical distributions of features were significantly different
(p < 0.05) between the 1.5- and 3-T images for 37 out of 42 features in both FLAIR and CE-T1w images. After harmonization,
no statistically significant differences were observed. In brain tumors, 41 (FLAIR) or 36 (CE-T1w) out of 42 features were
significantly different between the 1.5- and 3-T images without harmonization, against 1 (FLAIR) or none (CE-T1w) with
harmonization. In prostate studies, 636 radiomic features were significantly different between GGs after harmonization against
461 before. The ability to distinguish between GGs using radiomic features was increased after harmonization.
Conclusion ComBat harmonization efficiently removes inter-center technical inconsistencies in radiomic feature values and
increases the sensitivity of studies using data from several scanners.
Key Points
• Radiomic feature values obtained using different MR scanners or imaging protocols can be harmonized by combining off-the-
shelf image standardization and feature realignment procedures.

• Harmonized radiomic features enable one to pool data from different scanners and centers without a substantial loss of
statistical power caused by intra- and inter-center variability.

• The proposed realignment method is applicable to radiomic features from different MR sequences and tumor types and does not
rely on any phantom acquisition.
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Abbreviations
CE-T1w Contrast-enhanced T1-weighted
CT Computed tomography
D1/D2 Prostate cancer patient database 1/2
hWS Hybrid white stripe
LDA Linear discriminant analysis
MRI Magnetic resonance imaging
PET Positron emission tomography
ROI Region of interest
T2w T2-weighted
VOI Volume of interest
WM White matter

Introduction

Radiomics faces the critical issue of a lack of reproducibility that
still hampers the successful translation of radiomicmodel discov-
ery into better diagnosis, patient classification, or monitoring
radiomics-based tools. Indeed, radiomic feature values are signif-
icantly affected by the technical settings of the imaging devices
and protocols, as demonstrated in positron emission tomography
(PET), computed tomography (CT), and magnetic resonance
imaging (MRI) [1–3]. To tackle the variability of radiomic fea-
tures induced by different technical settings, radiomicmodels can
be designed using a wide variety of images encompassing most
technical settings, or images or radiomic feature values have to
be harmonized before designing models. Ignoring the center ef-
fect, as is often observed in many papers, results in the lack of
generalization of the radiomic models [4].

In prospective studies, imaging protocols could be harmo-
nized upstream between centers to minimize the impact of
imaging protocols on feature values [5, 6], although harmo-
nizing between machines of different generations often comes
with degrading the image quality achieved by the most recent
scanners [5]. In retrospective studies, this approach is not an
option. Several groups have proposed to reduce the variability
by resampling the images to a common voxel size or by fil-
tering the images to match spatial resolution [7, 8]. However,
this requires accessing the images retrospectively and the fil-
tering procedure reduces the quality of images acquired using
the most recent devices. Others apply a z-score transformation
[9] to each feature value based on mean and standard devia-
tion measured in each center for that feature, but this assumes
that images produced by the different centers have been ob-
tained in similar patient samples (e.g., same proportion of
advanced and early-stage tumors), which is sometimes diffi-
cult to achieve.

In genomics, researchers face a similar problem called
batch effect and caused by the handling of samples by differ-
ent laboratories, different technicians, or different days that
can obscure individual variations. To deal with that problem
in genomics, Johnson et al [10] introduced the ComBat

realignment method. The method realigns all data in a single
space in which the batch effect is discarded without altering
the biological information. This approach has already been
successfully validated for radiomic features measured from
PET [11] and CT [12, 13] images of patient or phantom data
in studies supporting the relevance of harmonization.

In MR, the challenge is even more difficult as, unlike in
PET and CT where images are expressed in kBq/mL and
Hounsfield units, respectively, there is no standard MR inten-
sity grayscale, implying the lack of a tissue-specific absolute-
intensity numeric meaning, evenwithin the sameMR imaging
protocol, for the same body region, for images obtained on the
same scanner, and for the same patient. The standardization of
image intensities among patients is therefore absolutely need-
ed for comparing values of intensity-based features. In brain
MR, standardization approaches have been proposed to cor-
rect for the intensity variability [3, 14–16]. In particular, the
hybrid white stripe (hWS) method proved to be successful in
the context of neurodegenerative diseases and cancer [17, 18].
ComBat has been validated in MRI for the harmonization of
cortical thickness measurements across scanners [19].
Although it has been used in MR radiomic studies [20–23],
it has never been validated in that highly challenging context.

Here, we extend the ComBat approach to provide a harmo-
nization procedure applicable to any radiomic feature. We
demonstrate that by combining the image standardization
(such as hWS) with ComBat realignment, MR radiomic fea-
tures can be pooled without being adversely impacted by mul-
tiple sources of variability, ensuring higher sensitivity and
specificity of multicenter MR radiomic studies.

Materials and methods

The study was carried out in accordance with the World
Medical Association’s Declaration of Helsinki. For experi-
ment 2 involving MRI brain studies, the institutional review
board of the Fondation Ophtalmologique A. Rothschild ap-
proved the study (IRB No. 1512-016-726), and the require-
ment to obtain written informed consent was waived because
of the retrospective nature of the study. For experiment 3
using MRI prostate studies, all patient data are publicly avail-
able in https://datadryad.org/resource/10.5061/dryad.
b3d257g and were initially studied in [24]. All patient data
were anonymized. All authors had control of the data and
information submitted for publication.

Experiment 1: phantom studies

The phantom data used in this study have been extracted from
the RIDER Phantom MRI study [25] and are publicly avail-
able in the TCIA platform [26]. The phantom consists of 19
doped gel-filled tubes containing a gadolinium-based contrast
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agent. We used the T1 acquisitions obtained with a 1.5-T
scanner and a 3-T scanner (scanners B and D, respectively,
in [25], details in Supplemental data 1). For each image, 19
spherical volumes of interest (VOIs) of 3.5 mL centered on
each tube were drawn. We computed 42 radiomic features
(Supplemental data 2) using LIFEx freeware [27] (www.
lifexsoft.org), including an open-source radiomic protocol
compliant with the Image Biomarker Standardisation
Initiative guidelines [28]. Radiomic features were calculated
using a fixed bin size [3, 29] set to the average standard devi-
ation of the signal intensity, between the minimum and the
maximum intensity measured in all VOIs. This discretization
step is required to set voxels with similar intensity to the same
value, hence to reduce the impact of noise.

Experiment 2: MRI brain studies

For experiment 2, we retrospectively selected 18 patients
(13 men; mean age, 50 ± 18 years; age range, 26–85
years; Table 1) with grade III and IV glial tumors from
January 2017 to May 2018 from an institutional database.
All patients underwent two MRI scans using the same
protocol: one on a 1.5-T scanner (Philips Achieva,
Philips Medical Systems) and the other one on a 3-T
scanner (Philips Ingenia). The median delay between the
two scans was 30 days (range 4–93 days) without chemo-
therapy, surgery, radiotherapy, and any visual evolution
of the tumor and tumor heterogeneity between the scans.
Two MR sequences (details in Supplemental data 1) were
acquired: a 3D FLAIR scan (17 patients) and a 3D
contrast-enhanced T1-weighted (CE-T1w) scan (14
patients).

For each patient and each sequence, the 3-T images were
co-registered to the 1.5-T images using rigid transformations
in FSL-FLIRT [30]. Field inhomogeneity was corrected using

the N4 algorithm [31] owing to the publicly available ANTs
software (http://stnava.github.io/ANTs) with the standard
setting of hyper-parameters.

For each sequence, the tumor lesions were manually seg-
mented based on a consensus of two radiologists (A.L. and
L.D. with 9 years and 2 years of experience, respectively) on
the 1.5-T images and the resulting regions were copied on the
3-T images. Three slices (top, middle, bottom) were selected
in each tumor to obtain three 2D regions of interest (ROIs) per
tumor, yielding a total of 54 tumor ROIs for FLAIR images
(= 3 × 18 tumors; one patient had two distinct lesions) and 51
tumor ROIs for CE-T1w images (= 3 × 17 tumors; one patient
had two distinct lesions and another had three). In addition, in
each patient, 6 regions of 0.5 mL eachwere drawn in the white
matter (WM), yielding 102WM-VOIs for FLAIR images and
84 WM-VOIs for CE-T1w images that were copied onto the
3-T images.

Each patient’s image volume was standardized irrespective
of the other patients using the hWS method [17] as previously
described [3]. The hWS method applies a z-score transforma-
tion to the brain voxel values based on the normally appearing
distribution of WM intensities.

For each ROI and VOI based on native and hWS-
standardized images resampled at 1 × 1 × 1 mm3, we comput-
ed 42 radiomic features using LIFEx. Radiomic features were
calculated using a fixed bin size [3, 29] set to the average
standard deviation of the WM signal intensity, between the
minimum and the maximum intensity measured in all WM
and tumor VOIs for each sequence separately (details in
Supplemental data 1).

Experiment 3: MRI prostate studies

Two prostate cancer patient databases (D1 and D2; Table 1)
with publicly available radiomic features were used [24].

Table 1 Patient characteristics
Parameter MRI brain studies MRI prostate studies

Sex

Men 13 D1 = 23; D2 = 13

Women 5 0

Mean age (years) 50 ± 18 Not reported

No. of tumor regions

FLAIR images 18 3D regions (54 2D regions) –

CE-T1w images 17 3D regions (51 2D regions) –

T2w images – D1 = 65; D2 = 40

Gleason grade

Low risk – D1 = 21(32%); D2 = 26 (65%)

Intermediate/high risk – D1 = 44 (68%); D2 = 14 (35%)

The mean age of patients is not reported in the study of Penzias et al [24]

CE-T1w contrast-enhanced T1-weighted, D1 prostate dataset 1, D2 prostate dataset 2, T2w T2-weighted
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These two databases have been initially entirely studied by an
independent team to investigate the relationship between fea-
tures computed from MR images and from digitized tissue
images in order to discriminate between prostate cancer
grades, without taking into account that MRI scans were ac-
quired in two different centers [24]. Here, we precisely inves-
tigate how accounting for the center effect actually changes
the ability of each MRI feature to distinguish between tumor
grades. The experimental protocols were approved under the
IRB protocol #02-13-42C by the University Hospitals of
Cleveland Institutional Review Board. Patients underwent
T2-weighted (T2w) MRI before a radical prostatectomy. In
D1, 23 patients from University of Pennsylvania were
scanned between 2009 and 2011 (3 T Verios, Siemens
Healthcare; echo time 107–127 ms; repetition time 3690–
7090 ms). In D2, 13 patients from St. Vincent’s Hospital were
scanned between 2012 and 2014 (11 patients [3 T, Philips
Medical Systems; echo time 67–100 ms; repetition time
2525–3567 ms] and 2 patients [1.5 T, Siemens Healthcare;
echo time 119 ms; repetition time 3760 ms]). After surgery,
the resected prostate gland was analyzed by pathologists to
determine the Gleason scores, categorizing in low (score of
3 + 3) or intermediate/high (score of 3 + 4, 4 + 3, 4 + 4, or
higher) risk. D1 consisted of 21 low-risk regions and 44
intermediate/high-risk regions, while D2 included 26 low-
risk regions and 14 intermediate/high-risk regions (Table 1).
Based on a co-registration with histology images, the corre-
sponding tumor regions were manually segmented by a radi-
ologist. MR images were standardized to a template distribu-
tion based on the per-patient median of intra-prostatic pixel
intensities of D1 [32]. For each region, 2379 radiomic features
were computed using a homemade software (details of feature
calculation described in [24]) and we selected the 2326 fea-
tures available for all patients for our analysis.

Realignment method

To correct for the scanner effect, the ComBat realignment
method was used [10]. In the context of radiomics, ComBat
has already been validated for PET [11] and CT features [12,
13]. Themethod directly applies to the radiomic feature values
and estimates the scanner effect by matching the statistical
distributions of the feature values measured in VOI j for each
scanner i

yij ¼ α þ X ijβþ γi þ δiεij

where α is the average value for feature yij, X is the design
matrix for the covariates of interest, β is the vector of re-
gression coefficients corresponding to each covariate, γi is
an additive scanner effect, and δi is a multiplicative protocol
effect affected by an error term (εij). The model parameters
α, β, γi, and δi are estimated using a maximum likelihood

approach based on the set of available observations from the
two scanners in experiments 1 and 2 and based on the two
patient databases for experiment 3. The corrected values are
obtained using

yComBat
ij ¼ yij−bα−X ij

bβ−bγi

bδi
þ bα

where bα, bβ, bγi, and bδi are estimators of α, β, γi, and δi,
respectively.

The non-parametric form of the model was used, with no
assumption regarding the statistical laws followed by the fea-
tures and a transformation determined for each feature sepa-
rately. For experiments 1 and 2, no biologic covariate was
used (i.e., X = 0) since the data came from the same patients
or phantom scanned on 1.5-T and 3-T machines, and we
realigned feature values computed from WM and tumor re-
gions in patient data separately. For experiment 3, we intro-
duced the Gleason grade as a binary covariate since the pro-
portion of low versus intermediate/high-risk regions was very
different between the 2 databases (32% low-risk VOI in D1
and 68% in D2; Table 1).

To facilitate the access to the ComBat method for medical
imaging professionals, we provide a free online application
(available at https://forlhac.shinyapps.io/Shiny_ComBat/),
named ComBaTool, with example input files (Supplemental
data 3 and 4) and a step-by-step tutorial (Supplemental data 5).
This application embeds a free function called ComBat [19]
(https://github.com/Jfortin1/ComBatHarmonization) based on
the R software, but running the application does neither
require R or any third-party software to be installed nor require
having any programming skills.

Statistical analysis

Statistical analysis was performed with the R software (ver-
sion 3.6.1).

In experiment 1, we performed univariate two-sided
Friedman tests before and after ComBat realignment between
the two phantom scans. In experiment 2, we used two-sided
Friedman tests for each radiomic feature to test whether the
values derived from the 1.5-T and 3-T scans were significantly
different both in the WM and in the tumor regions in three
configurations: (C1) native images without ComBat realign-
ment, (C2) hWS-standardized images without realignment,
and (C3) hWS-standardized images with realignment. The
Benjamini-Hochberg procedure was used to control the false
discovery rate [33]. p values less than 0.05 were interpreted as
statistically significant. Bland-Altman graphs were plotted to
demonstrate the differences in feature values calculated from
the 1.5-T and 3-T scans.

In experiment 3, we performed Wilcoxon tests with the
Benjamini-Hochberg procedure for all radiomic features to
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distinguish between low-risk and intermediate/high-risk
groups when pooling patients from D1 and D2, without
ComBat realignment, with realignment, and with realignment
including the Gleason grade as a covariate of interest. To show
that ComBat does not create false positive results, we repeated
these tests after randomly assigning a label to each VOI to get
53 sham low-risk VOIs and 52 sham intermediate/high-risk
VOIs. To identify the risk group, we built a multivariate sig-
nature by means of a linear discriminant analysis (LDA) using
D1 dataset as a training set and including only the features
with a p value of univariate Wilcoxon test less than 5%. We
tested the classification performance on D2 data by calculat-
ing the Youden Index (= sensitivity + specificity − 1). We
repeated this procedure in three configurations: without
ComBat realignment, with realignment, and with realignment
including the Gleason grade as a covariate of interest.

Results

Patient characteristics are shown in Table 1.

Experiment 1

In the phantom data, 40 out of 42 p values of the Friedman test
were lower than 5% without realignment. Only two p values
(coarseness and gray-level non-uniformity) were greater than
0.05 between the two acquisitions. After ComBat, all p values
of Friedman tests were greater than 0.05, showing that the
protocol effect was no longer detectable.

Experiment 2

A total of 37 out of 42 radiomic features (88%) computed
from WM-VOI and 41 out of 42 (98%) from tumor lesions
yieldedFriedman tests’pvalues less than0.05between1.5-T
and 3-T native FLAIR brain images without hWS standard-
izationnorComBat realignment (Table2; Supplemental data

6). Using the hWS standardization of MR images, 29/42
(69%) of p values for WM regions and 25/42 (60%) of
p values for tumor lesions were less than 0.05. Combining
the hWS standardization with the ComBat feature distribu-
tion realignment, only one p value (long-zone emphasis)was
less than 0.05 for tumor lesions (p = 0.017), demonstrating
that the scanner effect was no longer detectable for the vast
majority of radiomic features. Figure 1 shows the evolution
of the distribution of the correlation radiomic feature calcu-
lated from the gray-level co-occurrence matrix. On native
FLAIR images, the plot shows a shift in distribution with
greater values for WM-VOI and tumor lesions for 3-T scans
compared to 1.5-T scans. After hWS standardization and
realignment, the distributions between the two scanners bet-
ter overlap. To clarify the respective role of hWS and
ComBat, Fig. 2 shows the Bland-Altman plots of the mean
valuemeasured inWM-VOI for FLAIR images based on 3-T
scans and 1.5-T scans. The hWS standardizationwithin each
patient rescaled the values to make them similar between the
two scans. The realignment reduced the systematic differ-
ence between the two.

The same trends were observed for CE-T1w images
(Table 2; Supplemental data 7).

Experiment 3

On T2w prostate images after standardization performed by
[24], 461 out of 2326 radiomic features had p values of
Wilcoxon tests less than 0.05 for distinguishing between low
and intermediate/high risks when pooling the two patient co-
horts (D1 + D2). After ComBat without any co-variate, 460
out of 2326 p values were less than 0.05. Using the Gleason
grade co-variate in ComBat, 636 out of 2326 p values were
less than 0.05. Figure 3 demonstrates a better alignment of
radiomic feature values extracted from low-risk VOI and
intermediate/high-risk VOI separately between the two patient
groups after using ComBat with a co-variate accounting for
the recruitment specificity of each center.

Table 2 Significant Friedman
tests (p < 0.05) without and with
hybrid white stripe (hWS) stan-
dardization and/or ComBat re-
alignment for brain scans

w/o hWS standardization With hWS standardization

w/o ComBat w/o ComBat With ComBat

FLAIR images

WM 37/42 (88) 29/42 (69) 0/42 (0)

Tumor lesions 41/42 (98) 25/42 (60) 1/42 (2)

CE-T1w images

WM 37/42 (88) 27/42 (64) 0/42 (0)

Tumor lesions 36/42 (86) 2/42 (5) 0/42 (0)

Data are numerator/denominator; data in parentheses are percentage

WM white matter, CE-T1w contrast-enhanced T1-weighted, w/o without
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When a risk (low or moderate/high) was randomly
assigned to each VOI, no p value was less than 0.05 before
and after ComBat without and with a co-variate representing
the Gleason grade.

The multivariate radiomic model identified using LDA on
theD1 data to distinguish low versus intermediate/high risk was
applied to D2 patients, yielding a Youden Index of 0.12 (sen-
sitivity = 19%, specificity = 93%) before ComBat. After
ComBat, the Youden Index increased to 0.20 (sensitivity =
27%, specificity = 93%) and to 0.43 (sensitivity = 58%, spec-
ificity = 86%) using the Gleason grade as co-variate in ComBat.

Discussion

The scanner effect affects the radiomic feature values extract-
ed fromMR images, introducingmajor confounding factors in
multicentric or multiprotocol studies. Here, we validated a
harmonization procedure combining ComBat realignment
with MR image standardization to co-analyze MR radiomic
features extracted from different scanners. Using phantom da-
ta and brain scans acquired for the same patients (without any
tumor evolution detected visually between the two scans) with
1.5-T and 3-T scanners, we showed that this harmonization

Fig. 1 Experiment 2. 18 patients with brain lesions were scanned on both
1.5-T and 3-T scanners. Based on native or for hybrid white stripe (hWS)-
standardized images, 42 radiomic features were computed in a tumor
region and in a white matter region. As an example, the probability den-
sity function (%) of the correlation radiomic feature calculated from the

gray-level co-occurrence matrix on FLAIR images is plotted here without
and with ComBat realignment (ComBaTool was applied separately on
the two tissue types: white matter and tumor) for 1.5-T MRI (in orange)
and 3-T MRI (in blue). p values are for Friedman tests of each tissue
between the two MRI devices

Fig. 2 Experiment 2. Bland-Altman plots of the mean value computed in white matter regions based on 1.5-T and 3-T scans for FLAIR native images
(a), for hybrid white stripe (hWS)-standardized images (b), and for hWS-standardized images with ComBat realignment (c)
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procedure realigns radiomic feature distributions and removes
the scanner effect for T1, FLAIR, and CE-T1w images. The
goal was not to test our ability to reproduce feature values
measured in 3-T MR images from 1.5-T images, since we ex-
pect different signals from the two devices with more details in
the 3-T images (cf Fig. 1). Yet, in the context of radiomics,
pooling images acquired using different devices and different
acquisition and reconstruction protocols is often needed to in-
crease the size of cohort. In that context, we demonstrated that
ComBat could realign feature values so that all data could be
analyzed together, even if images had been acquired with dif-
ferent magnetic fields. It is important to underline that a differ-
ent ComBat transformation is estimated for each sequence and
each tissue type independently because imaging protocols do
not have the same effect on each tissue. Using the prostate scans
acquired in different patients from two centers, we confirmed
the effectiveness of the harmonization for T2w images and
demonstrated that harmonization did not alter the discriminant
information conveyed by the features. This experiment also
shows that pooling data corrected for the scanner effect could
increase the statistical power, identify more radiomic features
able to distinguish between the low-risk and intermediate/high-
risk regions in prostate lesions, and yield a more discriminant
multivariate model. Importantly, we showed that when no dif-
ference between groups was expected, here between the sham
low-risk and intermediate/high-risk VOIs, ComBat did not in-
troduce any false positive differences.

The ComBat realignment method is fast and easy to use
and operates directly on radiomic feature values (no training

set needed, no phantom acquisition, no need to access im-
ages). It is applicable to radiomic features extracted from dif-
ferent MR sequences after a first step of image standardiza-
tion, as previously described [3]. We also demonstrated the
added value of the covariate in the realignment process when
patient characteristics are different between centers (here
Gleason grade) for univariate and multivariate analyses. To
deal with the center effect, other authors reported the potential
of generative adversarial networks to transform images from
one imaging protocol (or a domain) to another [34]. Although
promising results have been reported in the literature [35, 36],
these techniques require access to the images, unlike ComBat.
The ComBat realignment method has been previously used in
MR radiomic studies [20–23] without any explicit validation
or investigation of the respective role of the image standardi-
zation and of the scanner/protocol effect compensation as
studied here (Figs. 1 and 2). In [20], authors reported an in-
creased accuracy of entropy extracted from apparent diffusion
coefficient MR images to predict the locoregional control in
cervical cancer after ComBat, fully consistent with our
findings.

Our study has some limitations. We could only include 18
patients in experiment 2 because it is very uncommon for
patients to undergoMR on both 1.5-T and 3-T scanners within
a time lapse during which the tumor has not visually evolved.
Still, this small sample allowed us to confirm results obtained
using the phantom data. In addition, such a small number
allowed us to demonstrate that ComBat performed well even
with a limited number of cases, confirming results published

F i g . 3 Expe r imen t 3 . Boxp lo t s o f f ea tu re #20 (ca l l ed
Gabor:cos:theta=0:lambda=2:Standard Deviation in [24]) for low-risk
VOI and intermediate/high-risk VOI, before ComBat realignment (a, d),

after ComBat realignment without covariate (b, e), and after ComBat re-
alignment with covariate (c, f) for the prostate patient cohorts D1 and D2
separately (a–c) or together (d–f). p values are from Wilcoxon tests
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in genomic applications [10]. Another limitation is that our
findings should still be validated for other cancer types, MR
sequences, and devices.

In conclusion, we demonstrated that the ComBat realign-
ment method in combination with intra-patient image stan-
dardization could efficiently remove the scanner/protocol ef-
fect while preserving the individual variations in phantom,
brain, and prostate MR scans. This approach enables large
MR multicentric studies to investigate the added value of
radiomic analysis in patient management. To facilitate large
multicenter/multiprotocol radiomic studies, we provide the
ComBat method as an online ComBaTool application.
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