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Abstract
Objectives To assess the methodological quality and risk of bias in radiomics studies investigating diagnosis, therapy response,
and survival of patients with osteosarcoma.
Methods In this systematic review, literatures on radiomics in osteosarcoma were included and assessed for methodological
quality through the radiomics quality score (RQS). The risk of bias and concern of application was assessed using the Quality
Assessment of Diagnostic Accuracy Studies tool. A meta-analysis of studies focusing on predicting osteosarcoma response to
neoadjuvant chemotherapy was performed.
Results Twelve radiomics studies exploring osteosarcoma were identified, and five were included in meta-analysis. The RQS
reached an average of 20.4% (6.92 of 36) with good inter-rater agreement (ICC 0.95, 95% CI 0.85-0.99). Four studies validated
results with an internal dataset, none of which used external dataset; one study was prospectively designed, and another one
shared part of the dataset. The risk of bias and concern of application were mainly related to index test aspect. The meta-analysis
showed a diagnostic odds ratio of 43.68 (95%CI 13.5-141.31) for predicting response to neoadjuvant chemotherapy with high
heterogeneity and low methodological quality.
Conclusions The overall scientific quality of included studies is insufficient; however, radiomics remains a promising technology
for predicting treatment response, which might guide therapeutic decision-making and related to prognosis. Improvements in
study design, validation, and open science needs to be made to demonstrate the generalizability of findings and to achieve clinical
applications. Widespread application of RQS, pre-trained RQS scoring procedure, and modification of RQS in response to
clinical needs are necessary.
Key Points
• Limited radiomics studies were established in osteosarcoma with mean RQS of 20.4%, commonly due to unvalidated results,
retrospective study design, and absence of open science.

• Meta-analysis of radiomics studies predicting osteosarcoma response to neoadjuvant chemotherapy showed high diagnostic
odds ratio 43.68, while high heterogeneity and low methodological quality were the main concerns.

• A previously trained data extraction instrument allowed reaching moderate inter-rater agreement in RQS applications, while
RQS still needs improvement to become a wide adaptive tool in reviews of radiomics studies, in routine self-check before
manuscript submitting and in study design.
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Abbreviations
CI Confidence intervals
DOR Diagnostic odds ratio
HSROC Hierarchical summary receiver

operating characteristic
ICC Correlation coefficient
PRISMA Preferred Reporting Items for

Systematic Reviews and Meta-analysis
PROSPERO International Prospective Register Of

Systematic Reviews
QUADAS Quality Assessment of Diagnostic

Accuracy Studies
RQS Radiomics quality score
TRIPOD Transparent Reporting of a multivariable

prediction model for Individual Prognosis
Or Diagnosis

Introduction

Osteosarcoma is the most common primary malignant osse-
ous sarcoma with most cases developing in children and ado-
lescents [1]. Radiologic examinations are useful tools in oste-
osarcoma diagnosis [2–5]. Osteosarcoma is often detected on
plain radiograph with a contrast-enhanced MRI scan as the
next step in the diagnostic work-up; a chest CT scan is essen-
tial for lung metastases detection; PET examination or a bone
scan is generally recommended for initial staging in osteosar-
coma patients [1].

For treatment considerations, chemotherapy has been con-
sidered as essential of high-grade osteosarcoma [5]. Surgery
of the primary tumor after chemotherapy is a conventional
approach [6]; and the histologic response to neoadjuvant che-
motherapy evaluated based on tumor necrosis of excision
specimen [7] is crucial for treatment strategy and is related
to prognosis of patients [8]. Although aggressive treatment
plans improve prognosis of patients who were likely to exhibit
poor survival, not all patients benefit from these approaches.
In clinical settings, expert radiologists may provide informa-
tive reports for clinicians to decide treatment strategy [2–4],
and if patients could be stratified by radiologic examinations,
personalized medicine strategy may be realized [9]. However,
imaging interpretation relies largely on radiologists; therefore,
reports vary due to uncontrollable subjective factors.

Radiomics, a bunch of strategies extracting quantitative,
minable, high-dimensional data from medical images, is ca-
pable for generating imaging biomarkers which may not be
visible to naked eye [9–12]. Quantitative, reader independent
imaging biomarkers could support clinical decision and in-
crease diagnostic, predictive, and prognostic accuracy [13].

In recent years, extensive research using radiomic methods
and even artificial intelligence tried and succeeded in linking
radiologic image to lesion characterization, treatment re-
sponse, and patient outcome; nonetheless, translation into
clinical practice has not yet realized [14]. For radiomics to
cross the translational gap between an exploratory research
method and a valued addition to precision medicine
workflows, challenges including technical and biological va-
lidity and regulatory and ethical problems as well as cost-
effectiveness still need to be overcome, in which this process
radiomics quality score (RQS) may be employed as a useful
tool (Fig. 1) [9, 15, 16].

Furthermore, no previous study has been undertaken a sys-
tematic research on radiomics in osteosarcoma. The factors
affecting the performance of radiomics in osteosarcoma
should be identified to further improve its clinical translation.
Thus, the aim of our study was to establish whether the meth-
odological quality of studies published on radiomics in oste-
osarcoma for multiple purposes poses barriers to effective
clinical application. A meta-analysis of the radiomics utility
in prediction of neoadjuvant chemotherapy response to oste-
osarcoma was performed to evaluate its ability of proposed
models to answer this clinically relevant question.

Materials and methods

Protocol and registry

This systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-analysis (PRISMA) statement [17]. A review protocol
was drafted [18], and has been submitted to the International
Prospective Register Of Systematic Reviews (PROSPERO).

Literature search and study selection

The structured search via PubMed, Embase, and Web of
Science was performed until 30 Apr 2020 by two reviewers
both with 2 years of experience in radiology, independently.
Disagreements were resolved by discussion or with the help of
a third reviewer with 4 years of experience. This review in-
cluded primary research assessing the role of radiomics in
patients with osteosarcoma for diagnostic, prognostic, or pre-
dictive purpose. Two reviewers selected potential studies by
screening titles and abstracts. Articles that met inclusion
criteria were obtained in full. The full text was determined
for further eligibility by two same reviewers. In the case of
uncertainties, a third reviewer was consulted to reach final
consensus. The reference lists of included studies were

1527Eur Radiol  (2021) 31:1526–1535



screened for additional, potentially eligible articles. Detailed
search strategies and selection criteria can be found in supple-
mentary materials.

Data extraction and quality assessment

The eligible articles were assessed by the RQS for methodolog-
ical quality [9] and by the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) tool for the risk of bias and
concern of application [19]. The RQS was a recently accepted
tool to measure the methodological rigor of radiomics workflow
[20]. The RQS checklist is described in Table S1 [9]. The as-
sessment interrogates 16 components and rated resulting with a
minimum score with − 8 to 0 defined as 0% and a maximum
score with 36 points defined as 100%. The QUADAS-2 tool
was employed for presenting bias in patient selection, index test,
reference standard, and flow and timing. The tool was tailored to

our research question through signaling questions for risks of
bias specific to current study [19].

We developed a data collection instrument for study data,
RQS, and QUADAS-2 score based on previous articles [9, 19,
21]. Two reviewers independently extracted study data into
the instrument from two randomly chosen articles that fully
met the inclusion criteria to test and adjust the tool.
Disagreements were discussed with the third reviewer in order
to achieve a shared appropriate understanding of each param-
eter. The data collection instrument is described in Table S2.
Two same reviewers then measured and rated each study in-
dependently and recorded data for further analysis.

Data synthesis and analysis

Statistical analysis was performed with SPSS and R language
using raters package, while the meta-analysis was performed

Fig. 1 The radiomics research and role of RQS. A typical radiomics
workflow includes image and acquisition and post-processing; manual
semi-automatic, or automatic segmentation; model definition using clas-
sical machine learning algorithms or deep learning method; external and
prospective validation; and finally, clinical application. RQS is a useful
tool to assess the methodological quality of this workflow and further

reflecting challenges and insufficiencies in radiomics studies, such as lack
of prospective design, absence of external validation, and unwillingness
to share data. On the other hand, modification of RQS is deemed to be
necessary, either according to other predictive model reporting checklists
or in response to actual practical needs
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with Stata using the metan, midas, and metandi packages
[20–22]. The summed RQS rating per study was calculated
and the average rating of all raters is reported. Inter-rater
agreement for single items of the RQS was calculated with
modified Fleiss kappa statistic, while the interclass correlation
coefficient (ICC) was determined to describe inter-rater agree-
ment for the summed RQS [20, 21].

In current systemic review, the response prediction of os-
teosarcoma to neoadjuvant chemotherapy was addressed re-
peatedly; therefore, these studies were included in the meta-
analysis. Two-by-two tables were extracted, if documented, or
reconstructed based on published data. Sensitivity, specificity,
positive and negative likelihood ratio, and diagnostic odds
ratio (DOR) and their 95% confidence intervals (95% CIs)
were calculated as effect size. A hierarchical summary receiv-
er operating characteristic (HSROC) curve was plotted to
show the diagnostic accuracy.

For heterogeneity assessment, Cochran’s Q test and Higgins
inconsistency index (I2) test were used to estimate the heteroge-
neity among the studies included in the meta-analysis. HSROC
curve was drawn to visually assess the difference between the
95% confidence region and prediction region. A funnel plot and
Deeks funnel plot were constructed to visually assess the risk of
publication bias, and Egger’s test and Deeks funnel plot asym-
metry test were performed. The trim and fill method was used to
estimate the number of missing studies. Detailed statistical
methods were described in the supplementary materials.

Results

Literature search

The search strategy yielded 30 studies from PubMed, 21 from
Embase and 24 from Web of Science. After exclusion of 32
duplicates, 43 unique records of titles and abstracts were
screened. Among these, fourteen were selected for possible
inclusion and their full text retrieved. Review of the full text
resulted in ultimate inclusion of twelve articles in the system-
atic review [23–34]. No additional study was included by
hand search of their reference lists. Five studies [25, 26, 28,
29, 31] that interrogated response to neoadjuvant chemother-
apy were included into meta-analysis (Fig. 2).

Study characteristics

Tables S3 and S4 summarize aims and characteristics of in-
cluded studies. Five studies investigated treatment response
prediction, three interrogated survival prediction, and two
attempted to answer both clinical questions by radiomics
method, while the remaining two studies explored stratifica-
tion of metastatic risk, and differentiation of benign and ma-
lignant pulmonary nodules in osteosarcoma patients,

respectively. In terms of used modalities, seven studies used
metabolic imaging methods, including PET and advanced
MRI sequences. In terms of applied MRI sequence, one used
conventional MRI sequence and contrast-enhanced T1-
weighted imaging; three used advanced MRI sequence, two
with DWI and one with IVIM, respectively.

Quality assessment

The twelve studies reached a mean ± standard deviation RQS
of 6.92 ± 6.00, median 5, and range − 5 to 16. The average
percentage RQS was 20.4% with a maximum of 44.4%.
Average RQS rating per component and inter-rater agreement
are presented in Table 1.

Most of all studies reported well-documented image acqui-
sition protocols; however, eleven studies relied on prospec-
tively acquired data, and only one included plan for radiomics
analysis in its prospective study protocol. Ten studies acquired
images using the same equipment, while two study included
images from three CT scanners. However, none of them per-
formed a phantom study. Multiple segmentation was conduct-
ed in seven studies, in which six were performed by two or
more readers, and the remaining one identified tumor using
the region-growing algorithm and then confirmed by a physi-
cian. Three studies conducted imaging at multiple time points
and extracted their radiomics features respectively.

Twelve studies in this review included a total sample size
of 964 patients. These studies extracted between 10 and 474
features from 16 to 191 patients, in which one study investi-
gated 42 pulmonary nodules from sixteen patients. The ratio
between features and patients ranged from 3.1 times more
patients than features to 3.2 times more features than patients.
Feature reduction and adjustment was performed in ten stud-
ies, in which eight underwent multiple testing. Five studies
combined radiomics with clinical information or human ob-
jective assessment of image. Validation of radiomics signa-
tures on internal datasets was performed in five of the studies;
none of them employed external datasets. For model assess-
ment, discrimination statistics results were usually provided,
while calibration statistics results were less mentioned, and
none of the study performed cutoff analysis.

Concerning biological validation and clinical utility, most
studies compared their model with gold standard. The corre-
lation between tumor biology and radiomics features were
discussed in three to provide a more holistic model. Only
two studies evaluated whether the model was sufficiently ro-
bust for clinical practice by decision curve analysis, but cost-
effectiveness analysis was performed in none. Surprisingly,
one study made its data partially available to the public.

Risk of bias and applicability concerns were assessed by
QUADAS-2 and summarized in Fig. 3. Most included studies
were regarded as having a moderate risk of bias. Risk of bias
and application concerns relating to index testing were
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frequently observed. Some studies did not provide enough
observations per predictor variable to produce reasonably

stable estimates. Feature reduction and adjustment process
were not described in detail to allow replication.

Table 1 Average rating and inter-
rater agreement per component of
RQS

No. RQS scoring item Range Average Inter-rater agreement

S* or
ICC

95% CI

1 Image protocol quality 0 to 2 0.92 0.62 0.60–0.64

2 Multiple segmentations 0 to 1 0.58 0.82 0.80–0.84

3 Phantom study on all scanners 0 to 1 0.00 1.00 1.00–1.00

4 Imaging at multiple time points 0 to 1 0.25 0.75 0.73–0.77

5 Feature reduction or adjustment for multiple
testing

−3 to 3 2.00 0.75 0.73–0.77

6 Multivariable analysis with non-radiomics
features

0 to 1 0.42 1.00 1.00–1.00

7 Detect and discuss biological correlates 0 to 1 0.25 0.75 0.73–0.77

8 Cut-off analyses 0 to 1 0.00 1.00 1.00–1.00

9 Discrimination statistics 0 to 2 1.50 0.54 0.52–0.55

10 Calibration statistics 0 to 2 0.25 0.80 0.78–0.82

11 Prospective study registered in a trial
database

0 to 7 0.58 1.00 1.00–1.00

12 Validation −5 to 5 −2.08 1.00 1.00–1.00

13 Comparison to ‘gold standard’ 0 to 2 1.83 0.62 0.60–0.64

14 Potential clinical utility 0 to 2 0.33 1.00 1.00–1.00

15 Cost-effectiveness analysis 0 to 1 0.00 1.00 1.00–1.00

16 Open science and data 0 to 4 0.08 1.00 1.00–1.00

Total points: −8 to 0 = 0%, 36 = 100% 0% to 100% 6.92 = 20.4% 0.95 0.85–0.99

CI confidence interval, ICC interclass correlation coefficient, RQS Radiomics Quality Score, S* Fleiss Kappa
statics.

Fig. 2 Flow diagram of the study
selection process for this
systematic review and meta-
analysis
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The reproducibility of the RQS and QUADAS-2 was cal-
culated. The ICC for the RQS was 0.95 (95% CI 0.85–0.99).
Moderate agreement was achieved in evaluating image proto-
col, discrimination statistics, and gold standard; substantial or
almost perfect agreement was reached for the remaining ele-
ments of the RQS. Absolute agreement of the seven indicator
questions of the QUADAS-2 ranged from 66.7 to 91.7%.
RQS score and QUADAS-2 assessment per study per element
are presented in Tables S5 and S6.

Prediction of response to chemotherapy

Since only one of the five included studies had a validation
dataset, meta-analysis was performed only in the training
dataset with a sample size of 328 patients. Individual selected
studies showed high DOR for predicting response to neoad-
juvant chemotherapy, ranging from 25.46 to 470.59, and the
pooled DOR was 43.68 (95% CI 13.50–141.31; Fig. 4).
Furthermore, the pooled sensitivity and specificity were 86%
(95% CI 65–95%) and 88% (95% CI 79–94%), respectively
(Fig. S1). The pooled positive likelihood ratio and negative

likelihood ratio were 7.16 (95% CI 3.96–12.94) and 0.16
(95% CI 0.06–0.43), respectively (Fig. S1). The AUC was
0.91 (95% CI 0.89–0.94), which indicates a high diagnostic
performance (Fig. S2).

Cochran’sQ test implied that heterogeneity was present (Q
= 10.137, p = 0.003) across the studies, and the Higgins I2

statistic also demonstrated that heterogeneity was high (I2 =
80%). The significant difference between the 95% confidence
region and 95% prediction region was large, indicating a high
possibility of heterogeneity across the studies (Fig. S2).
However, the funnel plot with Egger’s test (p = 0.277) and
Deeks funnel plot (p = 0.79) revealed that the likelihood of
publication bias was low (Figs. S3 and S4). Trim and fill
analysis estimated that no study was missing (Fig. S5).

Discussion

The current review using RQS found that the overall scientific
quality of radiomics studies in osteosarcoma is insufficient,
with an average RQS rating of 20.4% and 44.4% for the best

Fig. 3 Quality assessment of
included studies by QUADAS-2
tool. The authors’ judgments for
each domain of each included
study were reviewed. The pro-
portion of included studies that
indicated low, unclear, or high
risk and applicability concerns is
shown in green, yellow, and red,
respectively
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performing study. Although the meta-analysis showed that
radiomics had an excellent diagnostic performance (AUC
0.91, 95% CI 0.89–0.94) in predicting patients’ response to
neoadjuvant chemotherapy, radiomics is far from a clinical
applicable tool due to its poor methodological quality.

The mean RQS rating was acceptable (20.4% vs 10.8 to
36.1%) comparing with previous reviews, and the same for
the best performing study (44.4% vs 41.2 to 55.6%;
Tables S7) [20, 21, 35–42], however, lower than a study using
a modified RQS checklist, which included patient selection
related criteria from QUADAS [43], and higher than a recent
review including studies without a systematic approach [44]. In
our review, the main reasons for low RQS rating were lack of
validation, absence of prospective study design, and unavail-
able open data. Further insufficiency in scientific quality of
radiomics studies were in feature reproducibility and in analysis
of clinical utility. Although the guidelines for machine learning
model reporting have not strongly emphasized on publicly
available code [45, 46], the open data and code would be pref-
erable for assessing the reproducibility of findings [47].

Despite the promising results of meta-analysis, the repeat-
ability and clinical adoption of those models were uncertain.
Only five studies were included and most of them were lack
of independent validation.Moreover, neither did studies provide
publicly available imaging data with segmentation, nor the code
employed for data preparation, feature extraction, and model
construction. Both Cochran’s Q test and Higgins I2 statistic
showed high heterogeneity, but subgroup analysis was not per-
formed due to limited sample size. The likelihood of publication

bias was low, while negative results were not identified in our
review. On the other hand, prognostic studies concerning sur-
vival of the patients and metastasis risk were not pooled, due to
varied outcomes. Further analysis may be possible, if future
studies report the results by similar measurements.

Among the reviewed studies, radiomics analysis was
employed mainly in treatment response and prognosis predic-
tion and only one study fell into the diagnostic field that dif-
ferentiate benign and malignant pulmonary nodules. Some of
them accomplished with conventional imaging data, indicat-
ing that radiomics may provide novel quantitative imaging
markers without new acquisition equipment or tracers. Our
study demonstrated that radiomics may be useful in aiding
radiologists for answering clinical questions tightly related to
practice. To be able to translate these excellent results into
clinical radiology, well-designed and properly-conducted
studies are indispensable. Therefore, disadvantages in study
design, validation, and open science detected by RQS should
be avoided. RQS should be used not only as a tool assessing
the scientific and reporting quality of published researches but
also as a routine self-checklist before manuscript submitting,
and even as a guideline for radiomics study design.

During the application of RQS, varying inter-rater agree-
ment was observed [20]. To avoid that, one later study devel-
oped a data extraction instrument and introduced a training
phase to reach a shared understanding of each parameter be-
fore the formal assessment [21]. As a result, agreement for the
sum RQS rating (ICC = 0.96) and most items was improved.
Other studies discussed topics with initial disagreements and

Fig. 4 Forest plot of the effect size calculated as diagnostic odds ratio for
studies investigating the diagnostic accuracy of radiomics in neoadjuvant
chemotherapy response prediction in osteosarcoma patients. The
numbers are pooled estimates with 95% CIs in parentheses; horizontal

lines indicate 95% CI. TP number of good responders correctly
diagnosed, FN number of good responders diagnosed as poor, FP
number of poor responders diagnosed as good, TN number of poor
responders correctly diagnosed
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tailored RQS to the specific research question during the data
extract phase to reach a more reproducible assessment [38,
39]; yet, the agreement was not reported. Our study repeated
those processes and demonstrated that those efforts allowed
reaching a moderate inter-rater agreement in RQS (ICC =
0.95) and shared understanding on most items. Therefore, a
similar procedure is deemed to be essential.

However, modifications of RQS in response to practical
needs are necessary. Two previous reviews attempt to inte-
grate RQS with six key domains to facilitate the use in
radiomics approaches [38, 39], to approach a more precise
assessment and appropriate method amelioration. One of them
compared RQS with Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) checklist [48], and pointed out that room for im-
provement was shown in stating study objective in abstract
and introduction, blind assessment of outcome, sample size,
and missing data categories, to accelerate a more standardized
reporting of radiomics researches [39]. Another guideline em-
phasized on reliable assessment of model validity and consis-
tent interpretation of model outputs, and provided a more
clearly defined checklist for assessment of model establish-
ment than RQS, to enable consistent reporting and correct
application of model specifications and results [45]. Both
RQS and TRIPOD emphasized on validation of the imaging
biomarkers [42], but they mainly concerned the dataset used
during this process. A recent statement [49] further proposed a
structured pipeline for validating based on a three-step techni-
cal validation and clinical validation, and pointed out the need
of regular updating of validated imaging biomarkers. This
process may provide a more practicable and more standard-
ized roadmap for translating radiomics models to clinical ap-
plicable tools [9]. Other guidelines concerning artificial intel-
ligence method also provide valuable references for RQS im-
provement [50, 51].

Some inherent limitations exist in this review. First,
radiomics studies investigating osteosarcoma is limited.
Hence, only twelve studies were included and five were me-
ta-analyzed. However, osteosarcoma is a rare disease with
incidence of several millionth; our review is sufficient to rep-
resent the status of this highly specialized field. Second, only
one study included in the meta-analysis was validated with an
internal dataset. Our results may actually represent a higher
performance of radiomics models. Third, the meta-analysis
showed high overall heterogeneity, while the subgroup anal-
ysis was not performed, since the sample size of the studies
was too small to draw any reliable conclusions. Future re-
views including more studies and greater sample size may
assess the influence of heterogeneity. Finally, the RQS has
limitations. Radiomics is still a developing field and so is
RQS. It is necessary to improve RQS items in response to
actual practical needs. Still, RQS is a timely tool for method-
ological quality assessment of radiomics research.

In conclusion, radiomics models showed promise for an-
swering clinical questions related to osteosarcoma patients.
Especially, for the response to neoadjuvant chemotherapy,
the meta-analysis implied moderate performance of radiomics
to approach this prediction. However, prospectively designed,
well-validated radiomics trials with open data are needed for
demonstrating their effectiveness and clinical validity.
Moreover, RQS with ongoing improvements may serve as a
useful tool to facilitate radiomics towards clinical translation.
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