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Abstract
Objectives To investigate the prediction of 1-year survival (1-YS) in patients with metastatic colorectal cancer with use of a systematic
comparative analysis of quantitative imaging biomarkers (QIBs) based on the geometric and radiomics analysis of whole liver tumor
burden (WLTB) in comparison to predictions based on the tumor burden score (TBS), WLTB volume alone, and a clinical model.
Methods A total of 103 patients (mean age: 61.0 ± 11.2 years) with colorectal liver metastases were analyzed in this retrospective
study. Automatic segmentations of WLTB from baseline contrast-enhanced CT images were used. Established biomarkers as
well as a standard radiomics model building were used to derive 3 prognostic models. The benefits of a geometric metastatic
spread (GMS) model, the Aerts radiomics prior model of theWLTB, and the performance of TBS andWLTB volume alone were
assessed. All models were analyzed in both statistical and predictive machine learning settings in terms of AUC.
Results TBS showed the best discriminative performance in a statistical setting to discriminate 1-YS (AUC=0.70, CI: [0.56, 0.90]). For the
machine learning–based prediction for unseen patients, both a model of the GMS ofWLTB (0.73, CI: [0.60, 0.84]) and the Aerts radiomics
prior model (0.76, CI: [0.65, 0.86]) applied on the WLTB showed a numerically higher predictive performance than TBS (0.68, CI: [0.54,
0.79]), radiomics (0.65, CI: [0.55, 0.78]), WLTB volume alone (0.53, CI: [0.40. 0.66]), or the clinical model (0.56, CI: [0.43, 0.67]).
Conclusions The imaging-based GMS model may be a first step towards a more fine-grained machine learning extension of the
TBS concept for risk stratification in mCRC patients without the vulnerability to technical variance of radiomics.
Key Points
• CT-based geometric distribution and radiomics analysis of whole liver tumor burden in metastatic colorectal cancer patients
yield prognostic information.

• Differences in survival are possibly attributable to the spatial distribution of metastatic lesions and the geometric metastatic
spread analysis of all liver metastases may serve as robust imaging biomarker invariant to technical variation.

• Imaging-based prediction models outperform clinical models for 1-year survival prediction in metastatic colorectal cancer
patients with liver metastases.
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Abbreviations
1-YS 1-Year survival
ARP Aerts radiomics prior
CPH Cox proportional hazards
CRLM Colorectal liver metastases
GMS Geometric metastatic spread
LLD Liver-limited disease
mCRC Metastatic colorectal cancer
MS Metastatic spread
MSx(y/z) Metastatic spread along CT scanner x(y/z)-axis
PTS Primary tumor sidedness
QIB Quantitative imaging biomarker
TBS Tumor burden score
WLTB Whole liver tumor burden

Introduction

Colorectal cancer is the third most common cancer worldwide
[1]. Approximately 50% of patients with colorectal cancer will
be diagnosed with metastases either at the time of diagnosis or
as part of recurrent disease, whereas the liver is the most com-
mon site for metastases [1]. Although surgical resection of
hepatic metastases is considered the only curative treatment
option, approximately 85% of these patients are ineligible for
this treatment due to large tumor burden, multifocal disease, or
inadequate liver function [2, 3]. Computed tomography (CT)
provides valuable capabilities for non-invasive assessment
and quantification of colorectal liver metastases (CRLM) to-
wards the development of predictive quantitative imaging bio-
markers (QIBs) [4–6]. In recent years, there has been an in-
creased interest to understand survival and response to therapy
in tumor patients using the whole tumor burden rather than
single lesions [7, 8]. For CRLM patients, the volume of the
whole liver tumor burden (WLTB) and the tumor burden
score (TBS) were quantified. The TBS is the Pythagorean
addition of the lesion number and the diameter of the largest
lesion. This measurement was capable to better estimate sur-
vival than the number of lesions or the diameter of the largest
lesion alone [9, 10]. Although being a natural extension of this
concept, the relevance of geometric measures of the WLTB
distribution such as distances between various lesions has not
yet been evaluated.

Furthermore, texture analysis and machine learning [4–6,
11, 12] are playing an increasingly important role in radiolo-
gy, displacing statistical analysis of QIB. A special branch of
this research represents radiomics. This is based on extracting
a large number of quantitative features from the images and
combining themwith machine learning to make the diagnosis,
therapy response, and outcome prediction more accurate [13,

14]. In patients with CRLM, radiomics analysis of target le-
sions was shown to significantly correlate with response to
chemotherapy, as well as with survival [4–6, 12].

Since the added predictive value of the geometric or
radiomics analysis of WLTB is not known, we compare the
predictive performance of established clinical and quantitative
imaging biomarkers and novel exploratory whole liver tumor
burden–based QIBs in CRLM patients by a statistical and also
a machine learning approach.

The purpose of our study is therefore to investigate the
prediction of 1-year survival in patients with metastatic colo-
rectal cancer with use of a systematic comparative analysis of
QIBs based on the geometric and radiomics analysis of
WLTB in comparison to predictions based on the TBS,
WLTB volume alone, and a clinical model.

Materials and methods

Our retrospective study was approved by and registered with
the local institutional review board of the Ludwig-
Maximilians-University Munich (approval number: 502-16).
Written informed consent was obtained from all subjects.

Study sample

A database of patients with metastatic colorectal cancer from
January 2007 to October 2017 was reviewed and 485 patients
with metastatic colorectal cancer were identified. Of the 485
enrolled oncological patients, 269 had an available baseline
CT scan. Of those, for 220 patients, sufficient clinical data
were available. A total of 133 patients of this cohort had co-
lorectal liver metastases (CRLM). Further 15 patients had to
be excluded due to limited image quality, native scans, or
motion artifacts. Additionally, 15 further patients had to be
excluded due to missing information regarding survival status
or lack of clinical follow-up information. The final study co-
hort therefore consisted of 103 patients, of which 82 survived
at least 1 year. A flowchart describing the exclusion criteria
for patients can be found in Fig. 1.

Imaging studies

Our retrospective study includes baseline CT scans which
were acquired using a variety of multidetector-row CT scan-
ners from different manufacturers (see Table 1); default set-
tings were 120 kV tube voltage. Weight-adapted contrast
agent was applied intravenously, and images were acquired
in portal venous phase and reconstructed using a standard soft
tissue kernel. Slice thickness varied between 0.75 and 5 mm.
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WLTB segmentations

All CT scans were reviewed independently in a randomized
fashion and blinded to the clinical data; only contrast-
enhanced CT scans were used for further analysis. All includ-
ed CT scans were screened for metastases by 2 board-certified
radiologists (D.N. and T.H.) with each having 6 years of

experience in oncological imaging. WLTB segmenta-
tions were performed automatically using custom soft-
ware based on MeVisLab (MeVis Medical Solutions,
Fraunhofer MEVIS) with support of a convolutional
neural network [15]. If needed, both radiologists could
revise the WLTB segmentations interactively by adding
tumors or redefining tumor contours.

Fig. 1 Flowchart of patient
exclusion resulting in the final
study cohort of 103 CRLM
patients
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Analyzed prognostic models

A general overview of a radiomics workflow can be
found in Fig. 2a. After image segmentations, imaging
features were extracted by an in-house software that
also integrates the PyRadiomics library [16]. Features
were grouped into 5 (i to v) prognostic models (Fig.
2b): (i) the imaging prior model, (ii) the clinical prior
model, (iii) the Aerts radiomics prior (ARP) model, (iv)
the geometric metastatic spread (GMS) model, and (v)
the naive model. An overview of the models is shown
in Fig. 2b. In detail, 3 of them (i–iii) are based on prior
knowledge, one (iv) is our own hypothesis to introduce
a novel quantitative imaging biomarker related to the
spatial tumor distribution of all liver metastases, and
the last model (v) uses all available features in a me-
chanic standard radiomics model building approach. The
prior models are grouped according to their source, e.g.,
imaging or clinical data.

At first, as a benchmark, we propose an imaging prior (i)
model. This model incorporates already discovered discrimi-
native quantitative imaging biomarkers (QIBs) found in onco-
logical imaging such as TBS [9, 17], primary tumor sidedness
(PTS) [18–20], tumor attenuation [21], and also the whole
liver tumor burden volume [22, 23]. PTS was defined as
right-sided or left-sided if the tumor arose from the cecum to
the hepatic flexure or from the splenic flexure to the rectum,
respectively. Those QIBs are also analyzed individually for
their prognostic value. In analogy to the imaging prior model,
a (ii) clinical prior model is proposed based on current clinical
parameters , inc luding data f rom laboratory and

histopathology analysis. This model consists of PTS [19, 20,
22], presence of liver-limited disease (LLD) [20], age, sex,
grading, syn-/metachronous metastases [20, 24], histology,
and carcinoembryonic antigen (CEA) levels as well as UICC
and TNM staging [20]. LLD denotes a specific subgroup of
metastatic colorectal cancer patients where the liver is the only
metastatic site.

Furthermore—since this model provided good predictive
performance when applied on target lesions in multiple onco-
logical imaging studies—we also evaluate the established
Aerts radiomics prior (ARP) model (iii) [13, 25–27] for the
WLTB analysis. This model consists of 4 quantitative image
features describing the tumor heterogeneity and compactness.

As described above, we hypothesize that the spatial geo-
metric distribution of the tumors within the liver may also be
of diagnostic value and propose a (iv) geometric metastatic
spread (GMS) model. This model consists of the maximum
distance of liver metastases along x, y, and z CT scanner axes,
termed metastatic spread (MSx, MSy, MSz) and the addition
of these squared distances (MS). Furthermore, the GMS mod-
el integrates a dispersion quantification by 2 features, namely
the surface-area-to-volume ratio (SA/V) and the compactness
of the spatial metastases distribution. A formal description of
the model can be found in Suppl. Mat. B.

Finally, a mechanic construction of a predictive model
based on all extractable features (PyRadiomics library + im-
aging priors + clinical priors + ARP + GMS) solely by ma-
chine learning and a minimum redundancy maximum rele-
vance (mRMR) feature selection [28] is tested and termed
(v) naive approach. The term naive indicates that no prior
knowledge or intuition was used which was formed on the

Table 1 Baseline characteristics of 103 included CRLM patients and used CT scanner types

Characteristic Value

No. of patients 103

Age (years) 61.0 ± 11.2

Female sex 48 (46.6)

Liver-limited disease (LLD) 44 (42.7)

Syn-/metachronous disease synchronous: 81 (78.6); metachronous: 22 (21.4)

Whole liver tumor burden (WLTB) volume (cm3) 332.7 ± 469.7

Primary tumor sidedness (PTS) right: 34 (41.2)
left: 68 (58.8)
ns: 1

1-year survival (1-YS) yes: 82 (79.6)
no: 21 (20.4)

CT scanner type 1: 1, 2: 4, 3: 1, 4: 9, 5: 1, 6: 2, 7: 1, 8: 1, 9: 5, 10: 1, 11: 1, 12: 2, 13: 4,
14: 1, 15: 1, 16: 2, 17: 1, 18: 1, 19: 1, 20: 1, 21: 2, 22: 39, 23: 4, 24: 2, 25: 11, 26: 1, ns: 2

Data in parentheses are percentages. ns not specified. Continuous variables are given as mean ± SD. 1: Alexion, 2: Aquilion, 3: Asteion, 4: Biograph 64,
5: BrightSpeed S, 6: Brilliance 16P, 7: Brilliance 64, 8: Definition AS, 9: DefinitionAS+, 10: Discovery 690, 11: Discovery CT750HD, 12: Emotion 16,
13: Emotion 16 (2007), 14: Emotion 16 (2010), 15: Emotion 6, 16: Emotion Duo, 17: Ingenuity CT, 18: MX 16-slice, 19: SOMATOM Definition AS,
20: SOMATOM Definition AS+, 21: SOMATOM Definition Edge, 22: SOMATOM Definition Flash, 23: SOMATOM Force, 24: Sensation 16, 25:
Sensation 64, 26: iCT 256

837Eur Radiol  (2021) 31:834–846



Fig. 2 Basic schemes of our analyses pipelines. a The general radiomics
workflow. b The analyzed prior models (i–iii), the GMS model (iv), and
the standard radiomics model building (naive, v). c The statistical (I) as
well as standard radiomics machine learning (II) model building, and also
our machine learning setup based on the GMS hypothesis and prior
models (III). d The complexity and effort involved in the respective

analyses. Roughly divided, the complexity and/or effort associated with
each analysis increases from bottom to top, due to a higher effort to
generate WLTB segmentations, the higher model complexity of a non-
linear machine learning approach in comparison to a regularized statisti-
cal model and the complexity of controlling the impact of scan parameter
variation on texture measurements within a radiomics analysis
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basis of previous study results but a standard radiomics model
building process was pursued. Figure 2d describes and ranks
the complexity and effort involved in the respective analyses
described above.

Data analysis

1-YS and survival time were measured from the date of initial
baseline CT at time of the initial diagnosis of metastatic dis-
ease to the date of death (if applicable). An overview of the
data analysis pipeline can be found in Fig. 2c displaying both
our statistical (I) as well as machine learning (II, III) model
building. As some biomarkers are rather analyzed statistically
while others such as the ARPmodel are derived frommachine
learning approaches, we had to include both analyses for a
profound comparison.

For statistical model building (Fig. 2c (I)), descriptive sta-
tistics, such as means and standard deviation (SD) for contin-
uous variables and frequencies for categorical variables, are
used to summarize the data and each feature of prior models
and GMS model introduced above. Due to multiple testing
corrections, the naive model using all available features (>
1500) is not suitable for statistical analysis. Our statistical
pipeline approach is similar to prior studies [29, 30].
Univariable statistics are reported by p value determined via
Student’s t test if applicable (Shapiro-Wilk and Levene’s test)
or Wilcoxon’s rank-sum test for continuous variables, a
Fisher’s exact test for categorical variables with 2 factors,
and a chi-square test for > 2 factors. A two-sided p value <
0.05 was considered significant. For multivariable model con-
struction, univariably significant features are selected after
false discovery rate Benjamini-Hochberg multiple testing cor-
rection. This feature selection is further reduced by a best
subset selection according to the Bayesian information crite-
rion. Multivariable models are then fitted by logistic regres-
sion for the five best subsets and reported by the statistical
AUC with 95% confidence interval (CI) and odds ratios
(OR) for features normalized to 1 SD with 95% CI.
Additionally, univariable and multivariable Cox proportional
hazard (CPH) models are used to determine concordance in-
dex (C-index, a generalization of the AUC applicable for sur-
vival regression). For the multivariable model, survival differ-
ences based on the fitted CPHmedian survival stratification in
high- and low-risk groups are visualized by Kaplan-Meier
curve and survival differences are quantified by the log-rank
test. For a deeper understanding of the features, a univariable
Spearman correlation heatmap with absolute values and den-
drogram is generated to quantify associations of clinical with
imaging variables.

For the machine learning approach (Fig. 2c (II), (III)), two
methods are used to generate derivation and validation data: a
temporal 2/3 split, i.e., patients are split according to the date
of their baseline scan, and 10 × 10-fold cross-validation (CV),

i.e., 10 different random seeds are used for a 10-fold CV. 10 ×
10 CV is used for the prediction of 1-YS. The temporal split is
introduced for the survival regression to estimate temporal
batch effects on the prediction, e.g., a temporal change of
doctor in charge, a common effect described by Leek et al
[31]. A random forest for 1-YS prediction and a CPH for
survival prediction are trained on the derivation data for each
of the introduced prognostic models. Predictive performance
is evaluated by predictive AUC (random forest), C-
index (survival regression), and significance for the
models on the validation data. Additionally, a CPH me-
dian survival stratification threshold is determined on
the derivation data and applied to the validation data.
Then, Kaplan-Meier curves are generated and the log-
rank test is used to assess the significance of the pre-
dicted risk group on the validation data. Data analysis is
done with R (version 3.3.2, www.R-project.org) and
Lifelines [32].

Results

Demographic data

Demographics of the included patients and used CT scanner
types of our study sample are shown in Table 1.

WLTB segmentations

In Fig. 3, four representative patients are shown visualizing
patients with varying values for TBS, WLTB volume, and
geometric metastatic spread.

Data analysis and survival prediction

Significant features of the univariable statistical evaluation
before multiple testing correction are shown in Fig. 4a. The
complete results of univariable analysis are shown in Table 1S
of Suppl. Mat. A.

Using univariable statistics, features with the significant
discriminative performance were TBS, MS, MSy, MSz, and
the compactness of the tumor distribution. The GMS features
MS, MSy, MSz, and compactness also showed a significant
goodness of fit and C-index between 0.62 and 0.65.

The association heatmap with dendrogram to visualize the
univariable associations of imaging and clinical variables is
shown in Fig. 5. The highest association between clinical pa-
rameters and imaging was found between CEA and WLTB
volume and the metastatic spread along the CT y-axis MSy
and the M staging.

Regarding multivariable statistics, of the 5 significant fea-
tures, only the TBS remains in the best multivariable model
according to the Bayesian information criterion (Fig. 4b, c;
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Table 2) and shows a good discriminative performance with a
discriminative AUC of 0.70 [0.56, 0.90] for 1-YS. However,
the best 3 models achieve similar performance. All 5 multi-
variable models consist of only one feature.

Results for the machine learning analysis to predict 1-YS
for unseen data are shown in Table 3 and Fig. 6a. Here, the
QIB TBS achieved also a good predictive performance for 1-
YS prediction with a predictive AUC of 0.68 [0.54, 0.79]. The
QIBs WLTB volume, attenuation of WLTB, and PTS indi-
vidually showed inferior performance with AUCs between
0.5 and 0.57. The imaging prior model (i) consisting of all
QIBs yields similar results as TBS alone with a predictive
AUC of 0.67 [0.54, 0.79], whereas the clinical prior model
(ii) achieves 0.56 [0.43, 0.67]. A combination of both prior
models achieves again a similar performance with 0.66 [0.54,
0.77] (data not shown). The GMS model (iv) and the ARP
model (iii) were numerically superior to both with a predictive
AUC of 0.73 [0.602, 0.84] and with 0.76 [0.65, 0.86], respec-
tively. The naive model, i.e., the standard radiomics model

building approach using all features, results in an AUC of
0.65 [0.55, 0.78], highlighting the importance of prior knowl-
edge or intuition.

Kaplan-Meier curves for the predictive performance on
unseen data are shown in Fig. 6b. C-index was highest for
the GMS and the ARP model with 0.70 and 0.66. Again, the
TBS showed a good performance with a C-index of 0.64.

Discussion

We investigated whether whole liver tumor burden (WLTB),
and especially geometric and radiomics analyses of WLTB,
extracted from pretreatment CT, could be used as prognostic
biomarkers of the 1-YS of patients with colorectal liver me-
tastases (CRLM). We compared established QIB and five dif-
ferent models ((i) imaging prior, (ii) clinical prior, (iii) Aerts
radiomics prior (ARP), (iv) geometric metastatic spread
(GMS), (v) naive model, i.e., standard radiomics model

Fig. 3 ExemplaryWLTB segmentations of four patients with CRLM and
their according measurements (MSx/MSy [mm]; TBS; volume [cm3]). a
A patient with intermediate metastatic spread, low TBS, and low WLTB
volume and “no 1-year survival” (1-YS). bA patient with high metastatic
spread and TBS, intermediate volume, and also “no 1-YS.” Patients in c

and d had “1-YS” with intermediate (c) or low (d) TBS and intermediate
(c) or low (d) metastatic spread while their tumor volume was larger than
that in a. Patient a appears to be especially interesting, as “no 1-YS” is
correctly indicated here by the metastatic spread while the TBS points
rather towards “1-YS”
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building), for predicting 1-YS. We therefore analyzed
contrast-enhanced CT scans of 103 patients with CRLM
scheduled for first-line therapy to assess the prognostic value
of each model. Our goal was a systematic comparative analy-
sis of quantitative imaging biomarkers applied on WLTB in
metastatic colorectal cancer patients and if potential and ro-
bust predictors of patient survival could be identified, which
may serve as early imaging biomarkers for risk stratification.
The main findings of our study are that geometric but also
radiomics WLTB-based measures are significantly associated
with the outcome of patients with mCRC. The tumor burden
score represents a reliable predictive QIB and shows higher
predictive values than all clinical models or the WLTB vol-
ume alone. However, the ARP as well as GMS model even
shows a numerically higher predictive performance than TBS
in a machine learning setting.

Generally, heterogeneity information using radiomics and
texture analysis are achieved for one target lesion of a single
anatomical site. In prior cancer studies, the prognostic utility
of radiomics was used for survival prediction and disease re-
lapse in head and neck as well as lung cancer patients [13,
33–35]. A comparable radiomics approach was also used to
predict survival and therapy response in patients with naso-
pharyngeal cancer [36] or glioblastoma [37], the latter based

on MRI data. Aerts et al [13] defined a four-feature signature,
which represents the ARP model of our study, by focusing on
the most robust features for prognostication in a lung dataset,
and validated their signature using independent lung and head
and neck cancer patient cohorts. Additionally, several previ-
ous studies have also analyzed gross whole tumor morpholo-
gy, including tumor size and number, as important QIBs for
survival prediction in mCRC patients [7–10, 38]. In terms of
CRLM, the tumor burden score, incorporating maximum tu-
mor size and number of lesions, was analyzed for survival
discrimination in mCRC patients [9] and was outlined as an
accurate tool to account for the impact of tumor morphology
on long-term survival. As shown previously, TBS-based sur-
vival analysis revealed excellent prognostic discrimination for
the TBS model and outperformed discrimination based on
maximum tumor size and/or total number of lesions as per-
formed in daily clinical routine by use of the established Fong
score [9]. Our study therefore assesses and compares the value
of a geometric metastatic spreadmodel and radiomics analysis
with the TBS as an already established predictive QIB. In our
study, TBS reproduced its strong discriminative performance
in a regularized logistic regression statistics approach, i.e.,
model fit and application on the same data, but the GMS
and the ARP model in combination with a random forest

Fig. 4 Statistical analyses to assess 1-YS and survival time. aUnivariable
significant features are shown by boxplots and p values with (without)
multiple testing correction. b AUC with CI for the best subset multivar-
iable model consisting of only TBS. c Kaplan-Meier curve of the

multivariable model for high- and low-risk groups. Results in c are given
as model C-index/score of log-rank test (*p < 0.05, **p < 0.01). TBS tu-
mor burden score,MSmetastatic spread,MSxmetastatic spread along CT
scanner x-axis)
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classifier yielded an enhanced predictive performance for un-
seen data. The performance of the ARP model appears plau-
sible since this model has often been shown to be of high and
reproducible predictive value across various cancer types [13,
16, 25, 26]. Of note, a prior study targeting the vulnerability of
radiomics approaches determined that the tumor volume alone
in the aforementioned head and neck and lung cancer datasets
[13, 33–35] has a similar prognostic accuracy as the ARP
model [39]. The authors conclude that the ARP model was a
surrogate for tumor volume and that intensity and texture
values were not pertinent for prognostication [40]. In our
study, we analyzed both the ARP model and the volume only
approach for prognostication and could clearly show a higher
predictive value of the ARP model in a CRLM dataset. To

overcome underlying dependencies of intensity and texture-
based measures, our study outlines the GMS of liver metasta-
ses as newly defined imaging biomarker with a comparable
prognostic accuracy, but invariant to technical variation and
independent of texture- or intensity-based values. The spread
of metastases as quantified by the GMS could be expected to
be diagnostically relevant as it might influence the resectabil-
ity of liver metastases based on their spatial distribution. The
GMS model shows strong performance in classification and
survival regression and its features were also significant in a
univariable statistics analysis.

Thus, our additional flexible machine learning approach
using the geometry of the spatial WLTB distribution as well
as the Aerts radiomics prior model led to a numerically

Fig. 5 Spearman correlation
heatmap with absolute values and
dendrogram to visualize
association between imaging and
clinical variables. SM syn-/
metachronous disease, PTS
primary tumor sidedness, TBS
tumor burden score, MS
metastatic spread, MSx metastatic
spread along CT scanner x-axis

Table 2 Multivariable statistical
model (logistic regression) with
odds ratio (OR) and CI, p value,
and the AUC with CI

Model BIC Multivariable model OR [CI] p AUC discrimination

N1 105.0 TBS 1.9 [1.2, 3.1] 0.004 0.70* [0.57, 0.83]

N2 105.5 MSz 2.1 [1.2, 3.6] 0.008 0.69* [0.55, 0.82]

N3 106.0 Compactness 2.1 [1.2, 3.9] 0.012 0.71* [0.58, 0.83]

N4 107.4 MS 1.8 [1.1, 3.0] 0.02 0.66* [0.53, 0.79]

N5 108.5 MSy 1.8 [1.0, 3.2] 0.04 0.67* [0.53, 0.81]

TBS tumor burden score. *Significantly (p < 0.05) better than informed guessing. All 103 patients were used for
model construction; i.e., no data is unseen (discrimination)
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Table 3 Established QIB and models in the machine learning analysis to predict 1-year survival for unseen data

Feature Variable importance [%] CV AUC CV C-index SPLIT

mCRC QIBs Train (N = 69) Test (N = 34)

TBS# – 0.68* [0.54, 0.79] 0.66 0.64

PTS# – 0.51 [0.37, 0.66] 0.58 0.59

WLTB volume# – 0.53 [0.40, 0.66] 0.62 0.50

Attenuation# – 0.57 [0.44, 0.69] 0.51 0.41

Imaging priors model

TBS 31.4 0.67*[0.54, 0.79] 0.69 0.63
PTS 7.1

WLTB volume 31.4

Attenuation 30.1

Clinical priors model

PTS 5.2 0.56 [0.43, 0.67] 0.65 0.49
Sex 3.5

Age 25.1

CEA 20.1

Grading 8.1

Histology 1.8

Syn-/metachronous disease 2.4

UICC 10.6

LLD 2.6

T 6.2

M 5.3

N 9.1

Aerts radiomics prior (ARP) model

Energy 21.1 0.76* [0.65, 0.86] 0.66 0.67
Compactness 32.8

GLRLM non-uniformity 25.7

Wavelet non-uniformity 20.3

Geometric metastatic spread (GMS) model

MSx (mm) 16.4 0.73* [0.60, 0.84] 0.66 0.70
MSy (mm) 14.4

MSz (mm) 18.0

MS (mm) 15.5

SA/V 14.3

Compactness 21.4

Naïve model

§ 0.65* [0.55, 0.78] 0.68 0.48

The prediction models are based on a random forest. Results are given, if applicable, with their feature importance for the 10-fold CV (CV) and the
temporal 2/3 split (SPLIT). AUC is shownwith 95% confidence interval. # Logistic regression is used for prediction; *Significantly (p < 0.05) better than
informed guessing; § Variable importance not meaningful, due to shared importance of correlated features and distinct important features of each fold.
QIB quantitative imaging biomarker, PTS primary tumor sidedness, TBS tumor burden score, GMS Geometric metastatic spread, ARP Aerts radiomics
prior
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superior assessment of survival time in comparison to a regu-
larized statistical analysis of TBS.

Furthermore, a clinical model incorporating important
clinical baseline parameters, especially primary tumor
sidedness [18, 19], yielded an inferior predictive perfor-
mance than all evaluated imaging-based approaches in
our study. As risk stratification of patients with mCRC
is nowadays mainly based on traditional prognostic
scores including clinical and pathological parameters of
the primary tumor and metastases, these results under-
line the potential of novel imaging-based models and
biomarkers for patient risk stratification.

Taking all factors into account such as stability to
scan parameter variation, interpretability, and predictive
performance averaged over all settings (univariable sta-
tistics, 1-year survival classification, and survival regres-
sion), the GMS appears to be the most promising and
robust model. The reliable and efficient usage of models
based on texture features for outcome prediction still
remains a very challenging problem. The ARP model is
potentially non-robust due to the susceptibility of texture
measurements to technical variation [41, 42] (Table 2S
of Suppl. Mat. A). This is particularly noteworthy as we
used 26 different CT scanner types in 103 patients with

baseline scans due to referrals from external physicians.
Although there exist approaches to calibrate texture to
technical variation [43, 44], a complete absence of the
influence of technical variation could fundamentally in-
crease confidence in AI-supported systems. The GMS
model showed good predictive and also statistical perfor-
mance and can trivially be interpreted as a machine
learning extension of TBS to integrate more fine-
grained and non-linear patterns regarding metastasis dis-
tribution. This is in principle similar to the transforma-
tion of tumor heterogeneity to the radiomics setting by a
machine learning–based assessment of the Aerts features.
Although the effort and complexity of the WLTB GMS
analysis may be higher than the assessment of the TBS,
the good predictive performance, interpretability, and
probable robustness to scan parameter variation could
justify the effort and should be tested in larger multicen-
ter to provide prospective evaluation as well as external
validation. Notably, previous studies have largely fo-
cused on texture-based measures. The geometric metasta-
tic spread analysis developed in our study could convert
the radiology image into a “spatial map” of liver metas-
tases. This could greatly facilitate and empower compre-
hensive analysis of spatial distribution, as well as its role

Fig. 6 Machine learning analyses to predict 1-YS and survival time for
unseen patients. aAUC for 10 × 10 CV (light gray) and C-index (red) for
temporal 2/3 split. b Selected Kaplan-Meier curves for unseen patients
and predictive performance in temporal 2/3 split. Results in b are given as

model: C-index/score of log-rank test (*p < 0.05, **p < 0.01). #1-YS pre-
diction based on a logistic regression model. PTS primary tumor sided-
ness, TBS tumor burden score, GMS geometric metastatic spread model,
ARP Aerts radiomics prior model
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in tumor progression and prognostication in future stud-
ies. The GMS may prove its usefulness not only in
CRLM patients but could also be applied in cross-
cancer studies of other gastrointestinal tumors and may
be transferred as robust imaging biomarker into the set-
ting of longitudinal studies including CT and MR imag-
ing to assess survival prediction and treatment response.
Thus, our study may provide better insights into factors
associated with patient survivability by a robust data an-
alytical model. Ultimately, holistic assessment of WLTB
and robust predictive parameters such as GMS might
directly translate into optimized patient management.

Limitations

Our study has a number of potential limitations. First, the
study is only of medium sample size. Second, no external
validation cohort was available. Another problem may arise
from the variety of different CT scan protocols especially for
texture quantifications of the ARP model. However, the GMS
is independent from texture- or intensity-based values and is
therefore expected to be invariant to technical variability.

Conclusion

Whole liver tumor burden–based measures are significantly
associated with the outcome of patients with mCRC. The TBS
confirms its importance for risk stratification and shows
higher predictive values than clinical models or WLTB vol-
ume alone. The ARP as well as GMS model even shows a
numerically higher predictive performance than TBS in a ma-
chine learning setting. The GMS as a machine learning exten-
sion of the TBS concept appears to be the most promising
approach, not least due to its invariance to technical variation.
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