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Abstract
Objectives The machine learning ischemia risk score (ML-IRS) is a machine learning–based algorithm designed to identify
hemodynamically significant coronary disease using quantitative coronary computed tomography angiography (CCTA). The
purpose of this study was to examine whether the ML-IRS can predict revascularization in patients referred for invasive coronary
angiography (ICA) after CCTA.
Methods This study was a post hoc analysis of a prospective dual-center registry of sequential patients undergoing CCTA
followed by ICA within 3 months, referred from inpatient, outpatient, and emergency department settings (n = 352, age 63 ±
10 years, 68% male). The primary outcome was revascularization by either percutaneous coronary revascularization or coronary
artery bypass grafting. Blinded readers performed semi-automated quantitative coronary plaque analysis. The ML-IRS was
automatically computed. Relationships between clinical risk factors, coronary plaque features, and ML-IRS with revasculariza-
tion were examined.
Results The study cohort consisted of 352 subjects with 1056 analyzable vessels. The ML-IRS ranged between 0 and 81% with a
median of 18.7% (6.4–34.8). Revascularization was performed in 26% of vessels. Vessels receiving revascularization had higher ML-
IRS (33.6% (21.1–55.0) versus 13.0% (4.5–29.1), p < 0.0001), as well as higher contrast density difference, and total, non-calcified,
calcified, and low-density plaque burden.ML-IRS, when added to a traditional risk model based on clinical data and stenosis to predict
revascularization, resulted in increased area under the curve from 0.69 (95% CI: 0.65–0.72) to 0.78 (95%CI: 0.75–0.81) (p < 0.0001),
with an overall continuous net reclassification improvement of 0.636 (95% CI: 0.503–0.769; p < 0.0001).
Conclusions ML-IRS from quantitative coronary CT angiography improved the prediction of future revascularization and can
potentially identify patients likely to receive revascularization if referred to cardiac catheterization.
Key Points
•Machine learning ischemia risk from quantitative coronary CT angiography was significantly higher in patients who received
revascularization versus those who did not receive revascularization.

• The machine learning ischemia risk score was significantly higher in patients with invasive fractional flow ≤ 0.8 versus those
with > 0.8.

• The machine learning ischemia risk score improved the prediction of future revascularization significantly when added to a
standard prediction model including stenosis.
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catheterization
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Abbreviations
BMI Body mass index
CAD Coronary artery disease
CCS Coronary calcium score
CCTA Coronary CT angiography
CDD Contrast density difference
FFR Fractional flow reserve
ICA Invasive coronary angiography
ML-IRS Machine learning ischemia risk score
NRI Continuous net reclassification improvement

Introduction

The diagnostic yield of invasive coronary angiography (ICA)
has been a well-documented concern in cardiology. A major
study in 2010 revealed that only 37% of patients receiving
ICA were found to have stenosis of ≥ 50% [1]. Coronary CT
angiography (CCTA) has emerged as a powerful tool for as-
sessment of patients with suspected coronary artery disease
(CAD) [2]. It has grown into an increasing role as a gatekeeper
for referral to ICA [3] but further optimization is needed. The
PROMISE trial showed that CCTA resulted in a higher rate of
ICA than functional testing in symptomatic patients with
suspected CAD. Furthermore, a coronary intervention was
performed only half of the time despite stenosis of ≥ 50% on
ICA being present in the majority of cases [4]. In order to
improve CCTA’s role as a gatekeeper, a method to safely
and effectively decrease the proportion of patients referred
for ICA who do not receive intervention is essential.

An algorithm called the machine learning ischemia risk
score (ML-IRS) has been previously developed [5]. It used
automated feature selection followed by machine learning in-
tegration to predict lesion-specific ischemia defined by inva-
sive fractional flow reserve (FFR) ≤ 0.8. Themachine learning
model incorporates quantitative CCTA factors and demo-
graphic information to generate a percent probability of path-
ological FFR on a per-vessel basis. It has been shown to im-
prove prediction of lesion-specific ischemia over traditional
measurements [5]; the ML-IRS is integrated into coronary
plaque analysis research software for application to CCTA
data following quantitative analysis of stenosis and plaque.

Patients receiving CCTAwho are subsequently referred for
cardiac catheterization, but do not receive revascularization,
are a high-cost population with low yield from the invasive
procedure; and it would therefore be beneficial to effectively
identify these patients. The purpose of this study was to ex-
amine whether the ML-IRS from quantitative CT can predict
revascularization in patients referred to ICA after CCTA, in a
prospective dual-center registry.

Materials and methods

Study population

The study cohort included 352 consecutive patients (age 63 ±
10 years, 68% male) between 2013 and 2017 at two advanced
cardiac care facilities within the USA (Cedars-Sinai Medical
Center, Los Angeles, CA; Oklahoma Heart Institute, Tulsa,
OK). The cohort selected patients who were referred for stan-
dard clinical CCTA followed by ICA due to decision by a
primary treating physician within 3 months. Patients with in-
complete clinical data, poor image quality, coronary calcium
score (CCS) > 1000 Agatston units (AU), or prior revascular-
ization by coronary artery bypass grafting or percutaneous
coronary intervention were excluded. IRB approval was ob-
tained at both institutions. Written informed consent was ob-
tained for all patients. There was no overlap in subjects from
any prior publications.

Clinical data including age, sex, body mass index, history
of hypertension, hyperlipidemia, current tobacco use, family
history of CAD, symptoms of chest pain or shortness of
breath, and referral location (inpatient, emergency depart-
ment, or outpatient) were obtained by database or chart re-
view. Procedural reports from cardiac catheterization were
extracted for all patients. The report was analyzed for
operator-determined estimate of vessel stenosis, any interven-
tion performed, fractional flow reserve measurement, and in-
travascular ultrasound measurement. Patients who received
percutaneous coronary intervention or were referred for coro-
nary artery bypass grafting as stated in the procedure report
were counted as having received revascularization.

CT acquisition

CT scans were performed on multiple dual-source CT scanner
platforms (Siemens Definition, Flash, and Force scanners,
Siemens Healthineers), using standard clinical coronary imag-
ing protocols as previously described [6]. In patients without
contraindications, sublingual nitroglycerin was administered.
Beta blockade with metoprolol was given prior to imaging
with primary heart rate goal of ≤ 65 bpm. Iohexol
(Omnipaque 350 mg/mL, GE Healthcare) was administered
via large-bore intravenous catheter. Contrast volume (90 to
140 mL) and injection rate (5 to 9 mL/s) were adapted to body
surface area and followed by saline flush. Timing bolus or
automated bolus tracking at the descending aorta was used
to trigger acquisition. Whole-volume image acquisition was
completed in a single breath-hold.

CT analysis

Standard clinical measurement of CCS by Agatston score was
performed and recorded at the time of CCTA. Quantitative

1228 Eur Radiol (2021) 31:1227–1235



image analysis was performed by two readers (A.K., over 3
years’ experience, and P.A.M., over 1.5 years’ experience
with cardiac CT) who were blinded to clinical characteristics,
ICA data, and previous clinical CCTA read. Plaque analysis
was performed in all vessels with distal normal reference
≥ 2.0 mm using semi-automated software (Autoplaque ver-
sion 2.5, Cedars-Sinai Medical Center). Readers identified
regions with visible disease. Vessel lumen and wall contours
were generated, followed by manual adjustment as needed.
Plaque characterization was performed automatically using
adaptive scan-specific attenuation thresholds. Low-density
non-calcified plaque was defined as HU < 30, as described
previously. Coronary segments with uncertainty in plaque
presence were reviewed and adjudicated by two readers.
Approximate time for analysis per case was 20 min.

Vessel parameters including maximal diameter stenosis,
plaque volumes, plaque burdens, and contrast density differ-
ence (CDD) were calculated automatically after completion of
quantitative semi-automated plaque analysis. Quantitative ste-
nosis was calculated by dividing the narrowest luminal diam-
eter by the mean of two normal non-diseased reference points.
Significant stenosis was defined by quantitative diameter ste-
nosis ≥ 70%. Plaque burden was defined as plaque volume
normalized by total diseased vessel volume. CDD over a le-
sion was computed as follows: the luminal contrast density,
defined as mean luminal attenuation per unit area, was com-
puted automatically over 1-mm cross-sections of the arterial
segment. The CDD was defined as the maximum percentage
difference in contrast densities, relative to the proximal refer-
ence cross-section with no disease.

Machine learning ischemia risk score

Following plaque analysis, the ML-IRS is automatically gen-
erated as the probability (%) of lesion-specific ischemia (in-
vasive FFR ≤ 0.8) for the left anterior descending, left circum-
flex, and right coronary arteries. The ML-IRS was previously
developed in an independent population, using a supervised
learning process by feature selection with information gain
ranking and ensemble classification boosting with tenfold
cross-validation to predict invasive lesion-specific ischemia.
It includes factors based on quantitative CT variables (CDD,
maximum quantitative stenosis, minimum luminal diameter,
low-density non-calcified plaque volume, total non-calcified
plaque volume, plaque length, total plaque volume, vessel
volume, minimal luminal area, low-density non-calcified
plaque composition, maximum area stenosis, low-density
non-calcified plaque burden, myocardial mass, non-calcified
plaque burden, total plaque burden, non-calcified plaque com-
position, and maximum remodeling index) plus age and gen-
der of the patient obtained from the image DICOM header [5].

The primary endpoint in our study was revascularization
during or as a direct referral after ICA. Secondary analysis was

prediction of lesion-specific ischemia (FFR ≤ 0.80) and pre-
diction of revascularization within the sub-cohort of patients
who received invasive FFR during ICA.

Statistical analysis

Continuous variables were expressed as a mean and standard
deviation when normally distributed and median and interquar-
tile range when not. Univariable and multivariable analyses were
performed on both a per-patient and per-vessel basis. Per-vessel
analyses included vessel-specific quantitative plaque features,
ML-IRS, and whether revascularization was performed in the
vessel. Per-patient analyses included total quantitative plaque
features, highest ML-IRS, and whether revascularization was
performed in any vessel in the patient. Univariable analysis used
two-sample Wilcoxon rank-sum tests for non-parametric values,
chi-squared test for categorical variables, and Student’s t test for
normally distributed numerical variables. Simple logistic regres-
sion was used for FFR subgroup analysis. Multivariable logistic
regression was used to assess associations between clinical risk
factors (age, sex, presence of symptoms, history of hypertension,
hyperlipidemia, or diabetes, and family history of CAD), signif-
icant stenosis, patient referral location (emergency department or
inpatient versus outpatient), and ML-IRS with revascularization.
Optimized cutoff for ML-IRS was calculated on a per-vessel
basis using the two-graph ROC analysis as the intersection of
the sensitivity and specificity graphs [7]. Elements with missing
data were excluded from logistic regression analysis.

Three multivariable models were created to assess the abil-
ity of the ML-IRS to improve prediction compared with other
methods. Model 1 represented clinical risk assessment and
included age, sex, referral location, symptoms, hypertension,
hyperlipidemia, diabetes, current tobacco use, and family his-
tory. Model 2 represented a clinical risk assessment combined
with traditional use of CCTA and combined the covariates in
Model 1 plus the presence of significant stenosis by CCTA. In
Model 3, we added ML-IRS to the covariates in Model 2 to
assess whether ML-IRS could improve on traditional predic-
tion models. ROC curves were generated for the models and
AUC’s were compared. Incremental predictive value between
Models 2 and 3 was also measured using continuous net re-
classification improvement (NRI), as pre-existing established
risk categories were not known for the ML-IRS [8, 9]. All
statistical analyses were performed with Stata version 15.1.
The NRI computation was performed using a SAS v9.4 mod-
ule. All p values < 0.05 were considered significant.

Results

A total of 352 patients who received CCTA followed by ICA
were identified and analyzed, with 1056 total vessels included
in the analysis (Table 1). The mean age was 63.2 ± 10.4 years
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and 67.6% of the patients were male. Most patients (85.1%)
presented with symptoms. The median body mass index
(BMI) was 27.5 kg/m2 (24.7–31.8) and the median coronary
calcium score by Agatston was 264.7 (82.0–533.1). The FFR
sub-population consisted of 74 patients with 83 analyzable
vessels and had similar patient demographics compared with
the overall population (Table 1). Figures 1 and 2 show case
examples from our patient population.

Per-patient univariable analysis

Revascularization was performed in 59% of the total subjects
(Table 1). There was a higher proportion of male gender,
symptoms, and family history of CAD in patients receiving
revascularization in the total population. In the sub-population
with FFR performed, there was a higher proportion of men,
higher CCS, and a lower proportion of patients with diabetes.
None of these differences met statistical significance and may
be partially or wholly due to uncontrolled biases. There was

no relation between site (Cedars-Sinai versus OklahomaHeart
Institute) and revascularization.

Per-vessel univariable analysis

In the per-vessel analysis, the ML-IRS ranged between 0 and
81% with a median of 18.7% (6.4–34.8) (Table 2).
Revascularization was performed in 26% of the vessels.
Univariable analysis found that vessels receiving revasculariza-
tion had higherML-IRS (33.6% (21.1–55.0) versus 13.0% (4.5–
28.1), p< 0.0001). Revascularized vessels also had higher CDD,
total plaque burden, non-calcified plaque burden, low-density
plaque burden, and calcified plaque burden. Interquartile ranges
of plaque components are noted to overlap between revascular-
ization and non-revascularization groups despite statistical sig-
nificance. This suggests that, while there are differences between
groups, individual plaque features alone are insufficient to pre-
dict revascularization.

In the FFR sub-cohort (83 vessels, 74 patients), the average
FFR was 0.80 ± 0.10, with an average of 0.74 ± 0.08 in vessels

Table 1 Demographic information for total cohort and for sub-cohort of patients with fractional flow reserve

Total Population Revascularization No Revascularization p value

Total Patients 352 208 (59%) 144 (41%)

Age (years) 63.2 ± 10.4 62.6 ± 10.5 64.1 ± 10.3 0.19

Sex (male) 238 (67.6%) 148 (71.2%) 90 (62.5%) 0.09

Symptomatic 298 (85.1%) 171 (48.9%) 127 (36.3%) 0.11

Hypertension 227 (64.5%) 131 (63.0%) 96 (66.7%) 0.48

Hyperlipidemia 198 (56.2%) 116 (55.8%) 82 (56.9%) 0.83

Diabetes 93 (26.4%) 57 (27.4%) 36 (25.0%) 0.62

Tobacco 56 (15.9%) 36 (17.3%) 20 (13.9%) 0.39

Family CAD 180 (51.1%) 113 (54.3%) 67 (46.5%) 0.15

Inpatient/ED 260 (74.9%) 158 (77.5%) 102 (71.3%) 0.2

BMI (kg/m2) 27.6 (24.7–31.8) 27.3 (24.7–31.8) 28.0 (24.5–31.8) 0.47

CCS 262 (82.0–533) 299 (91.8–550) 216 (68.6–530) 0.14

Site (from site 1) 226 (64.2%) 138 (66.3%) 88 (61.1%) 0.37

Patients with FFR 74 (21.1%) 47 (63.5%) 27 (36.5%)

Age (years) 63.5 ± 9.7 62.9 ± 10.2 63.3 ± 9.0 0.89

Sex (male) 49 (66.2%) 33 (70.2%) 16 (59.3%) 0.48

Symptomatic 62 (84.9%) 39 (84.8%) 23 (85.2%) 0.96

Hypertension 48 (64.9%) 31 (66.0%) 17 (63.0%) 0.8

Hyperlipidemia 43 (58.1%) 27 (57.4%) 16 (59.3%) 0.88

Diabetes 17 (23.0%) 9 (19.1%) 8 (29.6%) 0.3

Tobacco 11 (14.9%) 8 (17.0%) 3 (11.1%) 0.49

Family CAD 40 (54.1%) 26 (55.3%) 14 (51.9%) 0.77

Inpatient/ED 64 (86.5%) 40 (85.1%) 24 (88.9%) 0.65

BMI (kg/m2) 27.6 (24.2–30.9) 27.2 (24.5–30.8) 28.2 (23.6–30.8) 0.99

CCS 263.1 (88.7–530.9) 315.7 (120.2–524.0) 154.0 (73.6–580.5) 0.25

Site (from site 1) 56 (76%) 37 (78%) 19 (70%) 0.6

Results expressed as mean ± standard deviation, frequency (percent), or median (interquartile range). BMI Body mass index, CAD Coronary artery
disease, CCS Coronary calcium score, ED Emergency Department referral location, FFR Fractional flow reserve
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receiving revascularization versus 0.85 ± 0.07 in vessels not
revascularized (p < 0.0001) (Table 2). Only ML-IRS and CDD

were significantly different between patients who received revas-
cularization versus those who did not in this sub-population.

a b c

Fig. 2 Case example: Machine
learning ischemia risk score (ML-
IRS) and coronary plaque
analysis in a 57-year-old male
symptomatic patient undergoing
coronary CT angiography in left
anterior descending (LAD) artery.
a Sample output of quantitative
analysis and ML-IRS. Left
circumflex artery had no coronary
plaque and therefore, risk was not
estimated. b Multiplanar oblique
views of LAD coronary
atherosclerosis (red: non-calcified
plaque, yellow: calcified plaque).
c Curved multiplanar reformat of
LAD atherosclerosis. ML-IRS in
the LAD was 11%; invasive
fractional flow reserve measured
in the LAD was 0.83 (not
ischemic)

a b c

Fig. 1 Case example: Machine
learning ischemia risk score (ML-
IRS) and coronary plaque
analysis in a 67-year-old male
symptomatic patient undergoing
coronary CT angiography in left
anterior descending (LAD) artery.
a Sample output of quantitative
analysis and ML-IRS. b
Multiplanar oblique views of
LAD coronary atherosclerosis
(red: non-calcified plaque,
yellow: calcified plaque). Panel c
Curved multiplanar reformat of
LAD atherosclerosis. ML-IRS in
the LAD was 60%; invasive
fractional flow reserve measured
in the LAD was 0.73 (ischemic)
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Overlap of interquartile range is again seen; this overlap may be
reduced by sampling higher numbers. ML-IRS in patients with
FFR ≤ 0.8 was 38.5% (25.6–50.6) versus 21.3% (12.9–31.8) for
FFR > 0.8 (p = 0.0007 for difference). Univariable logistic re-
gression for ML-IRS’s association with invasive FFR ≤ 0.8 was
significant. Odds of FFR ≤ 0.8 was increased by 55% for every
10% increase in ML-IRS (p = 0.003). Similarly within the FFR
population, odds of revascularization increased by 39% for every
10% increase in ML-IRS (p = 0.016).

Multivariable analysis

Per-vessel and per-patient logistic multivariable analyses
were performed for prediction of revascularization
(Table 3). Variables included were age, sex, symptoms
(as defined by chest pain or shortness of breath), clinical
risk factors (hypertension, hyperlipidemia, diabetes, cur-
rent tobacco use, and family history), significant stenosis
> 70% (present in any vessel for per-patient analysis), re-
ferral location (inpatient or emergency department versus
outpatient), and ML-IRS (maximum score for per-patient
analysis). In the per-vessel analysis, a 10% increase in ML-
IRS resulted in a 46% increase in odds of revascularization
(p < 0.0001). In the per-patient analysis, odds of revascu-
larization increased by 20% per 10% increase in ML-IRS
(p = 0.011). If significant stenosis was present, odds in-
creased by 98% (p = 0.007) in the per-vessel and 94%
(p = 0.038) in the per-patient analysis. Presence of family
history of CAD increased odds of revascularization by
49% (p = 0.019) in per-vessel and 74% (p = 0.025) in

per-patient analysis. Symptoms were significant in the
per-vessel analysis but not in the per-patient analysis.
Unexpectedly, the presence of symptoms appeared protec-
tive (OR 0.64 with symptoms, p = 0.039). Referral location
was associated with an increased odds of revascularization
by 76% for patients from inpatient or emergency depart-
ment in the per-patient analysis (p = 0.042). Per-vessel
ML-IRS had an optimized cutoff within the population at
a value of 23.9%, which yielded an odds ratio for revascu-
larization of 5.5 (4.0–7.4), a sensitivity of 73.2% and spec-
ificity of 68.0%, positive predictive value of 44.2%, and
negative predictive value of 88.0%.

Multivariable logistic regression models to predict re-
vascularization were compared. Model 1 (age, sex, referral
location, symptoms, hypertension, hyperlipidemia, diabe-
tes, current tobacco use, and family history) assessed clin-
ical risk. The AUC for prediction of revascularization for
Model 1 was 0.58 (0.54–0.62). Model 2 (Model 1 plus
presence of significant stenosis) represented addition of
traditional use of CCTA. The AUC for Model 2 was 0.69
(0.65–0.72). Model 3 (Model 2 plus ML-IRS) assessed the
additional importance of the ML-IRS. The AUC for Model
3 was 0.78 (0.75–0.81). There was a significant improve-
ment between each model (p < 0.0001) (Fig. 3). The con-
tinuous NRI for addition of ML-IRS to standard CCTA
analysis (Model 3 over Model 2) was 0.636 (0.503–0.769
95% CI, p < 0.0001). This consisted of a 28% improve-
ment in classification of patients receiving revasculariza-
tion and a 36% improvement in those not receiving
revascularization.

Table 2 Per-vessel plaque features in relation to revascularization in all vessels, and in the subgroup with measured FFR

Total Population Revascularization No Revascularization p value

Total Vessels 1056 271 (26%) 785 (74%)

Significant Diameter Stenosis >70% 135 (12.8%) 84 (31%) 51 (6.5%) < 0.0001

Machine-Learning Ischemia Risk Score 18.7% (6.4–34.8) 33.6% (21.1–55.0) 13.0% (4.5–28.1) < 0.0001

Total Plaque Burden 47.8% (36.1–56.4) 54.5% (47.2–60.7) 44.9% (38.0–54.3) < 0.0001

Non-Calcified Plaque Burden 44.4% (33.1–52.3) 49.6% (42.7–57.6) 42.0% (24.8–50.7) < 0.0001

Low-Density Non-Calcified Plaque Burden 5.6% (2.1–8.8) 7.9% (5.3–10.7) 4.3% (0.8–7.9) < 0.0001

Calcified Plaque Burden 1.5% (0–4.1) 2.8% (0.7–5.3) 1.1% (0–3.4) < 0.0001

Contrast Density Difference 18.5 (5.2–29.8) 27.1 (18.9–37.0) 14.1 (0–25.6) < 0.0001

Vessels with FFR 83 (7.9%) 41 (49.4%) 42 (50.6%)

Significant Diameter Stenosis >70% 15 (18%) 9 (10.8%) 6 (7.2%) 0.364

Average FFR 0.80 ± 0.10 0.74 ± 0.08 0.85 ± 0.07 < 0.0001

Machine-Learning Ischemia Risk Score 31.4% (18.7–48) 36.0% (25.5–50.7) 21.5% (14.9–43.2) 0.006

Total Plaque Burden 52.4% (47.0–58.2) 54.1% (47.6–59.2) 50.3% (46.2–58.2) 0.420

Non-Calcified Plaque Burden 48.2% (41.6–55.2) 49.2% (41.0–55.4) 47.2% (43.7–54.8) 0.800

Low-Density Non-Calcified Plaque Burden 7.2% (4.3–9.8) 7.9% (5.8–10.4) 6.4% (3.6–8.5) 0.070

Calcified Plaque Burden 2.4% (0.9–6.1) 2.9% (1.8–6.2) 2.1% (0.6–5.7) 0.140

Contrast Density Difference 24.0 (16.5–33.7) 26.2 (21.1–37.7) 21.6 (10.6–32.4) 0.016

Results expressed as mean ± standard deviation, frequency (percent), or median (interquartile range) FFR Fractional flow reserve
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Discussion

In this study, ML-IRS was significantly associated with revas-
cularization in both univariable and multivariable analyses.
Prediction of revascularization significantly improved when
the ML-IRS was added to a model with clinical information
and CCTA analysis including stenosis. This suggests that this
on-site machine learning–based tool may be able to improve
current practice patterns and predict which patients would ben-
efit the most from referral to ICA. The continuous NRImeasure
also showed significant improvement with the integration of the
ML-IRS with traditional methods of risk assessment; notably,
there was a 36% improvement in predicting patients not receiv-
ing revascularization, indicating that addition of ML-IRS may
help patients avoid unnecessary cardiac catheterization.

In our population, only patients who were referred for ICA
after CCTA were included. This is a high-risk population, as
shown by the high rate of revascularization. Expansion to a lower
risk population of patients receiving CCTA may improve ability
to avoid unnecessary referral. The analysis also showed low pre-
dictive ability for revascularization using traditional risk factors
and symptoms. Presence of symptoms showed inverse

association with revascularization, potentially due to the overall
high prevalence of symptoms or patients without acute symptoms
being specifically referred for revascularization as outpatients.
The analysis of the FFR sub-population helps explain the method
by which predictive ability may be applied to the general popu-
lation. The ML-IRS was internally validated in the NXT trial
population to predict invasive FFR [5], which was also consistent
in a subset of our dual-center population. While invasive FFR
may be the gold standard for assessing physiological significance
of a coronary stenosis, in our study design, we recognize that the
cost, need for medication administration, and logistics of
performing FFR in all patients lead to a minority of patients
receiving invasive assessment. Our study was structured to assess
the patient-centered endpoint of revascularization: the clinical
question facing patients with stenoses as well as their healthcare
providers at the point of care. ML-IRS was more strongly asso-
ciated with FFR than revascularization, which suggests that, if
invasive FFR had been used more broadly, revascularization rate
may have been even more consistent with our predictions.

There have been multiple other approaches to artificial
intelligence–based prediction of invasive FFR [10–14], includ-
ing commercially available noninvasive FFR (FFRct). FFRct

Table 3 Per-vessel and Per-patient multivariable analyses for predicting revascularization including clinical risk factors, significant stenosis, and
Machine Learning Ischemia Risk Score (per 10% change)

Odds Ratio 95% CI B p value

Per Vessel

Age (year) 0.998 (0.982–1.014) −0.002 0.779

Male Sex 0.777 (0.543–1.113) −0.252 0.169

Symptomatic 0.64 (0.418–0.979) −0.447 0.039

Hypertension 0.769 (0.551–1.073) −0.263 0.122

Hyperlipidemia 1.063 (0.771–1.466) 0.061 0.708

Diabetes 1.074 (0.755–1.529) 0.072 0.691

Tobacco 1.058 (0.694–1.612) 0.056 0.794

Family CAD 1.486 (1.069–2.065) 0.396 0.019

Referral Location 1.212 (0.842–1.745) 0.192 0.301

Significant Stenosis 1.981 (1.201–3.263) 0.683 0.007

ML-IRS (per-10%) 1.464 (1.338–1.602) 0.381 <0.001

Per Patient

Age (year) 1.003 (0.980–1.027) 0.003 0.815

Male Sex 1.042 (0.618–1.760) 0.042 0.876

Symptomatic 0.523 (0.262–1.043) −0.648 0.065

Hypertension 0.666 (0.405–1.095) −0.407 0.109

Hyperlipidemia 1.041 (0.648–1.674) 0.041 0.866

Diabetes 1.131 (0.664–1.927) 0.123 0.651

Tobacco 1.583 (0.830–3.016) 0.459 0.162

Family CAD 1.744 (1.072–2.835) 0.556 0.025

Referral Location 1.761 (1.019–3.043) 0.566 0.042

Significant Stenosis 1.939 (1.035–3.630) 0.662 0.038

Maximum ML-IRS (per-10%) 1.211 (1.192–1.230) 0.191 0.011

CAD Coronary artery disease, ML-IRS Machine learning ischemia risk score, CI Confidence Interval
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uses computational fluid dynamics in a 3-D model of the cor-
onary tree in order to provide an accurate prediction of invasive
FFR from CCTA [10, 15]. While this approach has been suc-
cessful, it incurs significant cost and the need to send studies to
an external location for analysis. Beyond luminal measure-
ments alone, CTA also allows measurement of other features
such as quantitative coronary plaque characteristics [16, 17] and
CDD [5], which are all included in the ML-IRS. Machine
learning–based approaches have utilized quantitative CCTA
to predict various outcomes including myocardial perfusion
by PET [18] or CT [19] or invasive FFR [14, 20]. While these
approaches have typically shown strong testing characteristics
with relatively low processing times, to our knowledge, our
study is the first to use a machine learning–based approach to
predict revascularization. With Youden’s index cutoff of
23.9%, the ML-IRS exhibited strong negative predictive value
of 88.0%, despite the studied population being clinically chal-
lenging enough that all patients included received ICA after
CCTA. This further suggests that use of the ML-IRS may help
patients avoid unnecessary cardiac catheterization.

There are limitations in our study. Our population of pa-
tients receiving ICA after CCTA results in selection bias, and
results may be different in all patients receiving CCTA.
Additionally, only a portion of patients (21%) received inva-
sive FFR. This limits the interpretability within the FFR sub-
population. We note that our FFR utilization is consistent with
real-world utilization of FFR in intermediate lesions [21]. FFR

utilization in all patients may help support the efficacy of the
algorithm; however, this may not reflect “real-world” practice
of revascularization as shown in our study [5]. The primary
endpoint of revascularization does not capture long-term pa-
tient hard outcomes, which were not available to us at both
sites. We did not directly compare our results to FFRct, since
it was not available for all patients and could not be added for
research purposes only. We recognize that this represents a
separate, validated approach. While hypothesis-generating,
our findings cannot make definitive statements regarding the
ability of the ML-IRS to improve economic or clinical out-
comes without prospective clinical studies.

In conclusion, ML-IRS from quantitative coronary CT angi-
ography improved the prediction of future revascularization and
can potentially identify patients likely to receive revascularization
if referred to cardiac catheterization. This ML score is correlated
with invasive FFR measurements providing dual-center external
validation and improves on clinical risk prediction models.

Acknowledgments Alan Kwan acknowledges funding support provided
by the National Institutes of Health (Grant T32HL116273).

Damini Dey acknowledges funding support provided by the National
Institutes of Health (Grants 1R01HL148787-01A1 and 1R01HL133616).

Funding information The authors state that this work has received
funding from 1R01HL148787-01A1.

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Damini Dey.

Conflict of interest Sebastien Cadet, Piotr J. Slomka, Daniel S. Berman,
and Damini Dey may receive software royalties from Cedars-Sinai
Medical Center. Piotr J. Slomka, Daniel S. Berman, and Damini Dey hold
a patent related to the plaque characterization.

Alan C. Kwan, Priscilla A. McElhinney, Balaji K. Tamarappoo,
Cecilia Hurtado, Robert J.H. Miller, Donghee Han, Yuka Otaki, Evann
Eisenberg, Joseph E. Ebinger, and Victor Y. Cheng declare no relation-
ships with any companies, whose products or services may be related to
the subject matter of the article.

Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was obtained from all sub-
jects (patients) in this study.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• Post hoc analysis of a multicenter registry

References

1. Patel MR, Peterson ED, Dai D et al (2010) Low diagnostic yield of
elective coronary angiography. N Engl J Med 362:886–895

Fig. 3 Per-vessel prediction of revascularization with ROCs from
multivariable models. p < 0.0001 for difference between models. Model
1 (yellow): age, sex, symptoms, hypertension, hyperlipidemia, current
smoking, diabetes, family history, and referral location; Model 2
(green): Model 1 + significant stenosis; and Model 3 (blue): Model 2 +
ML-IRS

1234 Eur Radiol (2021) 31:1227–1235



2. SCOT-HEART Investigators, Newby DE, Adamson PD et al
(2018) Coronary CT angiography and 5-year risk of myocardial
infarction. N Engl J Med 379:924–933

3. Shaw LJ, Hausleiter J, Achenbach S et al (2012) Coronary comput-
ed tomographic angiography as a gatekeeper to invasive diagnostic
and surgical procedures: results from the multicenter CONFIRM
(Coronary CT Angiography Evaluation for Clinical Outcomes: an
International Multicenter) registry. J Am Coll Cardiol 60:2103–
2114

4. Douglas PS, Hoffmann U, Patel MR et al (2015) Outcomes of
anatomical versus functional testing for coronary artery disease. N
Engl J Med 372:1291–1300

5. Dey D, Gaur S, Ovrehus KA et al (2018) Integrated prediction of
lesion-specific ischaemia from quantitative coronary CT angiogra-
phy using machine learning: a multicentre study. Eur Radiol 28:
2655–2664

6. Cheng VY, Berman DS, Rozanski A et al (2011) Performance of
the traditional age, sex, and angina typicality–based approach for
estimating pretest probability of angiographically significant coro-
nary artery disease in patients undergoing coronary computed to-
mographic angiography: results from the Multinational Coronary
CT Angiography Evaluation for Clinical Outcomes: An
International Multicenter Registry (CONFIRM). Circulation 124:
2423–2432

7. Greiner M, Sohr D, Göbel P (1995) A modified ROC analysis for
the selection of cut-off values and the definition of intermediate
results of serodiagnostic tests. J Immunol Methods 185:123–132

8. Pencina MJ, D’Agostino RB Sr, Steyerberg EW (2011) Extensions
of net reclassification improvement calculations to measure useful-
ness of new biomarkers. Stat Med 30:11–21

9. Pencina MJ, D’agostino RB, Pencina KM, Janssens ACJ,
Greenland P (2012) Interpreting incremental value of markers
added to risk prediction models. Am J Epidemiol 176:473–481

10. Koo B-K, Erglis A, Doh J-H et al (2011) Diagnosis of ischemia-
causing coronary stenoses by noninvasive fractional flow reserve
computed from coronary computed tomographic angiograms: re-
sults from the prospective multicenter DISCOVER-FLOW
(Diagnosis of Ischemia-Causing Stenoses Obtained Via
Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol
58:1989–1997

11. Douglas PS, Pontone G, Hlatky MA et al (2015) Clinical outcomes
of fractional flow reserve by computed tomographic angiography-
guided diagnostic strategies vs. usual care in patients with suspected
coronary artery disease: the prospective longitudinal trial of

FFRCT: outcome and resource impacts study. Eur Heart J 36:
3359–3367

12. Fearon WF, Achenbach S, Engstrom T et al (2019) Accuracy of
fractional flow reserve derived from coronary angiography.
Circulation 139:477–484

13. Zreik M, Lessmann N, van Hamersvelt RW et al (2018) Deep
learning analysis of the myocardium in coronary CT angiography
for identification of patients with functionally significant coronary
artery stenosis. Med Image Anal 44:72–85

14. Tesche C, De Cecco CN, Baumann S et al (2018) Coronary CT
angiography–derived fractional flow reserve: machine learning al-
gorithm versus computational fluid dynamics modeling. Radiology
288:64–72

15. Pontone G, Rabbat MG (2017) The new era of computational fluid
dynamics in CT angiography: far beyond the FFR number. J Am
Coll Cardiol Img 10:674–676

16. Hell MM, Motwani M, Otaki Y et al (2017) Quantitative global
plaque characteristics from coronary CT Angiography for the pre-
diction of future cardiac death during 5 years of follow-up. Eur
Heart J Cardiovasc Imaging 18:1331–1339

17. Gaur S, Øvrehus KA, Dey D et al (2016) Coronary plaque quanti-
fication and fractional flow reserve by coronary computed tomog-
raphy angiography identify ischaemia-causing lesions. Eur Heart J
37:1220–1227

18. Dey D, Diaz Zamudio M, Schuhbaeck A et al (2015) Relationship
between quantitative adverse plaque features from coronary com-
puted tomography angiography and downstream impaired myocar-
dial flow reserve by 13 N-ammonia positron emission tomography:
a pilot study. Circ Cardiovasc Imaging 8:e003255

19. Xiong G, Kola D, Heo R, Elmore K, Cho I, Min JK (2015)
Myocardial perfusion analysis in cardiac computed tomography
angiographic images at rest. Med Image Anal 24:77–89

20. Coenen A, Kim Y-H, KrukM et al (2018) Diagnostic accuracy of a
machine-learning approach to coronary computed tomographic
angiography–based fractional flow reserve: result from the
MACHINE consortium. Circ Cardiovasc Imaging 11:e007217

21. Parikh RV, Liu G, Plomondon ME et al (2020) Utilization and
outcomes of measuring fractional flow reserve in patients with sta-
ble ischemic heart disease. J Am Coll Cardiol 75:409–419

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1235Eur Radiol (2021) 31:1227–1235


	Prediction of revascularization by coronary CT angiography using a machine learning ischemia risk score
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Study population
	CT acquisition
	CT analysis
	Machine learning ischemia risk score
	Statistical analysis

	Results
	Per-patient univariable analysis
	Per-vessel univariable analysis
	Multivariable analysis

	Discussion
	References


