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Abstract
Objective To construct aMRI radiomics model and help radiologists to improve the assessments of pelvic lymph nodemetastasis
(PLNM) in endometrial cancer (EC) preoperatively.
Methods During January 2014 and May 2019, 622 EC patients (age 56.6 ± 8.8 years; range 27–85 years) from five different
centers (A to E) were divided into training set, validation set 1 (351 cases from center A), and validation set 2 (271 cases from
centers B–E). The radiomics features were extracted basing on T2WI, DWI, ADC, and CE-T1WI images, and most related
radiomics features were selected using the random forest classifier to build a radiomics model. The ROC curve was used to
evaluate the performance of training set and validation sets, radiologists based on MRI findings alone, and with the aid of the
radiomics model. The clinical decisive curve (CDC), net reclassification index (NRI), and total integrated discrimination index
(IDI) were used to assess the clinical benefit of using the radiomics model.
Results The AUC values were 0.935 for the training set, 0.909 and 0.885 for validation sets 1 and 2, 0.623 and 0.643 for the
radiologists 1 and 2 alone, and 0.814 and 0.842 for the radiomics-aided radiologists 1 and 2, respectively. The AUC, CDC, NRI,
and IDI showed higher diagnostic performance and clinical net benefits for the radiomics-aided radiologists than for the
radiologists alone.
Conclusions The MRI-based radiomics model could be used to assess the status of pelvic lymph node and help radiologists
improve their performance in predicting PLNM in EC.
Key Points
• A total of 358 radiomics features were extracted. The 37 most important features were selected using the random forest
classifier.

• The reclassification measures of discrimination confirmed that the radiomics-aided radiologists performed better than the radiol-
ogists alone, with an NRI of 1.26 and an IDI of 0.21 for radiologist 1 and an NRI of 1.37 and an IDI of 0.24 for radiologist 2.
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Abbreviations
CDC Clinical decisive curve
CI Confidence interval
EC Endometrial cancer
ER Estrogen receptor
IDI Integrated discrimination index
LNM Lymph node metastasis
NRI Net reclassification index
PLNM Pelvic lymph node metastasis
PR Progesterone receptor
SMOTE Synthetic minority oversampling technique

Introduction

Lymph node metastasis (LNM) is an important factor affect-
ing endometrial cancer (EC) prognosis. Multiple studies have
suggested that lymphadenectomy can help surgical staging
and modulate or eliminate the need for adjuvant therapy [1,
2]. However, controversy exists regarding whether lymphad-
enectomy should be performed in early-stage EC. Studies
show that systematic lymphadenectomy contributes to a
higher incidence of complications and produces little evidence
for adjuvant therapy in early-stage EC [3, 4]. Thus, for opti-
mizing surgical methods and clinical outcomes, dedicated ef-
forts should be redirected in identifying EC patients who have
preoperative pelvic LNM (PLNM) and need lymphadenecto-
my, therebyminimizing overtreatment for EC patients without
PLNM.

Magnetic resonance imaging (MRI) is a noninvasive tech-
nique with high resolution for visualizing soft tissue.
However, a meta-analysis indicated that MRI has low sensi-
tivity in diagnosing PLNM [5]. A recent study used positron
emission tomography/computed tomography (PET/CT) to
preoperatively assess the lymph node status of EC but resulted
in a high false positive rate [6]. Radiomics, a method of high-
throughput quantitative information extraction from medical
images such as MR images, may offer valuable information
for EC with objective and reproducible modes [7–10].
Radiomics has been confirmed to be a useful tool in several
cancers [11–14]. One study showed a moderate performance
in preoperatively diagnosing LNM based on 2D tumor MRI
texture features of EC [15]. Based on a limited sample in a
single center, another study showed that PET radiomics is a
valuable tool for detecting LNM in EC [16]. Furthermore,
immunohistochemical profiles, such as estrogen receptor
(ER), progesterone receptor (PR), P53, and Ki-67 levels, are
correlated with LNM and are good predictors of lymph node
status and prognosis in patients with EC [17, 18]. However, no
study has shown the correlation of these immunohistochemi-
cal indexes with the radiomics image biomarkers.

We assumed that MRI-based radiomics could be a useful
tool in preoperatively diagnosing PLNM. The purpose of this

study was to explore whether MRI-based radiomics could
improve the diagnostic performance of radiologists in the as-
sessment of PLNM in EC patients, in multiple centers and
with a large sample size. Our secondary aimwas to investigate
the correlation of radiomics features of PLNM with immuno-
histochemical indexes.

Materials and methods

Study participants

This retrospective study was performed after approval by the
institutional review boards of all participating centers, and
informed consent was waived. During January 2014 and
May 2019, 664 consecutive EC patients with preoperative
MRI were reviewed at the centers A to E. The inclusion
criteria were as follows: (1) histopathologically proven EC
based on total hysterectomy and bilateral salpingo-
oophorectomy (THBSO) and lymphadenectomy; (2) MRI se-
quences including axial T2-weighted imaging (T2WI),
diffusion-weighted imaging (DWI), apparent diffusion coeffi-
cient (ADC), and contrast-enhanced T1-weighted imaging
(CE-T1WI); (3) an interval time between MRI examination
and surgery less than 35 days; and (4) complete immunohis-
tochemical information (including ER, PR, P53, and Ki-67).
The exclusion criteria were as follows: (1) lack of any of the
abovementionedMRI sequences (n = 5); (2) imaging with ob-
vious motion artifacts or sequences that could not match well
with each other (n = 1); (3) tumor too small to be visible (n =
4); (4) an interval time between MRI examination and surgery
more than 35 days (n = 0); (5) insufficient pathological or
surgical information (without lymphadenectomy) (n = 25);
(6) patients with para-aortic LNM without PLNM (n = 5);
and (7) chemotherapy/radiotherapy performed prior to the sur-
gery (n = 2). Finally, 622 EC patients (age 56.6 ± 8.8 years;
range 27–85 year) were included in this multicenter study.
Figure 1 shows the workflow of this study.

MR imaging

Magnetic resonance imaging was performed using 1.5/3.0-T
scanners with phased-array abdominal coils. The patients laid
in a supine position and breathed freely during the acquisition.
The following sequences were obtained: axial T1-weighted
imaging (T1WI), T2WI with and without fat saturation (FS),
DWI with a b value of 800 or 1000 s/mm2, and CE-T1WIwith
FS, which was performed immediately after the intravenous
administration of gadopentetate dimeglumine at a dose of
0.2 mmol/kg of body weight and a rate of 2 to 3 ml/s. The
scanning details are shown in Table 1.
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Image segmentation

Using MitkWorkbench (http:/ /mitk.org/wiki/The_
Medical_Imaging_Interaction_Toolkit_(MITK)), the
multisequence images from axial T2WI, DWI, ADC
mapping, and CE-T1WI were matched. The region of in-
terest (ROI) for each tumor was manually drawn along the
margin of each tumor slice based on axial T2WI by refer-
ring to the DWI, ADC, and CE-T1WI at the delayed phase
and carefully avoiding nearby normal myometrium or en-
dometrium. The volumetric region of interest (VOI) of
each tumor was segmented. All ROI drawing was per-
formed by an experienced radiologist (reader 1) blinded
to the patients’ histopathology. With 1-month intervals,
50 patients were randomly chosen, and the ROI drawing
of tumors was repeated by two radiologists (reader 1 and
reader 2). Inter- and intra-observer agreements of each ex-
tracted feature were determined by calculating the
intraclass correlation coefficient (ICC).

Image preprocessing and radiomics feature
extraction

Radiomics feature extraction based on the VOIs from
T2WI, DWI, ADC, and CE-T1WI at the delayed phase
was performed using Pyradiomics software (https://pypi.
o rg /p ro j ec t / py rad iomic s / ) f o l l owing the IBSI
recommendation (http://arxiv.org/abs//1612.07003). The
VOIs from DWI, ADC, and CE-T1WI were aligned to
those from T2WI using in-house software based on the
Insight Segmentation and Registration Toolkit (ITK,
version 4.7.2; https:/ / i tk.org/) . The VOIs were
resampled with obtained isotropic voxels (3 × 3 ×
3 mm). Normalization was performed by subtracting
the mean value from each voxel and then dividing by
the standard deviation and scaling the values to within a
0–600 range. To ensure better comparability of MRI
gray values, a fixed bin width of 1 was used to com-
pute textural features.

Fig. 1 The workflow of this
study. CDC, clinical decisive
curve; IDI, integrated
discrimination index; NRI, net
reclassification index; SMOTE,
synthetic minority oversampling
technique
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Redundant and low-reproducible feature elimination
and imbalance adjustment

To eliminate the effect of different MRI scanning protocols
and improve the classification efficiency of the diagnostic
models, a compensation method named “Combat” was used
to realign feature distributions computed from different MRI
equipment and protocols [19]. Due to the potential uncertainty
introduced by manual ROI delineation, some features may
have low reproducibility (ICC < 0.75) and would need to be
removed to stabilize our model. To identify redundant fea-
tures, Pearson correlation matrixes were built using pairwise
feature correlations. The mean absolute correlation of each
feature was calculated. If two features have a high correlation
(r > 0.9), the feature with the largest mean absolute correlation
was removed.

A minimum redundancy maximum relevance (MRMR)
method was applied to identify the importance of the re-
maining features, and the top 50 important features were
preserved. Because positive/negative samples were not
uniformly distributed, the synthetic minority oversampling
technique (SMOTE) method was used to oversample the
minority class (positive PLNM) and undersample the ma-
jority class (negative PLNM) to balance the data set to

improve the classification performance of the machine
learning model [20, 21].

Building of radiomics model and validation

After eliminating redundant features, the remainders were
processed by the random forest models (number of trees =
500). The variables involved in the random forest model lead-
ing to the smallest out-of-bag (OOB) error were selected. The
process of model building using random forest is shown in
Fig. 2.

The entire original data set was divided into validation set
1: patients from center A, and validation set 2: patients from
centers B to E for radiomics model validation. Receiver oper-
ating characteristic (ROC) curve and calibration curve were
used to assess the diagnostic performance and the goodness of
fit of the radiomics model for the training and validation data
sets.

Clinical application of the radiomics model

To investigate the clinical application of the radiomics
model, two radiologists (radiologist 1 with 5 years and
radiologist 2 with 10 years of experience in pelvic MRI)

Table 1 MRI examination’s parameters

Center A Center B Center C Center D Center E

MRI 1.5-T Avanto Siemens 3.0-T Trio Siemens 3.0-T Verio Siemens 1.5-T OPTIMA 360
General Electric

3.0-T Verio Siemens

T1WI TSE, TR/TE = 761/10,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 360 × 280 mm;
thickness = 4 mm,
FOV = 360 × 280 mm

TSE, TR/TE = 700/11,
matrix = 512 × 512,
thickness = 5 mm,
FOV = 380 × 280 mm

TSE, TR/TE = 340/10,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 340 × 280 m-
m

FSE, TR/TE = 788/15,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 350 × 270 m-
m

VIBE, TR/TE = 3.4/1.3,
matrix = 320 × 320,
thickness = 3 mm,
FOV= 380 × 280 m-
m

T2WI SE, TR/TE = 4000/98 or
8000/83, matrix = 512 × 512

SE, TR/TE = 3300/88,
matrix = 512 × 512,
thickness = 3 mm,
FOV = 380 × 280 mm

TSE, TR/TE = 8000/83,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 340 × 270 m-
m

FSE, TR/TE = 2705/60,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 380 × 270 m-
m

TSE, TR/TE = 2770/64,
matrix = 320 × 320,
thickness = 4 mm,
FOV= 380 × 280 m-
m

DWI EPI, TR/TE = 4000/100,
b = 800 (or 1000),
matrix = 256 × 256,
thickness = 5 mm,
FOV = 360 × 80 mm

EPI, TR/TE = 2500/100,
b = 800 (or 1000),
matrix = 256 × 256,
thickness = 4 mm,
FOV = 380 × 280 mm

EPI, TR/TE = 4000/100,
b = 1000,
matrix = 256 × 256,
thickness = 5 mm,
FOV = 340 × 280 m-
m

EPI, TR/TE = 3708/76,
b = 800,
matrix = 256 × 256,
thickness = 5 mm,
FOV = 380 × 270 m-
m

EPI, TR/TE = 7100/79,
b = 1000,
matrix = 256 × 256,
thickness = 4 mm,
FOV= 380 × 280 m-
m

CE-T1WI FLASH, TR/TE = 196/2.9,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 360 × 280 mm

TSE, TR/TE = 700/11,
matrix = 512 × 512,
thickness = 5 mm,
FOV = 380 × 280 mm

TSE, TR/TE = 196/2.9,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 340 × 280 m-
m

LAVA,
TR/TE = 3.7/1.7,
matrix = 512 × 512,
thickness = 4 mm,
FOV = 350 × 270 m-
m

VIBE, TR/TE = 3.4/1.3,
matrix = 320 × 320,
thickness = 3 mm,
FOV= 380 × 280 m-
m

CE, contrast enhanced; DWI diffusion-weighted imaging; EPI, echo planar imaging; FLASH, fast low-angle shot sequence; FSE, fast spin echo; LAVA,
liver acquisition with volume acceleration;MRI, magnetic resonance imaging; SE, spin echo; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging;
TE, echo time; TR, repetition time; TSE, turbo spin echo; VIBE, volumetric interpolated breath-hold examination
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who were blinded to histopathological data and the
radiomics results reviewed the entire MRI series of each
case to identify PLNM basing on the positive criteria of
pelvic lymph node (short axis diameter > 8 mm, or with
any one of following definite morphological abnormalities:
irregular contour, hyperintensity on DWI, or central necro-
sis and non-homogeneous enhancement on CE-T1WI im-
ages) [22]. After a period of 30 days, all cases were repeat-
edly reviewed by the same radiologists, who were blinded
to histopathological data, and given the prediction result of
the radiomics model. If a lymph node was > 8 mm and was
negative predicted by radiomics, the repeat review found
none of LN morphological abnormalities, then a negative
PLNM would be reported. If a lymph node was ≤ 8 mm
and was positive predicted by radiomics, the repeat review
found inconclusive morphological abnormalities, then a
positive PLNM would be reported; otherwise, a negative
PLNM would be maintained. The performances of the
radiomics model and the radiologists with and without
the aid of the radiomics model in assessing PLNM were
evaluated by ROC curve and compared using the clinical
decision curve (CDC), net reclassification index (NRI),
and total integrated discrimination index (IDI).

Correlations of radiomics features with
immunohistochemical indexes

Finally, correlations between the selected radiomics features
and immunohistochemical indexes (ER, PR, P53, and Ki-67)
were calculated.

Statistical analysis

All statistical analyses were performed using R software (ver-
sion 3.6.1; http://www.r-project.org). Student’s t test was used
to compare quantitative variables, and the Mann-Whitney U
test, chi-squared test, or Fisher’s exact test was used to com-
pare qualitative variables. The Pearson or Spearman correla-
tions were calculated to explore associations between
radiomics features and immunohistochemical indexes. ROC
curve was used to evaluate the diagnostic performance. The
DeLong test was used to assess the goodness of fit of the
radiomics model and of the radiologists without and with the
radiomics model. The inter-rater reliability of the results ob-
tained from the two radiologists was also calculated by
Cohen’s kappa test. The “ComBatHarmonization” package,
“rms” package, “pROC” package, “dca.R” package, and

Fig. 2 The top 50 radiomics features (green boxes) associated with PLNM
of EC are identified using the training set from the random forest model.
The importance of the radiomics features is compared with the importance
of shadow attributes (importance threshold, blue boxes) created by
shuffling the original attributes. The features that have significantly worse

importance than the shadow features (blue boxes) are consecutively
dropped (red boxes). On the other hand, attributes that are significantly
better than the shadow attributes are included (green boxes). The tentative
radiomics features are plotted in yellow boxes. EC, endometrial cancer;
PLNM, pelvic lymph node metastasis
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“PredictABEL” package were used for analyses. A p value <
0.05 was considered statistically significant.

Results

Study participants

A group of 664 patients was reviewed, and 42 patients were
excluded. Finally, 622 patients (351 from center A: validation
set 1 and a joint group of 271 patients from centers B–E:
validation set 2) were included. No significant differences in
baseline clinical characteristics between patients with positive
and negative PLNM were shown. The patients’ clinical char-
acteristics are presented in Table 2. Patients were staged ac-
cording to the 2014 FIGO classification [23].

Data processing

A total of 358 radiomics features were initially extracted. Out
of the 358 features, 4 features (first-order statistics-total ener-
gy from T2WI, DWI, the ADC mapping, and CE-T1WI)
available in Pyradiomics were not defined in the IBSI. All
the remaining features were calculated according to IBSI’s
definitions. The details are shown in Supplementary Table 1.

Features with either inter-observer or intra-observer ICC <
0.75 were removed, leaving 235/358 features (65.6%).
Features with Pearson correlation coefficients > 0.9 were re-
moved, leaving 114 features. After MRMR, 50 features were
preserved. After the SMOTE method adjusted the sample im-
balance, a ratio of 1:1 (128 positive PLNM vs. 128 negative
PLNM) was achieved. After random forests screened, we fi-
nally included 37 radiomics features to build the radiomics
model. The selected features for constructing the diagnosis
model and distribution diagram of importance are shown in
Fig. 2 and Supplementary Table 2.

Diagnostic performance

The random forest results showed that the glcm_Correlation
feature from T2WI made the greatest contribution to the diag-
nosis for differentiating positive from negative PLNM. The
AUCs of training set, validation set 1, and validation set 2
before and after “ComBat” compensation are shown in
Fig. 3a–c, which indicated that after eliminating the protocol
effect, a higher PLNM prediction performance was achieved.
The calibration curve demonstrated a goodness of fit for the
radiomics model in the three data sets (Fig. 3d, e).

By referring radiomics results, lymph node status was
changed from positive to negative (n = 23 [3.7%] for radiolo-
gist 1, and 11 [1.8%] for radiologist 2) and from negative to
positive (n = 34 [5.5%] for radiologist 1, and 51 [8.2%] for
radiologist 2). Twelve positive PLNM, which were predicted

by radiomics and confirmed by histopathology, could not be
found by radiologists and still diagnosed as negative. The
AUCs for predicting PLNM with ComBat were 0.935 (95%
CI: 0.90.06–0.964) for the training set, 0.909 (95%CI: 0.866–
0.951) for validation set 1, 0.885 (95% CI: 0.815–0.955) for
validation set 2, 0.623 (95% CI: 0.564–0.683) for the radiol-
ogist 1 alone, 0.643 (95% CI: 0.584–0.703) for the radiologist
2 alone, 0.814 (95% CI: 0.756–0.871) for the radiomics-aided
radiologist 1, and 0.842 (95% CI: 0.798–0.896) for the
radiomics-aided radiologist 2 (Fig. 4). The accuracy was
88.3% for the training set, 80.3% for validation set 1, 88.6%
for validation set 2, 84.6% and 88.1% for the radiologists 1
and 2 alone, and 90.2% and 90.4% for the radiomics-aided
radiologists 1 and 2. The kappa value of PLNM prediction
between two radiologists was 0.81 for radiologists alone and
0.92 for the radiomics-aided radiologists.

Clinical application

All data sets (n = 622) were used for CDC analyses for the
radiomics model and the radiologists without and with the aid
of the radiomics model for predicting PLNM in EC, which is
shown in Fig. 5. The net benefit of the radiologists working
with aid of the radiomics model was higher than that of the
radiologists alone or the radiomics model alone in the risk
(positive PLNM) threshold probabilities’ range of 0.1–0.5.
The reclassificationmeasures of discrimination confirmed that
the radiomics-aided radiologists performed better than the ra-
diologists alone, with an NRI of 1.26 (95%CI: 1.03–1.48) and
an IDI of 0.21 (95% CI: 0.16–0.26) for radiologist 1 and an
NRI of 1.37 (95% CI: 1.16–1.58) and an IDI of 0.24 (95% CI:
0.19–0.29) for radiologist 2 (Fig. 6).

Correlations between radiomics features and
immunohistochemical indexes

As shown in Supplementary Figure 1 and Supplementary
Table 3, the co-occurrence matrix plots of PLNM and the
immunohistochemical indexes of EC suggest that radiomics
features are correlated with ER, PR, P53, and Ki-67.

Discussion

This retrospective multicenter study revealed that the
radiomics features extracted from multiparametric MRI could
preoperatively add useful information in the assessment of the
pelvic lymph node status of EC. Radiomics could aid radiol-
ogists to improve their performance in predicting PLNM of
EC, especially in helping radiologists to rule out false positive
PLNM (> 8 mm) and to rule out false negative PLNM (≤
8 mm). Furthermore, the radiomics features were correlated
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with immunohistochemical indexes ER, PR, P53, and Ki-67
of EC.

For EC patients without LNM, a limiting surgery that in-
cludes hysterectomy and oophorectomy is optimal without
reducing the survival rate, whereas for patients with LNM, a
comprehensive staging surgery including lymphadenectomy
is mandatory. Therefore, preoperatively assessing lymph node
status is crucial to guide the management of patients with EC.

Unfortunately, due to the frustrating performance of conven-
tional MRI and PET-CT in detecting LNM [24–26], many
early-stage EC patients undergo unnecessary lymphadenecto-
my, which results in surgical complications, such as increased
operation time and bleeding, extending the postoperative days
in the hospital and increasing the incidence of lymphedema.

Recent studies suggested that MRI-based texture feature anal-
ysis could be helpful for differentiating the presence of LNM in

Table 2 Characteristics of included endometrial cancer patients

Validation set 1 Validation set 2 p

Hospital Center A Centers B to E
Number 351 271
Age 57.13 ± 9.11 55.39 ± 8.51 0.068
Non-menopause /menopause 125/226 95/155 0.879
PLNM
Negative PLNM 314 244 0.918
Positive PLNM 37 27

Myometrial invasion
≤ 50% 260 209 0.434
> 50% 91 62

Tumor grade
Low (G1+G2) 286 215 0.570
High (G3) 29 32

CSI
Negative CSI 300 237 0.551
Positive CSI 51 34

LVSI
Negative LVSI 265 225 0.029
Positive LVSI 86 46

FIGO staging
I
IA 222 180 0.285
IB 49 30

II 38 20
III
IIIA 5 9
IIIB 0 1
IIIC1 21 20
IIIC2 11 6

IV
IVA 1 3
IVB 4 2

Histological subtypes
Endometrioid adenocarcinoma 315 247 0.439
Carcinosarcoma 5 6
Clear cell carcinoma 4 3
Mixed adenocarcinoma 9 3
Serous adenocarcinoma 18 11
Others 0 1

Immunohistochemistry (mean ± SD)
ER 0.63 ± 0.32 0.85 ± 6.05 0.554
PR 0.54 ± 0.35 0.44 ± 0.31 0.000
Ki-67 0.31 ± 0.23 0.33 ± 0.24 0.318
P53 0.74 ± 0.39 0.25 ± 0.24 < 0.001

Rad scores 0.10 ± 0.17 0.10 ± 0.13 0.766
Radiologist diagnosis PLNM
Negative PLNM 318 250 0.483
Positive PLNM 33 21

CSI, cervical stromal invasion; DMI, deep myometrial invasion; EC, endometrial carcinoma; EI, extrauterine invasion; ER, estrogen receptor; FIGO,
International Federation of Obstetrics and Gynecology; LA, lymphadenectomy; LNM, lymph node metastasis; LVSI, lymphovascular space invasion;
PLNM, pelvic lymph node metastasis; PR, progesterone receptor
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EC patients, with sensitivity, specificity, and accuracy of 0.68,
0.73, and 0.72, respectively [27]. A latest study by Xu et al
suggested that the radiomics combined with the clinical

parameters (CA125 and lymph node size) achieved an excellent
predictive accuracy (especially in normal size lymph nodes) for
the LNM in EC [22]. In our study, whole-volume

Fig. 3 Areas under the ROC curve of radiomics in diagnosis PLMNwith
and without ComBat in training set (a), validation set 1 (b), and validation
set 2 (c). The calibration curves show good fits for the radiomics model in
the training set (d), validation set 1 (e), and validation set 2 (f). The AUC

for predicting PLNMwithout ComBat was 90.1% (95%CI: 86.5–93.7%)
for the training set, 91.3% (95%CI: 87.5–95.2%) for validation set 1, and
86.4% (95% CI: 80.2–92.5%) for validation set 2. EC, endometrial
cancer; PLNM, pelvic lymph node metastasis

Fig. 4 Areas under the ROC curve of radiologist 1 (a) and radiologist 2 (b) with and without radiomics aids in diagnosis of PLMN in EC. EC,
endometrial cancer; PLNM, pelvic lymph node metastasis
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multiparametricMRI radiomics features were extracted based on
a relatively large sample size and multicenter data, which may
have contributed to a good diagnostic performance by unraveling
more comprehensive information about tumor heterogeneity [7,
28]. Our results showed that this MRI radiomics model had a
good diagnostic performance for the assessment of pelvic lymph
node status in patients with EC. The selected features for PLNM
such as Shape_MinorAxisLength were consistent with those of a

previous study [29]. In addition, owing to the low positive
PLNM rate of EC patients, the SMOTE method was used to
balance the data set to improve the classification performance
of a machine learning model. Further validation of the model
was performed using two validation sets and resulted in AUCs
of 0.909 and 0.885 without significant fluctuation. These results
indicated that this computer-based data analysis method could be
a helpful tool to assess the presence of PLNM in EC patients.

Fig. 5 Clinical decision curve analyses for the radiologist 1 (a) and
radiologist 2 (b) with and without radiomics aid for predicting PLNM
in EC. The y-axis measures the net benefit, calculated by subtracting the
proportion of all patients whowere false positive from the proportion who

were true positive, weighted by the relative harm of forgoing treatment
compared with the negative consequences of an unnecessary treatment.
EC, endometrial cancer; PLNM, pelvic lymph node metastasis
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CDC analysis was applied to evaluate the net benefit of the
radiomics model in aiding the radiologist in predicting PLNM
of EC. The net benefit was calculated by subtracting the pro-
portion of all patients who were false positive from the pro-
portion who were true positive, weighted by the relative harm
of forgoing treatment compared with the negative conse-
quences of an unnecessary treatment. The results showed that
the radiologists could have the higher net benefit with the aid
of the radiomics model in the risk (positive PLNM) range of
0.1–0.5. Furthermore, given the known limitations of mea-
sures of association and ROC curves [30], we used the reclas-
sification framework to provide an outcome prediction analy-
sis of clinical decision-making. Our reclassification results
showed that the clinical benefits were significantly improved,
with IDIs of 0.21 and 0.24, which indicated that out of 100
patients, more than 20 patients benefited from the radiomics-
aided radiologists’ prediction compared with the radiologists
alone. Moreover, we found that under certain conditions,
when radiologists were informed of the radiomics prediction
of PLNM, they could not find potential metastatic lymph
nodes confirmed by histopathology. The reason for this dis-
advantage could be attributed to the presence of small size
metastatic lymph nodes, partially obscured by the uterus, to
the partial volume effect or not clearly visible due to the rel-
atively limited spatial resolution ofMRI. The use of radiomics
models for the analysis of EC could be an additional

noninvasive method to improve MRI preoperative staging of
EC, with a good capability to predict lymph node status before
surgery.

Many studies have indicated that some immunohistochem-
ical indexes, such as ER, PR, P53, and Ki-67, are correlated
with LNM [17, 18]. Our study explored the correlation of
immunohistochemical indexes with the radiomics features
that contributed to the assessment of PLNM. The expression
of ER and PR can provide information for endocrinotherapy.
The expression of Ki-67, an extensively investigated marker
of cell proliferation, reflects the proportion of malignant cells
and is associated with tumor progression and metastasis, as
well as prognosis. P53 can be used for redefining the POLE
mutation in EC [31]. Considering the correlation of the
radiomics features with the immunohistochemical indexes of
EC, we should be able to obtain comprehensive information
on the tumors in EC patients.

Our study had some limitations. First, we excluded five
patients who had para-aortic LNM without PLNM because
not all of the included patients underwent abdominal MRI
scans according to daily clinical routines. Second, the CE-
T1WI scanning time and b value of the DWI were not uni-
form, since this was a retrospective study. Third, we did not
draw the ROI based on each visible pelvic lymph node be-
cause it was time consuming and difficult to match every
lymph node between images and postoperative resection

Fig. 6 MR images in a 54-year-
old woman with endometrial
cancer. a Axial T2-weighted im-
aging (T2WI) is marked with a
region of interest. b Axial appar-
ent diffusion coefficient imaging.
c Axial diffusion-weighted imag-
ing (DWI) (b = 1000 s/mm2). d
Axial contrast-enhanced T1-
weighted imaging (CE-T1WI)
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samples. Fourth, we did not include the high-order wavelet
features because during our analysis process, the wavelet fea-
tures were not stable and lacked reasonable clinical interpre-
tation [32].

Conclusion

MRI-based radiomics analysis could be used to predict the
presence of PLNM in EC. The radiomics model could aid
radiologists in improving their performance for assessing
PLNM in EC. The radiomics features had correlations with
the immunohistochemical indexes of EC.
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