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Radiomics risk score may be a potential imaging biomarker
for predicting survival in isocitrate dehydrogenase wild-type
lower-grade gliomas
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Abstract
Objectives Isocitrate dehydrogenase wild-type (IDHwt) lower-grade gliomas of histologic grades II and III follow heterogeneous
clinical outcomes, which necessitates risk stratification. We aimed to evaluate whether radiomics from MRI would allow
prediction of overall survival in patients with IDHwt lower-grade gliomas and to investigate the added prognostic value of
radiomics over clinical features.
Methods Preoperative MRIs of 117 patients with IDHwt lower-grade gliomas from January 2007 to February 2018 were
retrospectively analyzed. The external validation cohort consisted of 33 patients from The Cancer Genome Atlas. A total of
182 radiomic features were extracted. Radiomics risk scores (RRSs) for overall survival were derived from the least absolute
shrinkage and selection operator (LASSO) and elastic net. Multivariable Cox regression analyses, including clinical features and
RRSs, were performed. The integrated areas under the receiver operating characteristic curves (iAUCs) from models with and
without RRSs were calculated for comparisons. The prognostic value of RRS was assessed in the validation cohort.
Results The RRS derived from LASSO and elastic net independently predicted survival with hazard ratios of 9.479 (95%
confidence interval [CI], 3.220–27.847) and 6.148 (95% CI, 3.009–12.563), respectively. Those RRSs enhanced model perfor-
mance for predicting overall survival (iAUC increased to 0.780–0.797 from 0.726), which was externally validated. The RRSs
stratified IDHwt lower-grade gliomas in the validation cohort with significantly different survival.
Conclusion Radiomics has the potential for noninvasive risk stratification and can improve prediction of overall survival in
patients with IDHwt lower-grade gliomas when integrated with clinical features.
Key Points
• Isocitrate dehydrogenase wild-type lower-grade gliomas with histologic grades II and III follow heterogeneous clinical
outcomes, which necessitates further risk stratification.

• Radiomics risk scores derived from MRI independently predict survival even after incorporating strong clinical prognostic
features (hazard ratios 6.148–9.479).
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• Radiomics risk scores derived from MRI have the potential to improve survival prediction when added to clinical features
(integrated areas under the receiver operating characteristic curves increased from 0.726 to 0.780–0.797).
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Abbreviations
iAUC Integrated area under the receiver operating charac-

teristic curve
IDH Isocitrate dehydrogenase
IDHwt Isocitrate dehydrogenase wild-type
KPS Karnofsky Performance Status
OS Overall survival
ROC Receiver operating characteristic
RRS Radiomics risk score
TCGA The Cancer Genome Atlas
WHO World Health Organization

Introduction

Lower-grade gliomas of World Health Organization (WHO)
grades II and III are infiltrative neoplasms with variable clin-
ical outcomes [1]. A mutation in isocitrate dehydrogenase
(IDH) is one of the key genetic events which leads to the
stratification of gliomas with significantly different survival
rates in grade II/III gliomas as well as glioblastomas [1–4].
Among lower-grade gliomas of histologic grades II and III,
IDH wild-type (IDHwt) tumors constitute less than 30% of
cases and have been reported to follow worse prognosis than
those with IDH mutations [2, 5, 6]. Moreover, a previous
study suggested that the majority of IDHwt lower-grade glio-
mas with grade II/III were considered as the molecular equiv-
alent of conventional glioblastoma [7].

Even though the presence of an IDHmutation is a powerful
prognostic factor, heterogeneous clinical outcomes have been
reported in IDHwt lower-grade gliomas according to the var-
iable combination of genetic profiles [8–10]. Recently, the
Consortium to Inform Molecular and Practical Approaches
to CNS Tumor Taxonomy (cIMPACT-NOW) provided the
description of a “diffuse astrocytic glioma, IDH-wildtype,
with molecular features of glioblastoma, WHO grade IV,”
which corresponds to grade II/III IDHwt gliomas with high-
level EGFR amplification, the combination of a whole chro-
mosome 7 gain and a whole chromosome 10 loss (+ 7/− 10),
or TERT promoter mutations [11]. These specifications high-
light that the specific subset of IDHwt lower-grade gliomas
follow an aggressive clinical course more closely resembling
that of an IDHwt glioblastoma. Thus, it would be beneficial if
MRI could stratify IDHwt lower-grade glioma patients ac-
cording to their risks and identify patients with worse
prognosis.

Radiomics exploits MRI data and extracts high-
dimensional quantitative imaging features such as intensity
distributions, spatial relationships, textural heterogeneity,
and shape descriptors [12]. Because radiomics models use
high-throughput imaging features, hidden information, which
may be visually imperceptible, could be revealed [13].
Radiomics has been applied in many previous studies to pre-
dict a specific mutation status, stratify risk, or predict treat-
ment responses in patients with glioblastomas [14–17].
Several previous studies have also used radiomics in patients
with lower-grade gliomas to predict survival [18, 19] or detect
molecular subtypes, including IDH mutation status [20–23].
However, the prognostic significance of radiomics in patients
with IDHwt lower-grade gliomas has not been well studied.

We hypothesized that MRI radiomics can independently
predict the survival in patients with IDHwt lower-grade glio-
mas. Therefore, the purpose of this study was to evaluate
whether radiomics from MRI would allow prediction of sur-
vival in patients with IDHwt lower-grade gliomas and to in-
vestigate the added prognostic value of radiomics over clinical
features.

Materials and methods

This retrospective study was approved by the institutional
review board of our hospital, and the requirement for
obtaining informed patient consent was waived. The NIH/
NCI-approved Cancer Genome Atlas (TCGA) and The
Cancer Imaging Archive (TCIA) databases are publicly avail-
able datasets in which all data are anonymized [24]. Thus,
individual institutional approval was not required for the ex-
ternal validation set.

Patients

Institutional cohort

From January 2007 to February 2018, 459 patients with path-
ologically confirmed lower-grade gliomas were identified.
Patients with IDHwt lower-grade gliomaswho underwent pre-
operative MRI were included. Patients were excluded if they
presented any of the following: (1) IDH mutant tumors (n =
202); (2) unknown IDH mutation status (n = 91); (3) previous
history of brain surgery or treatment (i.e., radiation therapy or
chemotherapy) (n = 21); (4) age under 18 years old (n = 16);
(5) no preoperative MRI performed (n = 12). Thus, 117
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patients with IDHwt lower-grade gliomas were enrolled in this
study (Fig. 1). These included 35 (29.9%) WHO grade II
gliomas and 82 (70.1%) grade III gliomas.

The extent of tumor resection was determined by visually
comparing the preoperative and postoperative lesion volume
on both T2-weighted images (T2WI) and contrast-enhanced
T1-weighted imaging (T1C), in conjunction with intraopera-
tive impressions of the surgeons, classified as one of three
categories: gross total, subtotal (< 100% and ≥ 75% of gross
tumor removal)/partial (< 75% of gross tumor removal) resec-
tion, or biopsy only. Karnofsky Performance Status (KPS)
scores which were determined preoperatively and postopera-
tive treatment (i.e., chemotherapy, radiation therapy) were re-
trieved from their electronic medical records.

Overall survival (OS) was used as a clinical outcome. OS
was defined as the number of days from the initial surgery, i.e.
tumor resection or biopsy, to either patient death or the date of
the last follow-up if the patient did not die.

External validation cohort

TCGA (http://cancergenome.nih.gov) provides 265 lower-
grade gliomas of histologic grades II and III, within which
46 were IDHwt. Among them, 33 patients (10 grade II and
23 grade III) with preoperative MRI containing both T2WI
and T1C images were retrieved and constituted the external
validation cohort. Information including age, extent of resec-
tion, WHO grade, and death were available for these 33 pa-
tients. KPS was known for 22 patients.

MR image acquisition

A 3.0-T MRI scanner (Achieva, Philips Healthcare) and an 8-
channel SENSE head coil were used for all preoperative MRI
scans. The preoperative MRI protocol included T2WI (TR/

TE, 2800–3000/80–100ms; FOV, 240mm; section thickness,
5 mm; matrix, 256 × 256) and three-dimensional T1C (TR/
TE, 6.3–8.3/3.1–4 ms; FOV, 240 mm; section thickness,
1 mm; matrix, 192 × 192). T1C images were acquired after
administering 0.1 mL/kg gadolinium-based contrast material
(Gadovist, Bayer).

The preoperative T2WI and T1C of 33 patients from the
TCGA datasets were downloaded from TCIA (http://www.
cancerimagingarchive.net).

Image pre-processing and radiomic feature extraction

First, T2WI and T1C images were resampled to an identical
spatial resolution of 1 × 1 × 1 mm using nilearn (https://
nilearn.github.io). Next, those images were subjected to N4
bias correction to remove low-frequency intensity and non-
uniformity from the images [25, 26]. After resampling and N4
bias correction, T1C images were registered to identical spa-
tial coordinates using T2WI as a template using SimpleITK
(http://www.simpleitk.org). Signal intensity was normalized
using the WhiteStripe R package [27], implemented in R
version 3.4.0 (R Foundation for Statistical Computing).
Tumor segmentation was then performed by C.J.P., a
neuroradiologist with 6 years of experience, with a semi-
automatic method using 3D slicer (www.slicer.org) [28].
The software automatically selected the T2 hyperintense
lesion where the signal is above the specific threshold,
which corresponds to the infiltrative tumor and surrounding
edema. Then, C.J.P. revised the automatically selected region
of interest (ROI) by excluding erroneously detected cerebro-
spinal fluid or correcting the tumor border, as the periphery of
the tumor could not be exactly determined by the software due
to the infiltrative nature of the gliomas. T1C was not referred
for the tumor segmentation as it is difficult to determine the
tumor border in the T1C. Another neuroradiologist (S.S.A.)

Fig. 1 Flow chart of the patient
population
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with 13 years of experience subsequently re-evaluated and
confirmed the ROIs.

In addition, to evaluate the reproducibility of tumor seg-
mentations, we randomly selected 50 patients in whom we
obtained two different ROIs from two different readers
(C.J.P., and S.S.A.). Then, we calculated the Dice coefficient
(DICE), which is the most commonly used metric in validat-
ing medical volume segmentations [29, 30]. The DSC mea-
sure represents the relative overlap between two binary vol-
ume data and is expressed in the equation below.

DICE ¼ 2 X V R1∩R2ð Þ
V R1ð Þ þ V R2ð Þ

V denotes the volume of binary data; R1 and R2 represent the
ROIs from reader 1 and reader 2, respectively. The DICE
score is 1.0 when the two volumes match perfectly.

Radiomic features were extracted from the ROIs on T2WI
and T1C images by using Pyradiomics 1.2.0 (http://www.
radiomics.io/pyradiomics.html) [31].

In total, 13 shape, 18 first-order, 23 gray-level co-occur-
rence matrix (GLCM), 16 gray-level run length matrix
(GLRLM), 16 gray-level size zone matrix (GLSZM), and 5
neighborhood gray tone difference matrix (NGTDM) were
extracted from the ROIs on T2WI and T1C images, constitut-
ing a total of 182 radiomic features. A schematic workflow of
image pre-processing and radiomic feature extraction is
shown in Fig. 2.

Pathological evaluation and molecular subtyping

All surgical specimens were histopathologically diagnosed
according to the 2016 WHO classification. Both peptide
nucleic acid–mediated clamping polymerase chain reaction
and immunohistochemical analyses were performed to de-
tect the presence of a IDH1-R132H mutation [2].

Monoclonal antibody H09 was used for immunohisto-
chemical analysis. The degree of IDH1-R132H staining
was determined positive if there were any stained cells.
Cases without IDH1-R132H staining were determined to
be negative [32, 33]. In IDH1-negative cases, IDH1/2 sta-
tus was confirmed by a peptide nucleic acid–mediated
clamping polymerase chain reaction.

Statistical analysis

Statistical analysis was performed in R software (version
3.5.1; R Foundation for Statistical Computing) (www.R-
project.org). Because of the relatively large number of
imaging variables compared with the number of events,
the least absolute shrinkage and selection operator
(LASSO) and elastic net were used to select important
features, to minimize the potential risk for overfitting, by
shrinking the regression coefficients of irrelevant variables
toward zero [34]. The performances of these methods were
tested by 10-fold cross-validation with 100 replications to
enhance the generalizability of the results. The “glmnet”
with “coxnet” and the “glmnetUtils” R packages were
used for the LASSO and elastic net, respectively [35,
36]. A radiomics risk score (RRS) was calculated for each
patient using a linear combination of features frequently
selected from the LASSO and elastic net, weighted accord-
ing to their regression coefficients. Univariable analysis of
RRS and clinical features—age, KPS, extent of resection,
WHO grade, and postoperative treatment—for OS predic-
tion was performed. Subsequently, the variables which
were significantly associated with OS were included for
multivariable Cox regression analyses to create prognostic
models: (1) model 1, clinical features only; (2) model 2,
clinical features and RRS. To assess the discriminative
ability, we obtained time-dependent receiver operating

Fig. 2 The workflow for imaging data pre-processing and radiomic feature extraction
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characteristic (ROC) curves and calculated the integral of
the area under the curves (iAUC) [37]. The difference in
the iAUC of the two models in the institutional cohort was
tested based on a 95% confidence interval (CI) from a
bootstrap with 1000 resampling, and internal validation
for the developed model was performed using a bootstrap
on the same resampled data. The iAUC difference was
considered statistically significant if the 95% CI of the
iAUC dif ference did not conta in a zero value .
Furthermore, the Akaike information criterion (AIC) was
used to compare competing prognostic models, with a
smal ler AIC indicat ing a bet ter model f i t [38] .
Additionally, likelihood ratio chi-square tests were per-
formed to compare model fitness in terms of the log like-
lihood (LL) between two nested models, which was pre-
sented as minus 2LL (− 2LL).

With regard to the external validation, the prognostic value
of RRS was assessed by comparing the iAUCs of model 1
(clinical features only) and model 2 (clinical features and
RRS), which was tested based on a 95% CI from a bootstrap
with 1000 resampling. In this analysis, 11 patients who lacked
the KPS in the TCGA dataset were excluded.

In addition, the optimal cutoff values of RRSs were defined
by the log-rank test, using the Contal and O’Quigley’s meth-
od, which was performed using the “cutp” function of
“survMisc” in R [39]. The patients in the institutional and
external validation cohort were then classified into low-risk
and high-risk groups according to fixed cutoff values which
were derived from institutional cohort. Differences in clinical
characteristics between the low-risk and high-risk group were
evaluated using Student’s t test and chi-square test. The
Kaplan-Meier curves of those low-risk and high-risk groups
were compared to evaluate the relationship between the RRS
and OS. A p value < 0.05 was considered to be statistically
significant.

Results

Characteristics of the 150 enrolled patients are summarized in
Table 1. In the institutional cohort and external validation set,
the median OS was 693 days (interquartile range, 384–
1168 days) and 269 days (interquartile range, 155–582 days),
respectively. The extent of resection was significantly differ-
ent between the two groups (p < 0.001), but other clinical
features were not significantly different.

The DICE scores which were calculated to assess the re-
producibility of segmentations from two different readers
ranged from 0.809 to 0.992 (mean ± standard deviation,
0.966 ± 0.035), which represents high reproducibility.

LASSO and elastic net selected 13 and 80 radiomic fea-
tures for OS prediction, respectively, that were the most im-
portant for predicting tumor outcome. These radiomic features

ranked according to their regression coefficients are listed in
Supplementary Tables 1 and 2. RRS_LASSO and
RRS_elasticnet were derived from the sum of features select-
ed by LASSO and elastic net multiplied by each regression
coefficient, respectively (Supplementary Tables 1 and 2).
Thirteen features that were selected from both LASSO and
elastic net included 12 texture features from GLSZM,
NGTDM, and GLCM and one shape feature. The texture fea-
ture zone percentage from T1C was the parameter with the
highest negative coefficient, associated with a favorable
prognosis.

Univariable analysis of clinical features and RRS revealed
that age, KPS, extent of resection, WHO grade, and RRS
showed significant association with OS. Those selected fea-
tures were included in the multivariable Cox models.
Multivariable Cox models with and without RRS for OS pre-
diction are summarized in Table 2. Both RRS_LASSO and
RRS_elasticnet were independent predictors ofOSwith hazard
ratios of 9.479 (95% CI, 3.220–27.847) and 6.148 (95% CI,
3.009–12.563), respectively. Time-dependent ROC curves
from model 1 (clinical features only) and model 2 (clinical
features and RRSs) are presented in Fig. 3. The iAUC ofmodel
1 for OS prediction was 0.726 (95% CI, 0.678–0.814). When
RRS_LASSO and RRS_elasticnet were added (model 2), the
iAUC significantly increased to 0.780 (95% CI, 0.737–0.855)
and 0.797 (95% CI, 0.752–0.872), respectively. On bootstrap
testing, the increase in iAUC was statistically significant, with
the differences in iAUC being 0.054 (95% CI, 0.013–0.104)
and 0.040 (95% CI, 0.009–0.091), respectively. Smaller AIC
values were noted in the models with RRS (392.2 and 381.0
for models with RRS_LASSO and RRS_elasticnet, respective-
ly) compared with those without RRS (409.9), which indicate
better prognostic models. In addition, smaller − 2LL values
were also noted in the models with RRS (378.2 and 367.0
for models with RRS_LASSO and RRS_elasticnet, respective-
ly) compared with those without RRS (397.9) with significant
differences (p < 0.005 for all), which indicates better fitness of
models.

The performance of survival prediction models was tested
through internal validation (Table 3). Models with RRS de-
rived from both LASSO and elastic net demonstrated signifi-
cantly superior performance, with higher iAUC values
(LASSO: 0.758, 95% CI, 0.697–0.821; elastic net: 0.770,
95% CI, 0.706–0.833) than in the model without RRS
(0.701, 95%CI, 0.631–0.772) for OS prediction. On bootstrap
testing, the increase in iAUC was statistically significant, with
the differences in iAUC being 0.058 (95% CI, 0.008–0.090)
for LASSO and 0.069 (95% CI, 0.001–0.108) for elastic net.

The performance of survival prediction models was also
tested in the external validation cohort (Table 4). Models with
RRS derived from both LASSO and elastic net yielded higher
performance (LASSO: 0.754, 95% CI, 0.586–0.901; elastic
net: 0.787, 95% CI, 0.619–0.931) than in the model without
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RRS (0.746, 95% CI, 0.543–0.921); however, the increase in
iAUC was not statistically significant.

The optimal cutoff values of RRS_LASSO and
RRS_elasticnet were derived from the institutional cohort,

which were − 11.53 and − 14.86, respectively. These RRSs
stratified institutional cohort into low-risk and high-risk
groups with significantly different OS (p < 0.001, both,
Supplementary figure and Supplementary Table 3). There

Table 1 Patients’ clinical
characteristics Clinical characteristics Discovery set

(institutional
cohort) (n = 117)

Validation set (TCGA cohort)
(n = 33)

p valuea

Age (years) 49.6 (16.2) 51.3 (14.8) 0.582

Gender (male:female) 53:64 17:16 0.930

Karnofsky Performance Statusb 80 (40–100) 90 (40–100) 0.177c

Extent of resection < 0.001

Gross total 22 (18.8%) 17 (51.5%)
Subtotal or partial 53 (45.3%) 15 (45.5%)

Biopsy 42 (35.9%) 1 (3.0%)

WHO grade

Grade II 35 (29.9%) 10 (30.3%) 0.966
Grade III 82 (70.1%) 23 (69.7%)

Postoperative treatment NA

Radiation therapy + chemotherapy 22 (18.8%)
Radiation therapy 84 (71.8%)

None 11 (9.4%)

Median overall survival (interquartile
range, days)

693 (384–1168) 269 (155–582) 0.100

No. of deaths observed 55 (47.0%) 15 (45.5%)

Unless otherwise indicated, data are expressed as amean with the standard deviation in parentheses or as a number
with percentage in parentheses. NA, not applicable
a Calculated from Student’s t test for continuous variables and the chi-square test for categorical variables, unless
otherwise mentioned
bData is expressed as a median with range in parenthesis
c Calculated from patients with available Karnofsky Performance Status scores

Table 2 Multivariate Cox regression models with and without RRS for overall survival prediction

Model 1 Model 2 with RRS_LASSO Model 2 with RRS_elasticnet

Variables HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Age 1.029 (1.010–1.048) 0.003 1.037 (1.016–1.057) < 0.001 1.033 (1.013–1.053) 0.001

KPS 0.971 (0.944–0.998) 0.038 0.995 (0.999–1.025) 0.745 0.991 (0.962–1.021) 0.541

Extent of resectiona 3.642 (1.439–9.217) 0.006 2.162 (0.817–5.725) 0.121 2.589 (1.004–6.678) 0.049

WHO grade III 2.134 (1.067–4.269) 0.032 3.465 (1.597–7.519) 0.002 2.877 (1.407–5.882) 0.004

RRS_LASSO 9.479 (3.220–27.847) < 0.001

RRS_elasticnet 6.148 (3.009–12.563) < 0.001

iAUC (95% CI) 0.726 (0.678–0.814) 0.780 (0.737–0.855) 0.797 (0.752–0.872)

Difference of iAUCb (95% CI) 0.054 (0.013–0.104) 0.071 (0.022–0.133)

AIC 409.9 392.2 381.0

− 2LLc 397.9 378.2 367.0

RRS, radiomics risk score;HR, hazard ratio;CI, confidence interval; iAUC, integrated area under the receiver operating characteristic curve; AIC, Akaike
information criterion; LL, log likelihood
a Tumors that were not totally resected (subtotal/partial resected or biopsied) were compared with gross totally resected tumors
b Difference of iAUC= iAUC of model 2 − iAUC of model 1
c p values of − 2LL comparison between model 1 and model 2 were all < 0.001
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was significant difference in the extent of resection between
the two groups and total resection of the tumor was more
frequently performed in the low-risk group. Those optimal
cutoff values of RRS also stratified external validation cohort
into two groups with significantly different OS (p = 0.001 and
0.020, respectively, Fig. 4). The detailed clinical characteris-
tics of the low-risk and high-risk groups in the external vali-
dation cohort are demonstrated in Supplementary Table 4.

Discussion

We identified a subset of radiomic features that was signifi-
cantly associated with OS in patients with IDHwt lower-grade
gliomas of histologic grades II and III. When the RRS which
was derived from the selected radiomic features was integrat-
ed with the clinical features, a superior model performance

was achieved in predicting prognosis. There was also a trend
toward better performance when RRS was added to a model
with clinical features in the external validation cohort. In ad-
dition, the optimal cutoff of the RRS derived from the institu-
tional cohort divided the external validation cohort into two
groups with significantly different survival outcomes, demon-
strating the prognostic value of the RRS. Our study therefore
suggests that the radiomic featuresmay allow noninvasive risk
stratification of patients with IDHwt lower-grade gliomas and
can be used as a potential imaging biomarker.

Several previous studies have adapted radiomics to predict
survival in patients with lower-grade gliomas. Zhou et al utilized
various combinations of clinical features, a standardized feature
set named Visually AccesSAble Rembrandt Images features,
and radiomic features to predict tumor progression, revealing
that the radiomic features alone achieved the highest perfor-
mance compared with the other combinations tested in patients
with grade II/III gliomas [18]. Another recent study identified a
significant association between radiomic features and
progression-free survival in patients with grade II/III gliomas,
and the model integrating both clinicopathologic features and
radiomic features demonstrated high accuracy for progression-
free survival prediction [19]. These studies have pointed to the
prognostic potential of radiomic features. Similar results were
observed in our study, demonstrating that the radiomic features
also have prognostic value in patients with the IDHwt subgroup
of lower-grade gliomas. In this study, we identified that
radiomics not only is an independent factor for survival but also
has added prognostic value when integrated with clinical fea-
tures. Even though the absolute increase of iAUC was not con-
siderably big when the radiomics was added to a model with
clinical features (iAUC increased to 0.780–0.797 from 0.726),
still it was statistically significant. Furthermore, the prognostic
value of radiomics was proved in the external validation set. In
addition, after incorporating strong prognostic clinical features
such as extent of resection or WHO grade, RRSs were revealed
to have significant association with survival. Therefore,
radiomics has the potential for accurate noninvasive risk strati-
fication in patients with IDHwt lower-grade gliomas.

The majority of radiomic features that were selected by
LASSO and elastic net for survival prediction were texture fea-
tures. Other studies also reported that texture features among
radiomic features showed the prognostic values in patients with
gliomas [15, 17, 40, 41]. Texture features quantify the image
pattern on the basis of the spatial relationship or co-occurrence
of the pixel value [42], which provide information on
intratumoral heterogeneity [12]. Specifically, the GLSZM fea-
ture named “zone percentage” derived from T1C, which was
consistently selected from both LASSO and elastic net, present-
ed the strongest association with overall survival. The feature is
a measurement of coarseness of the texture [29], which was
reported to have strong discriminative ability between lower-
and high-grade gliomas according to a recent study [43].

Fig. 3 Time-dependent receiver operating characteristic curves from
models with and without radiomics risk scores (RRSs). Model 2 with
both RRS_LASSO (a) and RRS_elasticnet (b) yielded significantly
higher integrated area under the ROC curves (iAUC) of 0.758 (confi-
dence interval [CI], 0.697–0.821) and 0.770 (CI, 0.706–0.833), respec-
tively, compared with that of model 1 with only clinical features (0.701
[CI, 0.631–0.772])
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Therefore, in our study, tumors with higher values of GLSZM
zone percentage could follow more favorable outcomes based
on more homogenous textures. In addition, intratumoral hetero-
geneity in gliomas has been reported to be associated with ag-
gressive tumor behavior and drug resistance [44, 45]. Therefore,
texture features may play a key role in predicting prognosis.

In our study, we extracted the radiomic features from T2WI
and T1C images. FLAIR, T1WI, and advanced imaging such
as DWI or perfusion images were not used because many
patients from the external validation cohort lack these data.
Extracting features from more sequences may increase the
model performance for survival prediction but would inevita-
bly decrease the generalizability of the model. Our study re-
sults showed that the radiomic features only obtained with
conventional MR images (T2WI and T1C) had prognostic
value, which was validated in the independent cohort, and
therefore these findings could be applied to clinical situations
in which advanced imaging cannot be routinely performed. In
addition, a previous study had demonstrated that the T1C
alone performed best for the accurate survival stratification
of patients with glioblastoma, which was comparable to the
performance of a combination of other conventional MR im-
ages (T1WI, T1C, T2WI, and FLAIR) [45]. Similarly, another
study reported that texture features from T1C images most
accurately predicted OS in patients with glioblastomas com-
pared with those from T1WI, T2WI, or FLAIR images [46].
Therefore, our study results are in line with those previous
studies which concluded that T1C conveys prognostic infor-
mation. Furthermore, we extracted features not only from T1C
but also from T2WI because the study cohort included
lower-grade gliomas that may present with large propor-
tion of nonenhancing tumor, and almost half of consis-
tently selected texture features were derived from T2WI.
A recent study suggested that progression-free survival
in patients with grade II/III gliomas could be predicted

accurately by radiomic features solely extracted from
T2WI [19]. Thus, we believe that radiomics from con-
ventional MRI, especially T2WI and T1C, may provide
with useful information for predicting a patient’s prognosis.
Fortunately, this is also more feasible in clinical practice with
regard to its application and validation.

There was a significant difference in the extent of resection
between the institutional cohort and the validation cohort.
Gross total resection of the tumor was less frequently per-
formed, but a biopsy was more frequently performed in our
institution compared with the validation cohort. These differ-
ences may be due to the heterogeneous nature of the TCGA,
which consisted of data from multiple institutions, which may
have different standards for deciding on the extent of resec-
tion. In addition, the extent of resection was determined by
comparing the pre- and postoperative T2WI and T1C in our
institution by a neuroradiologist; however, it remains unclear
how the extent of resection has been determined in the TCGA
dataset.

There are several limitations in this study to be addressed.
First, this is a retrospective study and the number of study
population was small, especially in the validation cohort, be-
cause IDHwt tumors account for less than 30% of lower-grade
gliomas. In addition, unfortunately, the postoperative treatment
was not retrievable in all patients, while KPS was not available
in 11 patients in the TCGA dataset. However, we managed to
externally validate the prognostic value of RRS in patients with
available clinical data and found that adding RRS to a model
with clinical features increased the performance of model for
survival prediction. The differences of performances between
models with and without RRS were not statistically significant,
which might be attributed to the small number of patients.
Further studies using a larger cohort with more comprehensive
clinical informationmay be needed to validate our results; how-
ever, our study results revealed a potential of RRS as an

Table 3 Internal validation of
survival prediction models with
and without RRS

Model 1 Model 2 with RRS_LASSO Model 2 with RRS_elasticnet

iAUC 0.701 (0.631–0.772) 0.758 (0.697–0.821) 0.770 (0.706–0.833)

Difference of iAUCa 0.058 (0.008–0.090) 0.069 (0.001–0.108)

The numbers in parentheses represent the 95% confidence interval. RRS, radiomics risk score; iAUC, integrated
area under the receiver operating characteristic curve
a Difference of iAUC= iAUC of model 2 − iAUC of model 1

Table 4 External validation of
survival prediction models with
and without RRS

Model 1 Model 2 with RRS_LASSO Model 2 with RRS_elasticnet

iAUC 0.746 (0.543–0.921) 0.754 (0.586–0.901) 0.787 (0.619–0.931)

Difference of iAUCa 0.008 (− 0.176 to 0.203) 0.041 (− 0.119 to 0.207)

The numbers in parentheses represent the 95% confidence interval. RRS, radiomics risk score; iAUC, integrated
area under the receiver operating characteristic curve
a Difference of iAUC= iAUC of model 2 − iAUC of model 1
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imaging biomarker for predicting survival. Second, patients
were enrolled from relatively long time periods (from January
2007 to February 2018) in the institutional cohort; therefore, the
specific MR parameters could be changed over time. In addi-
tion, in the external validation cohort, MRI protocols were het-
erogeneous as the TCGA dataset contains data from different
institutions. Therefore, those different scan parameters and
MRI protocols which lied in the institutional and validation
cohort might affect the extracted radiomic features. We per-
formed pre-processing such as resampling and intensity nor-
malization to mitigate the effects which might occur due to
those heterogeneities. We believe that our results showed the
potential of radiomics for survival prediction even using MRI
with heterogeneous protocols. Third, EGFR amplification or
TERTp mutation has been reported to have prognostic impli-
cation in IDHwt lower-grade gliomas according to the
cIMPACT-NOW recommendations. However, unfortunately,
those genetic mutation results were available in only a small
number of patients in the institutional cohort; therefore, we

were not able to include genetic markers in the model. Future
studies are required to validate the prognostic value of RRS in
conjunction with EGFR amplification or TERTp mutation
status.

Conclusion

In conclusion, radiomics enables noninvasive risk stratifica-
tion and can improve survival prediction in patients with
IDHwt lower-grade gliomas when integrated with clinical
features.
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