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Abstract
Objective Lombardy (Italy) was the epicentre of the COVID-19 pandemic inMarch 2020. The healthcare system suffered from a
shortage of ICU beds and oxygenation support devices. In our Institution, most patients received chest CT at admission, only
interpreted visually. Given the proven value of quantitative CT analysis (QCT) in the setting of ARDS, we tested QCT as an
outcome predictor for COVID-19.
Methods We performed a single-centre retrospective study on COVID-19 patients hospitalised from January 25, 2020, to April
28, 2020, who received CT at admission prompted by respiratory symptoms such as dyspnea or desaturation. QCT was
performed using a semi-automated method (3D Slicer). Lungs were divided by Hounsfield unit intervals. Compromised lung
(%CL) volume was the sum of poorly and non-aerated volumes (− 500, 100 HU). We collected patient’s clinical data including
oxygenation support throughout hospitalisation.
Results Two hundred twenty-two patients (163 males, median age 66, IQR 54–6) were included; 75% received oxygenation
support (20% intubation rate). Compromised lung volume was the most accurate outcome predictor (logistic regression,
p < 0.001). %CL values in the 6–23% range increased risk of oxygenation support; values above 23% were at risk for intubation.
%CL showed a negative correlation with PaO2/FiO2 ratio (p < 0.001) and was a risk factor for in-hospital mortality (p < 0.001).
Conclusions QCT provides new metrics of COVID-19. The compromised lung volume is accurate in predicting the need for
oxygenation support and intubation and is a significant risk factor for in-hospital death. QCT may serve as a tool for the triaging
process of COVID-19.
Key Points
• Quantitative computer-aided analysis of chest CT (QCT) provides new metrics of COVID-19.
• The compromised lung volume measured in the − 500, 100 HU interval predicts oxygenation support and intubation and is a
risk factor for in-hospital death.

• Compromised lung values in the 6–23% range prompt oxygenation therapy; values above 23% increase the need for intubation.
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Abbreviations
%CL Compromised lung
%NAL Normally aerated lung
%NNL Non-aerated lung
%PAL Poorly aerated lung
ARDS Acute Respiratory Distress Syndrome
BMI Body mass index
COVID-19 Coronavirus disease 2019
CT Computed tomography
HU Hounsfield units
IQR Interquartile range
QCT Quantitative computed tomography
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rtRT-PCR Real-time reverse transcriptase–polymerase
chain reaction

Introduction

In the early days of December 2019, the first pneumonia cases
of a new coronavirus named SARS-CoV-2 were identified in
Wuhan, the capital city of Hubei province (China) [1]. As of
April 30, 2020, 1,112,667 cases have been reported in the EU/
EEA and the UK: Spain (212,917) and Italy (203,591) had the
largest contagion [2].

Since the initial spread of this new illness, known as corona-
virus disease 2019 (COVID-19), many patients have been hos-
pitalized with respiratory symptoms [3]. The clinical spectrum
is broad, including asymptomatic infection, mild upper respira-
tory tract disease and severe interstitial pneumonia with respira-
tory failure requiring oxygenation support or intubation [4, 5].

Computed tomography (CT) is the most sensitive radiologi-
cal technique for the diagnosis of COVID-19, showing diffuse
lung alterations ranging from ground-glass opacities to paren-
chymal consolidations; several radiological patterns are ob-
served at different times throughout the disease course [6, 7].
However, CT has limited specificity for distinguishing between
virus [8]. Early diagnosis is hence mainly performed with naso-
pharyngeal swabs and virus RNA extraction with real-time
reverse transcriptase–polymerase chain reaction (rtRT-PCR) [9].

Recently, the visual assessment of lung damage on CT
scans has been proven valuable in determining the prognostic
implications [10]. Nonetheless, computer-aided quantitative
analysis of the CT exam (Quantitative Computed
Tomography [QCT]) can also be used for this purpose, as
already demonstrated by the research on the acute respiratory
distress syndrome (ARDS) [11, 12].

The main objective of our research was to explore the role of
QCT analysis as an outcome predictor for COVID-19. To this
end, we conducted a monocentric retrospective study on posi-
tive patients in a tertiary referral Institution inMilan (Lombardy,
Italy) during the recent outbreak, where we experienced hospital
overcrowding and shortage of intensive care unit (ICU) beds,
mechanical ventilation devices and oxygen [13].

Materials and methods

Study oversight

The present is an observational retrospective study, conducted
in a tertiary referral University Hospital in Milan (Lombardy,
Italy). The study protocol followed the ethical guidelines
established in the 1975 Declaration of Helsinki, compliant
with the procedures of the local ethical committee, and was
approved by the Institutional Review Board. This study re-
ceived no financial support.

Data sources

We obtained laboratory, clinical and radiological data of
hospitalised patients affected byCOVID-19 from the electron-
ic medical records; the inclusion data cutoff for the analyses
was January 25, 2020, and April 28, 2020.

COVID-19 was diagnosed based on a positive result on
rtRT-PCR assay on nasal and pharyngeal swab specimens
[14]. We included only laboratory-confirmed cases who re-
ceived a non-contrast chest CT at admittance in the emergency
department.

We analysed patients’ demographics and clinical and lab-
oratory findings at admittance from electronic medical re-
cords. Patient demographics included age, sex, body mass
index (BMI), concomitant/previous diseases and smoking
habit. Clinical and laboratory assessments consisted of body
temperature, PaO2, PaCO2, and C-reactive protein. We also
noted the time from symptom onset, days of hospitalisation,
ICU admittance, medical therapy administered and the most
invasive level of oxygenation support provided. In particular,
we distinguished between low-flow oxygenation (nasal can-
nula, face mask), high-flow oxygenation (Venturi mask, hel-
met CPAP) and mechanical ventilation through an endotra-
cheal tube. We collected the time interval from CT and oxy-
genation support, as well as the first PaO2/FiO2 ratio available.
In-hospital deaths and healed patients’ discharge dates were
also noted.

The clinical features of confusion (mental test score of 8 or
less), urea, respiratory rate and blood pressure were also ac-
quired to calculate the CURB-65, a validated score to predict
the severity of community-acquired pneumonia [15] that strat-
ifies patients in groups from 1 to 3 according to the risk of
mortality.

Chest CT and quantitative analysis

All patients received a standard non-contrast chest CT with a
multidetector CT scanner (Philips Brilliance) with the follow-
ing setup: collimation, 64 × 0.25; voltage, 120 kV; tube cur-
rent, 130–200 mAs, 240 mA, pitch 1.4, slice thickness after
reformat, 2.5 mm. The field of view included the whole chest
and was acquired during forced inspiration, in keeping with
patient compliance. The dataset was anonymised and exported
to a dedicated segmentation suite for medical image comput-
ing (3D Slicer, www.slicer.org) [16] equipped with a semi-
automated segmentation algorithm (Chest Imaging Platform)
[17]. This software, validated as useful in the surgical setting
[18], performed a first-pass automated segmentation; then,
lung volumes were manually perfected using three-
dimensional tools such as spherical brushes or erasers.

As a rule, a complete segmentation included both lungs
with interstitial structures, segmentary vessels and bronchi;
the main pulmonary arteries and bronchi, all mediastinal

6771Eur Radiol  (2020) 30:6770–6778

http://www.slicer.org


structures and eventual pleural effusionwere excluded, as well
as lung masses (e.g. tumours, fungal disease).

Lung volumes, considered percentages of the total volume,
were extracted according to different Hounsfield unit (HU)
intervals into non-aerated (%NNL, density between 100, −
100 HU), poorly aerated (%PAL, − 101, − 500 HU), normally
aerated (%NAL, − 501, − 900 HU), and hyperinflated (− 901,
− 1000HU) [19]. The additional volume “compromised lung”
(%CL) was considered the sum of %PAL and %NNL (− 500,
100 HU) (Fig. 1). The authors in charge of segmentation
(E.L., C.L., R.M.) were unaware of the laboratory and clinical
parameters or hospitalisation outcomes. Conflicts were re-
solved in consensus. The principal investigator reviewed and
confirmed all segmentations before data entry. The time need-
ed to complete each analysis was recorded.

Outcomes

The primary objective was to identify and validate the most
accurate lung volume derived byQCT, to predict the twomain
study outcomes: the need for oxygenation support and the
need for intubation in patients affected by COVID-19.

Other objectives included correlation with pulmonary dys-
function as measured by the PaO2/FiO2 ratio and prediction of
in-hospital death (Table 1).

Statistical analysis

Development of prediction models

All analyses were performed using Stata 13 (StataCorp LP).
Multiple binomial logistic regressions were performed to explore
the correlation of the lung volumes, %NAL, %PAL and %CL,
over the two outcomes of interest. All clinically relevant predic-
tors without missing data were included in the final model as
covariates: age, sex, smoke habit, CPR, heart disease, chronic
lung disease, cancer, diabetes, chronic kidney failure, urea levels
andCURB-65 group. Three similarmodelswere thus developed:
%NAL-model, %PAL-model and %CL-model.

BMI was available for 161 patients and was tested in a
separate model.

A Pearson’s product-moment correlation was run to assess
the relationship between the selected lung interval and PaO2/
FiO2 in 106 patients (nasal cannula = 26, Venturi mask = 28,
helmet CPAP = 21, endotracheal tube = 27).

A Cox regression survival analysis was performed to ex-
plore potential predictors of mortality. All potential candidates
were testedwith univariate analyses; the cutoff for inclusion in
the final model was set at p < 0.2.

Model validation

All simulations were run using Python programming language
(Python Software Foundation, https://www.python.org/).
Categorical variables were preliminarily tested for correlation
using chi-square tests; Wilcoxon rank-sum tests were performed
on continuous covariates to inspect the probability of being sam-
pled from the same distribution. Two separate multivariate re-
gressions, without regularisation, were performed on both out-
comes over the space of covariates. Models’ coefficients, confi-
dence intervals and their associated associations (p values) were
investigated to assess whether the selected lung interval remained
significant despite adjusting for possible confounders. Predictive
machine learning models were built using logistic regression
with regularisation. To adjust for class imbalance, on both out-
comes, and preserve the limited amount of available observa-
tions, the logistic regression was stacked upon a SMOTE model
during training [20].

Hyperparameters were chosen by randomised selection over
1000 possible validations by means of 10-fold cross-validation
each, for a total of 5000 actually trained models. The aim was to
alleviate class imbalance by maximisation of class weighted F1
score, harmonic mean of precision and recall (Fig. 2).

Cross-validated receiver operating characteristic (CV-
ROC) and mean areas under the curve (CV-AUC) were cal-
culated [21]. Different cross-validated cut points at 90% sen-
sitivity and at 90% specificity were estimated for both
outcomes.

Fig. 1 Quantitative lung CT analysis of an 81-year-old male patient af-
fected by COVID-19. a Non-contrast chest CT at admission showing
bilateral ground-glass opacities, common findings of the novel coronavi-
rus pneumonia. b Semi-automated segmentation using 3D Slicer. Blue
areas are normal lung parenchyma; yellow areas represent poorly aerated

lung in the − 500, − 100 HU interval. c 3D volumetric representation of
both lungs. d Comparison between normal and compromised lung vol-
umes. This patient had 6% of compromised lung volume, required no
oxygenation support and was discharged after 15 days of observation and
supportive therapy
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Results

Demographic and clinical characteristics

A cohort of 222 patients (163 males, 59 females, median age
66, interquartile range [IQR] 54–6) was identified (Table 2).
The median interval time between symptom onset at admission
and CT was 7 days (IQR, 3–8). The median body temperature
during the CT exam was 37.7 °C (IQR, 36.9°–38.4°), and the
median PaO2 was 67 mmHg (IQR, 57–90). The median
hospitalisation length was 11 days (IQR, 7–17, maximum 56).

During the hospital stay, 75% of patients required oxygen-
ation support (Table 3) as follows: 29% low-flow oxygenation
(26% nasal cannula, 3% facial mask); 26% high-flow oxygen-
ation (16% Venturi mask, 10% helmet CPAP); and 20% me-
chanical ventilation with an endotracheal tube. Median PaO2/
FiO2 ratio, as recorded on the first day of oxygenation support,
was 192.0 (IQR, 122.2–251.5). The median time interval from
admission CT to oxygenation support was 1 day (IQR, 0–2).

During the observation, antiviral therapy with lopinavir-
ritonavir was administered in 55% of patients and
darunavir plus cobicistat in 36%. Hydroxychloroquine
was used in 91%. All patients also received the best med-
ical therapy tailored to the individual case, including
broad-spectrum antibiotics.

Up to the reference date April 28, 2020, out of total 222
patients, 8 (3.6%) were still hospitalised, whereas the remain-
ing 214 (96.3%) were discharged, 150 (67.6%) of them healed
and 64 (28.8%) died after a median 9 days hospitalisation
(IQR, 5–14): their median age was 75.7 years (IQR, 71–80).

Regarding the CURB-65 score, 129 patients were
categorised as low risk (group 1), and 57 patients were

medium risk (group 2); no patients were scored as high risk
(group 3). Death rates were 19% and 36% respectively.

Diagnostic performance of the different lung volumes

All CT scans were considered of diagnostic quality and suc-
cessfully analysed. All lung volumes were correctly extracted
(Table 3). The median time for segmentation was 11 min
(IQR, 7–14).

The need for oxygenation support was accurately predicted
both by the %PAL model (LR χ2(13), 86.05; p < 0.0001) and by
the %CL model (LR χ2(13), 86.90; p < 0.0001). In both, %PAL
and %CL showed a strong predictive value (p < 0.0001) and
were the only significant covariates. The %NAL model showed
worse performance (LR χ2(13), 39.18; p < 0.0002) and %NAL
was not a significant predictor (p = 0.315).

The need for intubation was accurately predicted by all
three models with minimal differences in LR χ2(13) (%NAL
model, 81.47; %PAL model, 85.31, %CL model, 89.88;
p < 0.0001 each) and all three lung volumes showed strong
predictive value (p < 0.0001). The compromised lung volume
was considered the best single predictor of both outcomes, and
the %CL model was chosen for validation.

A separate model was fitted adding BMI as a covariate in a
subgroup of 161 patients, proving no effect on both outcomes
(oxygenation support, p = 0.130; intubation, p = 0.428).

Validation of compromised lung volume

For the outcome of oxygenation support, the %CL model
reached CV-AUROC 0.83 (weighted f1-score, 0.72; standard
deviation [SD], 0.098). Cross-validated cut points were

Table 1 Multivariate analyses of risk factors for oxygenation support, intubation and in-hospital death

Oxygenation support Intubation Death

Risk factor OR 95% CI p value OR 95% CI p value OR p value 95% CI

Compromised lung volume 1.28 1.16 1.41 < 0.001* 1.12 1.07 1.17 < 0.001* 1.03 0.001* 1.01 1.04
Age 1.04 1.00 1.08 0.052 0.97 0.92 1.01 0.154 1.07 < 0.001* 1.03 1.10
Sex 1.59 0.63 4.04 0.329 1.04 0.33 3.24 0.952 0.93 0.836 0.47 1.83
Smoke habit 1.03 0.17 6.12 0.974 1.08 0.15 7.57 0.939 1.77 0.129 0.85 3.68
CRP 1.02 0.98 1.05 0.321 1.01 0.98 1.05 0.506 1.03 0.001* 1.01 1.05
Heart disease 2.23 0.45 11.05 0.326 0.18 0.02 1.79 0.143 1.19 0.642 0.58 2.44
Lung disease 6.87 0.70 67.95 0.099 0.65 0.07 6.14 0.703 1.05 0.904 0.47 2.33
Cancer 0.87 0.21 3.64 0.848 0.73 0.11 4.71 0.739 3.42 0.003* 1.52 7.73
Diabetes 0.88 0.31 2.52 0.809 0.87 0.23 3.23 0.833 1.88 0.052 0.99 3.55
CKD 1.53 0.13 18.18 0.738 0.69 0.07 7.01 0.752 4.14 0.003* 1.60 10.70
CURB-65a 1 0.58 0.06 5.25 0.630 1.31 0.18 9.40 0.788 0.81 0.685 0.30 2.23
CURB-65a 2 0.32 0.05 2.04 0.228 1.80 0.40 8.09 0.443 0.80 0.556 0.38 1.67
Urea at admission 1.60 0.49 5.21 0.437 4.93 1.39 17.47 0.014* 1.71 0.179 0.78 3.75
BMI (n = 161) 1.08 0.98 1.20 0.130 0.95 0.84 1.08 0.428 .. .. .. ..

OR = odds ratio; CI = confidence interval; CRP =C-reactive protein; CKD = chronic kidney disease. a Risk group according to the CURB-65 scoring
system

* italics mark statistical significance
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identified: 6%CL at high sensitivity (90%; specificity, 43%);
13%CL at high specificity (91%; sensitivity, 53%, Fig. 3).

For the intubation outcome, the %CL model reached CV-
AUROC 0.86 (weighted f1-score, 0.79; SD, 0.07). Cut-points
were 10%CL at high sensitivity (90%; specificity, 56%), and
23%CL at high specificity (91%; sensitivity 69% Fig. 4).

Compromised lung volume and survival

A moderate negative correlation between %CL and PaO2/
FiO2 ratio, r(104) = − 0.39, p < 0.001 was observed, highlight-
ing how pulmonary function worsened as %CL increased.

As a result of multivariate survival analysis, %CL was
predictive of in-hospital mortality (hazard ratio [HR], 1.02;

95% CI, 1.02 to 1.05, p = 0.01), together with age (HR,
1.06; 95% CI, 1.03–1.10, p < 0.0001), cancer (HR, 3.27;
95% CI, 1.54–6.94), CRP (HR, 1.03, 95% CI 1.01–1.05)
and CKD (HR, 5.59; 95% CI, 1.97–15.86). Detailed results
are reported in Table 1.

All other variables proved non-significant at univariate
analyses and were excluded from the final model.

Discussion

COVID-19 is a new disease outbreak reaching a pandemic
level and a threat to global health [22]. Hospital overcrowd-
ing, shortness of ICU beds, oxygen and ventilators have been

Fig. 2 Ten-fold cross-validation for receiver operating characteristic (a) and precision-recall curves (b) showing performance of compromised lung
volume as a predictor of oxygenation therapy and of intubation (c and d), based on quantitative analysis of chest CT at hospital admittance
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a large-scale concern in in Lombardy (Italy) [13]; thus, accu-
rate and rapid triaging is key to avoid a crisis of the health care
network.

Chest x-ray has been proposed as a low-cost tool for de-
tecting lung impairment in patients with suspected COVID-19
[23]. However, its low sensitivity [24] makes it more appro-
priate for follow-up rather than early diagnosis [25]. Chest CT
is instead pivotal to the early diagnosis of COVID-19 due to
the ability to detect all disease characteristics [26], and its use

has been recommended by the European Society of Radiology
in selected patients [27], using a dedicated scanner whenever
possible [28]. However, its value is currently limited to visual
findings [25], whereas QCT proved to be the tool that allowed
for considerable advancements in understanding the ARDS
pathophysiology and establishing adequate oxygenation sup-
port [29]. These observations led us to perform QCT analysis
in all chest CT scans performed at admission on confirmed
COVID-19 cases. We identified the volume of compromised
lung included in the − 500, 100 HU interval as a predictor of
oxygenation support and invasive ventilation; this was also
significantly correlated with pulmonary dysfunction as mea-
sured by the PaO2/FiO2 ratio and represented a risk factor for
in-hospital mortality.

Typical CT appearance of COVID-19 was well described
by Chung et al in February 2020 [7] and has been confirmed
by several reports [6, 7]. Based on these findings, Yuan et al
have proposed a scoring method to screen patients based on
the admittance CT scan [10]. More recently, Li et al also
described a visual, quantitative analysis of lung damage,
based on a “total severity score” to the degrees of parenchymal
loss, correlated with a score of clinical severity [30]. However,
these visual characterisations are subjective and unsuited to a
systematic disease evaluation and data sharing. Conversely,
we reported on a QCT method based on 3D Slicer, which is
fast and standardised, and ensures a consistently repeatable
evaluation of parenchymal impairment. Some advantages are
that (a) it is a free, open-source software untied to any work-
station; (b) it has a low learning curve [16]; (c) documentation

Table 3 Details of oxygenation support and results of quantitative lung CT analysis

Oxygen therapy
No oxygenation support Low-flow O2 High-flow O2 Intubated Overall

Patients 56 (25%) 63 (29%) 58 (26%) 45 (20%) 222
PaO2/FIO2 .. 244.4

(207.4–320)
171.43
(122.22–229.63)

128.6
(95.4–211.1)

192.0
(122.22–251.5)

Death rate 2 (1%) 15 (7%) 26 (12%) 21 (9%) 64 (29%)
Healing rate 54 (24%) 46 (21%) 30 (13%) 20 (9%) 150 (68%)

Lung segmentation
median lung volume % (IQR)

No oxygenation support Low-flow O2 High-flow O2 Intubated Overall
Hyperinflated 15 (4.5–22) 8 (2–18) 8 (3–12) 3 (1–7) 6 (2–16)
Normal 78.5 (71–84) 77 (72–83) 77 (70–83) 61 (45–72) 76 (67–83)
Poorly aerated 5 (4–6) 8 (5–13) 11 (6–15) 22 (13–33) 9 (5–15)
Non-aerated 1 (1–2) 2 (1–4) 2 (1–3) 6 (3–16) 2 (1–4)
Compromised 6 (5–9) 11 (7–16) 13.5 (7–17) 32 (15–50) 12 (7–20)
Total (cm3) 4726.3

(3835.8–5590.9)
4115.22
(3246.3–4915.2)

3946.51
(2826.1–4663.7)

3332.7
(2458.1–4222.6)

4057.4
(3132.3–4916.1)

Predictive value
% Lung volume Any O2 Low-flow O2 High-flow O2 Intubation
Poorly aerated [median (IQR)] 9 (6–13) 8 (5–13) 11 (7–15) 22 (13–33)
p value < 0.001 0.08 0.4 < 0.001
Sensitivity, specificity 90.0%, 51.1% .. .. 52.8%, 97.1%
Accuracy 80.0% .. .. 88%
Compromised lung [median (IQR)] 14.5 (9–25) 11 (7–16) 14.5 (10–19) 32 (15–50)
p value < 0.001 0.13 0.14 < 0.001
Sensitivity, specificity 90.0%, 51.1% .. .. 55.6%, 97.8%
Accuracy 80.0% .. .. 89.1%

Table 2 Patients’ characteristics

Characteristic Median (IQR)

Age 66.4 years (53.8–75.8)
BMI 27.2 (24.0–30.1)
Symptoms onset 7 days (3–8.5)
Body temperature 37.7 °C (36.9–38.4)
pO2 65 mmHg (53.5–76)
pCO2 34 mmHg (30.5–38)
CRP 8.1 mg/L (2.7–17.9)

Total (N = 222)
Male sex 163 (73%)
Smoke habit 25 (11.2%)
Cancer 18 (8.1%)
Lung disease 22 (9.9%)
Heart Disease 27 (12.16%)
Diabetes 38 (17.1%)
CKD 10 (4.5%)
Medical therapy
Lopinavir-ritonavir 122 (54.9%)
Darunavir plus cobicistat 80 (36.0%)
Hydroxychloroquine 203 (91.4%)

CRP = C-reactive protein; CKD = chronic kidney disease
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and Internet support are easily found; and (d) it allows for
rapid deployment in the ever-changing epicentres of the
Coronavirus pandemic.

Colombi et al [31] have used a similar approach to
predict the outcomes of COVID-19. They reported good
performance of the well-aerated volume (%WAL, − 950,
− 700 HU) in predicting the combined outcome of ICU
admission and death. Such an outcome, however, would
not be informative in our cohort. In fact, 21/48 (66%) of
our deaths happened outside the ICU, and 23/48 (48%) of
patients successfully healed after ICU admittance,
remarking that ICU admission should not be generalised
as a “worse” outcome. Moreover, they reported the nega-
tive predictive value of a BMI surrogate, the adipose tis-
sue measured at the T7-T8 level, whereas in our study
BMI was not predictive of the need for oxygenation sup-
port or intubation.

Compromised lung was significantly correlated with
the PaO2/FiO2 ratio and increasing pulmonary dysfunc-
tion. One reason may be that hypoxemia refractory to
oxygenation support is mainly due to intrapulmonary
shunt [32] that happens in poorly and non-aerated lung
areas, which are well quantified in the %CL. On the

contrary, aerated lung volumes such as %NAL or
%WAL represent an indirect quantification of this phe-
nomenon and may be more prone to variation during
respiratory movements, or ventilation; this may also ex-
plain the poor performance of %NAL model in our
analysis.

Another approach to quantitative analysis has been pro-
posed by Huang et al [33], who have successfully deployed
a commercial deep learning algorithm to quantify lung impair-
ment. However, the prediction of oxygenation support was
not among their reported outcomes. Despite the promising
power of such an approach, the same authors also report that
in 8.7% of cases, the algorithm was unable to correctly iden-
tify the lung borders without the help of the radiologist. This
need is also shared by our semi-automated approach.

Regardless of the technique used, QCT is seen as the
ideal tool that could be able to predict which patient will
need a ventilator soon or who no longer requires one. This
might help especially in situations with limited hospital
resources; in fact, in the process of triaging, the highest
priority is to be accorded to those patients whose progno-
sis is good with intensive care, but poor without it [34].
QCT, particularly the compromised lung volume, may

Fig. 4 Quantitative Lung CT analysis of a 43 years old male patient
affected by COVID-19. a) Non-contrast chest CT showing extensive
areas of bilateral lung consolidation, multiple ground-glass opacities
and interstitial thickening and consolidation b) Semi-automated segmen-
tation using 3D Slicer. Blue areas are normal lung parenchyma; yellow
areas represent poorly aerated lung in the − 500, − 100 HU interval; red
areas represent non-aerated lung and interstitium, in the − 100, 100 HU

interval. c 3D volumetric representation of both lungs showing extensive
red areas of consolidation in keeping with severe pneumonia. d
Comparison between normal and compromised lung volumes. This pa-
tient had 50% of compromised lung volume and required immediate
intubation and mechanical ventilation. He died after 13 days of intensive
care, due to multi-organ failure

Fig. 3 Quantitative lung CT analysis of a 35-year-old male patient affect-
ed by COVID-19. a Non-contrast chest CT at admission showing bilat-
eral ground-glass opacities, interstitial thickening and consolidation in the
posterior lung zones. b Semi-automated segmentation using 3D Slicer.
Blue areas are normal lung parenchyma; yellow areas represent poorly
aerated lung in the − 500, − 100 HU interval; red areas represent non-

aerated lung and interstitium, in the − 100, 100 HU interval. c 3D volu-
metric representation of both lungs showingmultiple red areas in keeping
with moderate lung impairment. dComparison between normal and com-
promised lung volumes. This patient had 18% of compromised lung
volume, required high-flow oxygenation support through a Venturi
Mask. He was discharged after 17 days of sub-intensive care
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hence be used as a new decision tool, considering its
strong correlation not only with respiratory needs but also
with in-hospital survival. The need for new metrics spe-
cific to COVID-19 is remarked by the low performance of
a validated score for pneumonia (CURB-65) that was test-
ed for comparison; most patients (58%) were graded as
low-mortality risk (group 1); still, we observed a 15%
death rate, much higher than the presumed 1.5% [15].

This study has several limitations. Firstly, it has a retro-
spective design. Secondly, we did not perform a repeat CT
on the healed patients before discharge, to check whether the
physiological lung volumes had been restored; this could be
the subject of a future study.

Regarding the segmentation process, we included the
interstitial structures in the analysed volume (e.g. seg-
mental arteries and bronchi). By partially falling in the
same threshold as the non-aerated lung, these may have
reduced precision. However, the event might have been
irrelevant to the outcome. Firstly, because the poorly
aerated volume alone was a strong outcome predictor;
secondly, because the same method was applied to all
patients thus counterbalancing the potential inaccuracy;
thirdly, the added volume of the lung interstitium may
be considered negligible compared to the compromised
lung volume in the setting of severe pneumonia. On the
contrary, this choice allowed for a fast segmentation
process.

Regarding respiratory support, 20% of our patients re-
quired invasive mechanical ventilation, a higher number com-
pared to 2.5% reported by Wu et al and 17% by Wang and
Zhou et al These observations may be partially due to the
higher age of the Italian population [35]. Indeed, the median
age of our cohort (66 years) was above the ones previously
reported in China byWu et al [36] (51 years), Wang et al [37]
and Fei Zhou et al [4] (56 years).

The main strengths of our study are the high number
of patients enrolled, the completeness of clinical data,
the high statistical significance of all tests conducted
and the use of a rapidly reproducible and scalable meth-
od for QCT.

In conclusion, lung QCT provides new metrics of COVID-
19 and has a promising role in predicting its clinical outcome.
The percentage of lung parenchyma in the − 500, 100 HU
interval, namely the compromised lung volume (%CL), has
shown high accuracy in predicting the need for oxygenation
support and mechanical ventilation and is a risk factor for in-
hospital death.

We empirically identified different cut points of compro-
mised lung volume: patients presenting with %CL values in
the 6–23% range are at risk for needing oxygenation thera-
py; values above 23% are at risk for intubation. These re-
sults strengthen the evidence of QCT as an ideal tool for
easing the triaging process of COVID-19.
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