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Abstract
Objectives To reveal the utility of motion artifact reduction with convolutional neural network (MARC) in gadoxetate disodium–
enhanced multi-arterial phase MRI of the liver.
Methods This retrospective study included 192 patients (131 men, 68.7 ± 10.3 years) receiving gadoxetate disodium–enhanced
liver MRI in 2017. Datasets were submitted to a newly developed filter (MARC), consisting of 7 convolutional layers, and trained on
14,190 cropped images generated from abdominal MR images. Motion artifact for training was simulated by adding periodic k-space
domain noise to the images. Original and filtered images of pre-contrast and 6 arterial phases (7 image sets per patient resulting in 1344
sets in total) were evaluated regardingmotion artifacts on a 4-point scale. Lesion conspicuity in original and filtered images was ranked
by side-by-side comparison.
Results Of the 1344 original image sets, motion artifact score was 2 in 597, 3 in 165, and 4 in 54 sets. MARC significantly
improved image quality over all phases showing an average motion artifact score of 1.97 ± 0.72 compared to 2.53 ± 0.71 in original
MR images (p < 0.001). MARC improvedmotion scores from 2 to 1 in 177/596 (29.65%), from 3 to 2 in 119/165 (72.12%), and from
4 to 3 in 34/54 sets (62.96%). Lesion conspicuity was significantly improved (p < 0.001) without removing anatomical details.
Conclusions Motion artifacts and lesion conspicuity of gadoxetate disodium–enhanced arterial phase liver MRI were signifi-
cantly improved by the MARC filter, especially in cases with substantial artifacts. This method can be of high clinical value in
subjects with failing breath-hold in the scan.
Key Points
• This study presents a newly developed deep learning–based filter for artifact reduction using convolutional neural network
(motion artifact reduction with convolutional neural network, MARC).

• MARC significantly improved MR image quality after gadoxetate disodium administration by reducing motion artifacts,
especially in cases with severely degraded images.

• Postprocessing with MARC led to better lesion conspicuity without removing anatomical details.
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Abbreviations
AP Arterioportal
CNN Convolutional neural network
FNH Focal nodular hyperplasia
HCC Hepatocellular carcinoma
MARC Motion artifact reduction with convolutional neural

network
MRI Magnetic resonance imaging
ReLU Rectified linear unit
TSM Transient severe motion
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Introduction

Recent research demonstrated intravenous bolus injection of
gadolinium-based contrast agents to be accompanied by
motion-related image degradation in the arterial phase [1–3].
This phenomenon is temporary and self-limited, wherefore
the term “transient severe motion” (TSM) is often used.
Although the underlying pathomechanism has not yet been
conclusively solved, the incidence of these artifacts, ranging
from 8 to 20% [1, 2, 4, 5], was found to be significantly higher
after gadoxetate disodium administration compared to other
contrast media [1, 2, 4]. TSM artifacts are of high clinical
significance, as the arterial phase is essential for lesion char-
acterization [6, 7]. Artifact reduction during image acquisition
or afterwards, therefore, would contribute to the imaging-
based diagnosis in the clinical setting.

In order to solve this problem, several strategies are con-
ceivable. One potential solution can be patient-based: through
informing patients concerning the problem of acute transient
dyspnea or performing breath-hold practice before the scan,
the rate of artifacts could be decreased [8]. Likewise, dilution
of the contrast agent is able to reduce the incidence of artifacts
[9, 10]. Another strategy can be a modulation of the data
acquisition: fast scanning techniques leading to a shorter ex-
amination time consequently minimize the risk of patient mo-
tion. Compressed sensing is now widely used in clinical prac-
tice to shorten the acquisition time by the use of undersampled
k-space data without compromising signal-to-noise ratio [11,
12]. Other studies focused on respiratory triggering, where
arterial phase images are acquired with the help of respiratory
tracings or navigator echoes [13]. The use of single-breath-
hold multi-arterial phase acquisition provides adequate well-
timed late hepatic arterial phase images in most patients even
with transient severe motion [2, 14, 15]. Interestingly, Min
et al [16] showed a similar incidence of TSM artifacts with
multiple arterial phases using view sharing from two different
vendors and conventional single arterial phase in a retrospec-
tive study.

All these approaches, however, have to be prepared
before the scan at a time when we do not know if the
individual patient will fail their breath-hold, and there-
fore turn out time-consuming and disrupt the clinical
workflow. Postprocessing artifact removal allows for
standardized MR protocols and does not require any
change in sequence acquisition. On this field, deep
learning methods show emerging applications in medical
image reconstruction and related reduction of artifacts.
In fact, a variety of studies have been published on the
field of reconstruction [17–19]. However, in terms of
artifact reduction in MRI, there are only a few pub-
lished papers addressing motion artifacts [20–22].
Especially, the clinical utility of respiratory motion arti-
fact reduction has not been studied so far.

Therefore, the purpose of our study was to reveal the utility
of respiratory motion artifact reduction with convolutional
neural network (MARC) in combination with advanced ac-
quisition method of single-breath-hold multi-arterial phase ac-
quisition (DISCO) in gadoxetate disodium–enhanced MRI of
the liver.

Materials and methods

The retrospective studywas approved by the local institutional
review board. The requirement to obtain patients’ informed
consent was waived.

A study coordinator searched the electronic database for
abdominal MR examinations under administration of
gadoxetate disodium and found 192 consecutive examinations
between March and June 2017. No examination had to be
excluded. The study population consisted of 131 men and
61 women with a mean age of 68.7 ± 10.3 years (range 29–
89 years).

Magnetic resonance imaging acquisition

MR examinations were performed using a 3-T system (MR
750, GE Healthcare) with a 32-channel torso phased-array
coil. Pre-contrast and 6 arterial dynamic phases were acquired
each during breath-hold. Gadoxetate disodium (EOB
Primovist®, Bayer-Schering Pharma) was administered intra-
venously at a rate of 1 ml/s in a standard dose of 0.025 mmol/
kg body weight with following saline flush.

Multiphasic hepatic arterial phase imaging was performed
using multiphasic T1-weighted 3D spoiled gradient-echo se-
quence with view sharing technique (differential subsampling
with Cartesian ordering, DISCO), using the following param-
eters: TR = 3.9 ms, TE = 1.1/2.2 ms, flip angle = 15°, receiver
bandwidth = ± 167 kHz, field of view = 340 × 340 mm2, slice
thickness/intersection gap = 3.6/0 mm, matrix = 320 × 192,
parallel imaging factor = phase 2.0/slice 1.5, acquisition
time = 22–26 s, and temporal resolution = ~ 4 s.

Image analysis

For the whole study population of 192 patients, one pre-
contrast phase and 6 dynamic post-contrast arterial phases
per patient resulted in a total of 1344 image sets for original
and artifact-reduced data. Image analyses of T1-weighted se-
quences were performed independently by two observers with
3 and 11 years of experience in abdominal MR imaging, who
were blinded to non-imaging-based patient risk factors, as
well as whether images were the originals or artifact-reduced,
that is after the MARC filter application.

Image quality was evaluated in terms of motion artifacts
and diagnostic validity using a 4-point scoring system: 1 = no
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motion artifacts, 2 = minor motion artifacts/no effect on diag-
nostic quality, 3 = distinct artifacts/impeded diagnostic quali-
ty, and 4 = severe artifacts/non-diagnostic image quality.
Figure 1 shows examples of the different motion scores in
the arterial phase of MR imaging.

Additionally, a radiologist reviewed all original and T2-
weighted images to find a focal liver lesion per patient with
referring to the radiological reports. If more than one lesion
was present in the liver, selection was performed in the follow-
ing order: (1) hepatocellular carcinoma (HCC), (2) malignant
tumor, (3) benign tumor (i.e., hemangioma), (4) benign non-
tumorous lesion (i.e., arterioportal (AP) shunt), (5) cyst, and (6)
other lesions for which clinical diagnosis was not yet finalized.
Here, if more than one lesion was found in the same category,
the lesion closest to 1 cm in size was selected. Another radiol-
ogist evaluated lesion conspicuity by comparing original and
artifact-reduced images for the selected lesions. During evalu-
ation, the radiologist paid special attention on whether the le-
sion was discernible in both images and whether additional
information could be gained after the filter application.
Comparison of lesion conspicuity was evaluated side-by-side
between original and filtered datasets and rated using a 5-point
conspicuity score according to the following scheme: conspi-
cuity was (1) much better in artifact-reduced images compared
to original images, (2) better than in artifact-reduced images

than original images, (3) the same in both images, (4) better
in original than in artifact-reduced images, and (5) much better
in original images than in artifact-reduced images.

MARC filter

The network, which extracts artifact components from input
images, was developed based on a deep convolutional neural
network consisting of seven layers [23]. Each layer has two-
dimensional convolutions, batch normalizations, and rectified
linear units (ReLUs). Seven filters with a kernel size of 3 × 3
were used for the first and the last layers. The remaining layers
have sixty-four filters with a kernel size of 3 × 3. We termed
this multichannel convolutional neural network–based meth-
od MARC (motion artifact reduction with convolutional net-
work) (Fig. 2).

Datasets for the training were generated from the acquired
and simulated images of 6 patients, which were not included
in the study population. From the acquired datasets, images
without motion artifact were selected by a radiologist.
Simulation was then performed by adding phase errors to
the k-space domain, which simulate the rigid motion with
periodic and random respiration, as shown in a previous study
[23]. Phase error can be expressed as

Fig. 1 Ranking of motion artifacts in MR imaging on a 4-point scale.
Axial T1-weighted transverse MR images following intravenous
gadoxetate disodium application. Motion scores were categorized as 1

(no artifact), 2 (mild artifact, no effect on diagnostic quality), 3
(moderate artifact, impeded diagnostic quality), and 4 (severe artifact,
non-diagnostic)
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where ky is the k-space along the phase-encoding direction,Δ
denotes the significance of motion,α is the period, and β is the
phase of the sine wave, which determines the frequency and
significance of motion.

For the periodic motion, we assumed the frequency and the
significance of motion were 0.2–0.7 Hz [24] and 0.0–2.6 cm,
respectively. The phase offset of β was randomly selected
from −π to +π. To remain contrast information, no phase error
was added in the k-space center within ±ky0. ky0 of 20 px was
used in this study. Random respiration representing the irreg-
ular motion was determined as follows: At first, the number of
phase encodings, which have phase error, was randomly de-
termined. Then, the significance of the phase error for each
phase encoding was also randomly determined line-by-line in
the same manner as used for the periodic phase error. The
patched images (noisy patch), used for the input of the net-
work, with the size of 96 × 96 × 7, were cropped from the
simulated images. The residual patches used for the output
layer were cropped from the images which is subtraction of
the acquired from simulated images. A total of 14,190 patches
with the size of 96 × 96 × 7 were generated. All patches were
normalized by dividing them by the maximum value of the
artifact images.

Statistics

Denoising performance was evaluated by comparing motion
scores between two groups: (1) original images and (2) the

corresponding artifact-reduced images using the Wilcoxon
rank sum test with a null hypothesis of equal distributions,
where the original images with score 1 and their correspond-
ing artifact-reduced counterparts were excluded. For compar-
ison of lesion conspicuity, the one-tailed, one-sample
Wilcoxon signed rank test was used to estimate whether the
median score of the sample is less than 3 (no preference be-
tween original and artifact-reduced images), which implies a
better performance for images after the MARC filter applica-
tion. A p value < 0.05 was considered statistically significant.

To evaluate data quality, interobserver reliability was cal-
culated by using kappa statistics. Hereby, a value below 0.20
defines disagreement, 0.20–0.40 poor agreement, 0.41–0.60
moderate agreement, 0.61–0.80 good agreement, and over
0.80 excellent agreement.

Results

Interobserver agreement

Interobserver comparison concerning artifact grading showed
good agreement for both original (kappa = 0.79; 95%
CI = 0.76, 0.82) and artifact-reduced (kappa = 0.81; 95%
CI = 0.78, 0.84) images. Likewise, agreement for lesion con-
spicuity was goodwith kappa = 0.61 (95%CI = 0.514, 0.723).

Motion artifacts in original images

Of the 1344 original image sets, no artifacts were detected in
39.3% (n = 528/1344). Minor artifacts were recorded in
44.4% (score 2, n = 597/1344), moderate artifacts in 12.3%

Fig. 2 Motion artifact reduction with convolutional network (MARC). The denoising filter, which extracts artifact components from input images, was
developed based on a deep convolutional neural network consisting of seven layers
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(score 3, n = 165/1344), and severe artifacts in 4.0% (score 4,
n = 54/1344) (Table 1, Fig. 3). In the image sets of arterial
phases only, substantial artifacts (scores 3 and 4) were present
in 18.9% (n = 218/1152).

Performance of artifact reduction

Image artifact was significantly reduced over all phases from
an average motion artifact score (± standard deviation) of 2.53
(± 0.71) in the original MR images to 1.97 (± 0.72) after the
MARC filter application (p < 0.001). Significant reduction in
motion artifacts was shown in artifact-reduced images of each
phase (pre-contrast and each arterial phase) (mean grading
before vs after filter (± SD)): pre-contrast, 2.02 (± 0.13) vs
1.76 (± 0.43), p < 0.001; phase 1, 2.35 (± 0.60) vs 1.93
(± 0.69), p < 0.001; phase 2, 2.35 (± 0.60) vs 1.94 (± 0.66);
phase 3, 2.34 (± 0.58) vs 1.98 (± 0.63), p < 0.001; phase 4,
2.23 (± 0.49) vs 1.92 (± 0.58), p < 0.001; phase 5, 2.33
(± 0.60) vs 1.91 (± 0.61), p < 0.001; and phase 6, 2.53
(± 0.71) vs 1.97 (± 0.72), p < 0.001. Postprocessing with
MARC led to a decrease in motion artifact scores from 2 to
1 in 177 of the 597 sets scored 2 in the original images
(29.65%), from 3 to 2 in 72.12% (n = 119/165), and from 4
to 3 in 62.96% (n = 34/54) of all cases (Fig. 4, Table 1).

Lesion conspicuity

In the total study population, 159 focal liver lesions were
chosen in 159 subjects (110 male, 49 female, mean age 68.8
± 10.1 years): malignant tumors (n = 56; 48 HCCs, 8 metasta-
ses), benign tumors (n = 10; 8 hemangiomas, 2 focal nodular
hyperplasia (FNHs)), benign non-tumorous lesions (n = 46;
45 AP shunts, 1 inflammatory lesion), cysts (n = 44), and oth-
er lesions (n = 3; 1 unspecified hypervascular lesion, 1 hyper-
plastic nodule, 1 unknown ring-enhancing lesion). Mean le-
sion size was 9.00 mm (range 2.7–44.2 mm). After the filter
application, all reference lesions were still discernable. Side-

by-side comparison of lesion conspicuity in original and
artifact-reduced images showed that lesions were more con-
spicuous after MARC application (p < 0.001). Reader 1 rated
artifact-reduced imagesmuch better against the originals (con-
spicuity score 1) in 30 and better (score 2) in 75 lesions
(Fig. 5). No preference (score 3) was declared in 52 subjects.
Preference for original images (score 4) was recorded in only
2 lesions. No lesion was scored as 5. The second reader rated
conspicuity score 1 in 27 cases, score 2 in 58, score 3 in 68,
and score 4 in 6 cases. Likewise, no lesion was scored as 5.

Discussion

With this retrospective analysis, we revealed that
postprocessing using the MARC filter improved image qual-
ity in terms of respiratory motion artifacts in multiple arterial
phase image acquisition with gadoxetate disodium.

Respiratory motion artifacts are a major problem in MR
imaging of the abdomen. As described in previous studies,
gadoxetate disodium–related transient severe motion degrades
the quality of arterial phase images [1–4, 14], resulting in de-
creased diagnostic accuracy, particularly for the detection and
characterization of focal hepatic lesions [6, 7]. Among the mul-
titude of strategies proposed, especially fast scanning tech-
niques using compressed sensing offer a simple approach to
minimize motion artifacts [11, 12]. Pietryga et al [2] showed
that the use of multiple arterial phase acquisition within a rapid
single breath-hold provides adequate well-timed late hepatic
arterial phase images in most patients with TSM. In general,
multiple arterial phase acquisition with view sharing technique
can improve the time resolution. However, it often requires
longer time for breath-hold. In our study, the acquisition time
was relatively long, which probably led to more artifacts in the
last 1–2 phases. In the meantime, most cases had phases with-
out artifact in the front half, where appropriate late arterial phase
images were included. These images without artifact can be

Table 1 Motion artifact scores for each original image set

Pre Art_1 Art_2 Art_3 Art_4 Art_5 Art_6 Total of all phases, n (%) Total of arterial phases, n (%)

Motion artifact score

1 133 69 76 71 68 65 52 528 (39.3) 395 (34.3)

2 58 88 87 87 99 94 84 597 (44.4) 539 (46.8)

3 1 27 27 27 21 24 38 165 (12.3) 164 (14.2)

4 0 0 8 7 4 9 18 54 (4.0) 54 (4.7)

Substantial artifacts

Scores 3 and 4 1 35 35 34 25 33 56 219 (16.3) 218 (18.9)

Total 192 192 192 192 192 192 192 1344 1152

Pre = pre-contrast phase; Art_1 toArt_6 = arterial phase 1 to 6;motion artifact scores: 1 = no artifacts, 2 =minor artifacts (no effect on diagnostic quality),
3 = distinct artifacts (impeded diagnostic quality), and 4 = severe artifacts (non-diagnostic image quality)
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used as a reference of anatomical details when convolutional
neural network (CNN) works for artifact reduction. Taking
these findings into account, in our study, we developed a deep
learning filter based on CNN,which works in combination with
multi-arterial phase acquisition using DISCO to achieve motion
artifact removal in MRI of the liver.

Deep learning methods recently have shown promising
performances on various vision tasks, which also include
fields of importance for medical imaging. Deep learning is

based on a neural network with a high number of hidden
layers [25]. Central among the multitude of existing ap-
proaches, the feedforward technique of CNN shows emerging
applications in image reconstruction, lesion/artifact detection,
denoising, segmentation, or super resolution [19, 26–28].
CNN employs trainable filters and convolution operations be-
tween input and output filters, reducing the amount of param-
eters necessary to be learned compared to classic multilayer
perception methods [29, 30]. Few feasibility studies reported

Fig. 3 Motion scores before and after MARC application. Over all phases, as well as separate phases before and after artifact reduction
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on motion artifact reduction. For instance, Hauptmann et al
[20] generated a CNN for the suppression of spatiotemporal
artifacts on cine images of cardiac MR studies. Pawar et al
[22] successfully applied an encoder-decoder convolutional
neural network on clinical brain scans for motion correction.
However, clinically validated studies, especially focusing on
motion artifacts in abdominal MR scans, remain scarce. In our
study, the newly developed CNN filter MARC significantly
improved image quality by reducing motion artifacts in dy-
namic liver MRI. We were able to apply this post hoc motion
correction in a clinical setting. Furthermore, in almost all
cases, observers preferred artifact-reduced MR images for
evaluating focal liver lesions compared to the original ones

or rated both datasets as equal. Comparing original and
artifact-reduced images side-by-side, no loss of anatomical
or pathological information after MARC application could
be detected.

In our opinion, the use of the MARC filter offers a new
perspective in artifact-reduced high-quality MRI. The appli-
cation of MARC in combination with multi-arterial phase im-
aging technique is able to reduce artifacts in liver MRI. This
can be of value, for instance, in cases where pseudolesions
occur in original images due to artifacts, which might be clar-
ified after artifact removal. The impact of artifact reduction in
other regions, e.g., MRI of the lung, pancreas, kidney, and
bowel, needs to be further explored. Nevertheless, an

Fig. 4 Artifact reduction and improved image quality after filter application. Postprocessing withMARC led to a decrease in motion score from 2 to 1 in
29.9%, from 3 to 2 in 72.1%, and from 4 to 3 in 63.0% of all cases
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improvement in image quality does not automatically result in
a better diagnosis.

Apart from that, advanced deep learning techniques,
such as generative adversarial networks (GANs) [31],
could improve our approach. Jiang et al [32] proposed a
respiratory motion correction method for abdominal imag-
ing using U-Net and GAN. Armanious et al [33] demon-
strated that GAN enables rigid and non-rigid motion cor-
rection. These results show GAN as a promising approach
for motion artifact correction, although there is a difficulty
in determining the structure and hyperparameters due to
simultaneous training of two networks of a generator and
a discriminator [34].

Our study has several limitations. First, the study design
was retrospective. Since the observers were informed about
the study purpose, they might have been sensitized to TSM
occurrence while examining MR images. This, however, ac-
counts for original and artifact-reduced datasets alike.
Furthermore, the introduced filter trained with the simulated
datasets was not generalized for all possible cases since the
simulation was performed based on the limited condition of
respiratory motion. Likewise, the input of MARC filter was
multiple arterial phase images acquired with a specific MRI
pulse sequence/view sharing acquisition technique (DISCO).
Additional validation in terms of diagnostic ability, i.e., sen-
sitivity, specificity, and accuracy, with a larger patient cohort

Fig. 5 Lesion conspicuity before and after MARC application. Axial T1-
weightedMR images in patients diagnosed with HCC, AP shunt and liver
cyst (lesions are each indicated by arrow) show improved lesion
conspicuity following filter application compared to the original images

(conspicuity scores of 1, 2, and 1, respectively). Diagnosis of the liver
cyst and AP shunt is greatly improved after MARC application, and
identification of the HCC lesion, which could have easily be mist on
the original images, is greatly improved
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or different MRI sequence parameters might be beneficial for
further improvement of the developed filter algorithm. There
is still room for further improvement of motion artifact simu-
lation. Since DISCO sequence uses a complicated scheme
consisting of ARC reconstruction and irregular sub-sampling
k-space ordering from low- to high-frequency components,
phase corruption due to motion could lead to aliasing artifact
in addition to motion artifact. Since the training datasets were
generated from DICOM images in this study, it is difficult to
simulate these complicated mechanisms. Therefore, we imple-
mented the approximated simulation with straightforward
centric k-space order. Further consideration will be needed
to improve de-aliasing performance by generating datasets
from complex raw data with exact acquisition ordering.
Because the proposed CNN-based approach removes motion
artifact by extracting deep features that are optimized with the
training process, inappropriate training such as inadequate
network structure and insufficient size of training datasets de-
grades the processing performance of the network. Therefore,
a larger volume of training datasets or adopting a sophisticated
network could yield further improvement.

In conclusion, the clinical evaluation of our newly devel-
oped CNN-based filter MARC significantly improved image
quality of gadoxetate-enhanced MRI of the liver by reducing
motion artifacts, especially in cases with substantial artifacts.
This approach is of high clinical value in subjects who failed
breath-hold in the scan.
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