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Abstract
Objectives To identify an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) radiomics-based model for
predicting progression-free survival (PFS) and overall survival (OS) of nasal-type extranodal natural killer/T cell lymphoma
(ENKTL).
Methods In this retrospective study, a total of 110 ENKTL patients were divided into a training cohort (n = 82) and a validation
cohort (n = 28). Forty-one features were extracted from pretreatment PET images of the patients. Least absolute shrinkage and
selection operator (LASSO) regression was used to develop the radiomic signatures (R-signatures). A radiomics-based model
was built and validated in the two cohorts and compared with a metabolism-based model.
Results The R-signatures were constructed with moderate predictive ability in the training and validation cohorts (R-
signaturePFS: AUC = 0.788 and 0.473; R-signatureOS: AUC = 0.637 and 0.730). For PFS, the radiomics-based model showed
better discrimination than the metabolism-based model in the training cohort (C-index = 0.811 vs. 0.751) but poorer discrimi-
nation in the validation cohort (C-index = 0.588 vs. 0.693). The calibration of the radiomics-based model was poorer than that of
the metabolism-based model (training cohort: p = 0.415 vs. 0.428, validation cohort: p = 0.228 vs. 0.652). For OS, the perfor-
mance of the radiomics-based model was poorer (training cohort: C-index = 0.818 vs. 0.828, p = 0.853 vs. 0.885; validation
cohort: C-index = 0.628 vs. 0.753, p < 0.05 vs. 0.913).
Conclusions Radiomic features derived from PET images can predict the outcomes of patients with ENKTL, but the performance
of the radiomics-based model was inferior to that of the metabolism-based model.
Key Points
• The R-signatures calculated by using 18F-FDG PET radiomic features can predict the survival of patients with ENKTL.
• The radiomics-based models integrating the R-signatures and clinical factors achieved good predictive values.
• The performance of the radiomics-based model was inferior to that of the metabolism-based model in the two cohorts.
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OS Overall survival
PFS Progression-free survival
ROIs Regions of interest
SUVmax Standardised uptake value
TLG Total lesion glycolysis

Introduction

Extranodal natural killer/T cell lymphoma (ENKTL) is an
aggressive malignancy of putative NK cell origin, with a mi-
nority deriving from the T cell lineage [1, 2]. ENKTL is much
more common inAsia and Latin America, comprising approx-
imately 3 to 10% of all lymphomas in East Asia, but less than
1% in Western countries. Establishing an optimal treatment
strategy for ENKTL has yet to be determined, as accurate
assessments are crucial for prognosis prediction and
individualised treatment strategy decisions [3, 4].

18F-Fluorodeoxyglucose (18F-FDG) positron emission
tomography-computed tomography (PET/CT) is routinely
used for lesion detection, response monitoring, and prognos-
tication assessments in ENKTL patients. The maximum
standardised uptake value (SUVmax) is the most widely used
PET imaging parameter for prediction; moreover, metabolic
tumour volume (MTV) and total lesion glycolysis (TLG),
which are based on both SUVand tumour volume, have also
been reported to be significant prognostic biomarkers for
ENKTL [5, 6]. However, these metabolic parameters do not
fully reflect the spatial distribution of a tracer, which has been
suggested to correlate with intra- and intertumoural heteroge-
neity, and even worse prognosis and survival [7]. Over the
past decade, an emerging and promising field, radiomics,
has been implemented to extract and analyse a large amount
of advanced quantitative imaging features with high through-
put from medical images to provide abundant tumour hetero-
geneity information [8, 9]. The most widely used medical
imaging modalities in radiomic research are computed tomog-
raphy (CT) and magnetic resonance imaging (MRI).
Currently, radiomic features extracted from PET are consid-
ered to contain large amounts of underlying information dis-
tinct from that provided by CT and MRI [10, 11]. A continu-
ously increasing number of studies have reported promising
results regarding the value of PET-based radiomic features for
various types of solid tumours [12–16]. Nevertheless, few
published studies have reported the diagnostic, staging, or
prognostic value of PET-based radiomic features in lympho-
ma [17–21]. In addition, combining multiple imaging bio-
markers as a predictive signature using radiomic methods,
rather than individual analyses, is a promising and useful ap-
proach for prognosis prediction and clinical management [22].

Thus, in this retrospective study, we aimed to develop the
radiomic signatures (R-signatures) using 18F-FDG PET
radiomic features for the prediction of progression-free

survival (PFS) and overall survival (OS) in patients with
ENKTL. Subsequently, the radiomics-based model integrat-
ing the R-signatures and clinical factors was established and
then validated and compared with the metabolism-based mod-
el integrating metabolic parameters and clinical factors. The
models are visualised as nomograms.

Materials and methods

Patients and follow-up

Ethical approval was obtained, and the requirement for in-
formed consent from patients was waived. The inclusion
criteria included as follows: (a) pathologically diagnosed
ENKTL between January 2011 and January 2017, (b) pre-
treatment 18F-FDG PET/CT, and (c) stage I to II patients
who received 2 cycles of chemotherapy with LVP (L-
asparaginase, vincristine, prednisone) and concurrent radio-
therapy with 2 cycles of cisplatin chemotherapy, followed by
2 cycles of LVP; stage III to IV patients who received chemo-
therapy with LVP with or without radiotherapy if a response
was observed, and otherwise received second-line therapy. In
total, 110 consecutive patients were enrolled and randomly
allocated to two cohorts (82 and 28 patients in the training
and validation cohorts, respectively). Follow-up was per-
formed every 3 months after the completion of treatment.
The last follow-up was conducted in April 2018. The end-
points of this study were PFS and OS. PFS was defined as
the interval between the date of diagnosis and the date of the
first relapse, progression, or death. OS was defined as the
interval between the date of diagnosis and the time of death.

PET scanner and acquisition parameters

18F-FDG PET/CT examinations were performed on a Gemini
GXL PET/CT scanner equipped with a 16-slice CT (Philips
Medical System). After at least 6 h of fasting, 190–375 MBq
of 18F-FDG was administered intravenously. The blood glu-
cose level was controlled to be lower than 8.0 mmol/L.
Whole-body PET/CT scans were started 60 min after radio-
pharmaceutical injection. Emission data were acquired for
2 min per bed position. PET emission acquisition was per-
formed in 3D mode (3D-RAMLA): the dimensions of the
in-plane matrix were 4 mm× 4 mm, and the slice thickness
was 4 mm. All examinations were reconstructed using an
OSEM algorithm, and the CT acquisition data were used for
attenuation correction.

Segmentation and feature extraction

Two nuclear medicine physicians independently performed
segmentation using the Local Image Features Extraction
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(LifeX) package (version 4.00, http://www.lifexsoft.org) [23].
First, the lymphoma lesions were delineated manually. Then,
the regions of interest (ROIs) were defined based on a thresh-
old of 40% of the SUVmax of the defined lesions [24], and
spatial resampling (2 × 2 × 2 mm), absolute intensity resam-
pling (0–20), and intensity discretisation (number of grey
levels = 64, size of bins = 0.3125) were performed [25]. A
total of 41 features (Supplementary Materials) of the ROIs
were extracted as follows: first-order metrics extracted from
the histogram and shape; features derived from the grey-level
co-occurrence matrix (GLCM), the neighbourhood grey-level
different matrix (NGLDM), the grey-level run length matrix
(GLRLM), and the grey-level zone length matrix (GLZLM);
and conventional metabolic parameters, including the
SUVmax, MTV, and TLG.

Radiomic feature selection and model building

First, the interobserver repeatability of the segmentation
was evaluated using the intraclass correlation coefficient
(ICC) method, and the features with an ICC greater than
0.70 were selected [26]. Then, the least absolute shrinkage
and selection operator (LASSO) Cox regression algorithm
was applied to the selected features [27]. Cross-validation
was applied to optimise the value of λ, the coefficients of
indistinctive covariates were reduced to zero, and the re-
maining nonzero coefficients were selected. The nonzero
coefficients of the selected features were defined as
radiomic scores (R-scores). We calculated the combina-
tion of R-scores for all selected radiomic features, defined
as the R-signature. We determined the optimal threshold
value of the R-signature by the receiver operating charac-
teristic (ROC) curve and divided patients into high- and
low-risk groups. The potential association of the R-
signature with PFS and OS was evaluated using the
Kaplan-Meier analysis and log-rank test.

We used the univariate Cox regression to select the
significant prognostic factors of PFS and OS, respectively.
R-signature and clinical variables were entered into a mul-
tivariate Cox regression to build the radiomics-based
model for PFS and OS prediction. Likewise, metabolic
parameters and clinical variables were entered into a mul-
tivariate Cox regression to build the metabolism-based
model. Models were then visualised as nomograms. The
flowchart of model building is presented in Fig. 1.

Model validation

The discrimination of the models was assessed using the
Harrell concordance index (C-index) [28, 29]. Bootstrap
analyses with 1000 resamples were used to obtain a
corrected C-index. The calibration of the models was
assessed by Hosmer-Lemeshow tests and calibration

curves, and p > 0.05 accounted for a nonsignificant devi-
ance from the theoretical perfect calibration [30].

Statistical analysis

Statistical analyses were performed using IBMSPSS Statistics
(version 19.0, IBM Corp) and R software (version 3.4.2;
http://www.R-project.org). All tests were two-sided, and
p values of < 0.05 were considered significant.

Results

The clinical characteristics of the patients are summarised in
Table 1. No differences were found between the training and
validation cohorts (p = 0.149–0.945). The median follow-up
time was 33 months (2–90 months). As of the final follow-up,
the numbers of survivals and deaths were 63 (57.3%) and 25
(22.7%), respectively.

R-signature construction and assessment

Six radiomic features had low ICCs (ICC < 0.70), and
twenty-seven radiomic features had good repeatability
(ICC ≥ 0.85). The thirty-two features with ICCs ≥ 0.70
extracted in the second round were selected for further
analysis. According to the LASSO results (Fig. 2), we
obtained 4 and 3 radiomic features with nonzero coeffi-
cients for PFS and OS, respectively, in order to calculate
the R-signaturePFS and the signatureOS. The results of the
ICC analysis and the formulas for the R-signatures can be
found in the Supplementary Materials.

The ROC-AUCs of the R-signaturePFS were 0.788
(95% CI = 0.682–0.895) and 0.473 (p = 0.803) in the two
cohorts. When analysing the association of the R-
signaturePFS with PFS, the results of the log-rank test
indicated significant discrimination between the high-
and low-risk groups in the training cohort (Fig. 3a), but
no discrimination in the validation cohort (Fig. 3c). The
ROC-AUCs of the R-signatureOS were 0.637 (95% CI =
0.488–0.786) and 0.730 (95% CI = 0.548–0.912) in the
two cohorts. We also observed that the R-signatureOS

was significant for classifying the patients into high- and
low-risk groups in the two cohorts (Fig. 3b, d).

Building of the radiomics-based model

The results of the univariate and multivariate analyses are
listed in Tables 2 and 3. In the univariate analysis, the
Eastern Cooperative Oncology Group performance status
(ECOG PS), Ann Arbor stage, lactate dehydrogenase
(LDH), International Prognostic Index (IPI), SUVmax,
MTV, TLG, and the R-signaturePFS were associated with
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PFS; bone marrow (BM), ECOG PS, Ann Arbor stage,
LDH, IPI, SUVmax, MTV, TLG, and the R-signatureOS
were associated with OS.

For PFS, the R-signaturePFS and significant clinical
variables in the univariate analysis were selected for in-
clusion in the multivariate Cox regression. The R-

signaturePFS and IPI remained as prognostic factors in
the multivariate analysis and were used to build the
radiomics-based model (Fig. 4a). For OS, the radiomics-
based model was built using the R-signatureOS and ECOG
PS (Fig. 4b), which were independent prognostic factors
of OS identified by the multivariate analysis.

Table 1 Baseline characteristics of the patients in the training and the validation cohorts

Characteristic No. of patients p value

Overall (n = 110) Training (n = 82) Validation (n = 28)

Age (years)a 45.59 ± 14.55 45.25 ± 15.19 46.33 ± 12.64 0.420b

Male/female 69 (62.7)/31 (37.3) 52 (63.4)/30 (36.6) 17 (60.7)/11 (39.3) 0.799

BS 58 (52.7) 45 (54.9) 13 (46.4) 0.439

BM 5 (4.5) 4 (4.9) 1 (3.6) 1.000

ECOG PS 0.149

0–1 98 (89.1) 71 (86.6) 27 (96.4)

≥ 2 12 (10.9) 11 (13.4) 1 (3.6)

Ann Arbor stage 0.925

I–II 90 (81.8) 66 (80.5) 24 (85.7)

III–IV 20 (18.2) 16 (19.5) 4 (14.3)

LDH > 245 U/L 45 (40.9) 32 (39) 13 (46.4) 0.491

IPI score 0.945

0–1 86 (78.2) 64 (78) 22 (78.6)

≥ 2 24 (21.8) 18 (22) 6 (21.4)

EBV positive 84 (76.4) 61 (74.4) 23 (82.1) 0.750

Radiotherapy 96 (87.3) 70 (85.4) 26 (92.9) 0.880

BS B symptoms, BM bone marrow infiltration, ECOG PS Eastern Cooperative Oncology Group performance status, IPI International Prognostic Index,
LDH lactate dehydrogenase, EBV Epstein-Barr virus. Values in parentheses are percentages unless indicated otherwise
a Values are mean ± SD
b p value derived from two-sample t test. The other p value was derived from the χ2 test

Fig. 1 Flowchart showing the development of the models
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Building of the metabolism-based model

For PFS, the significant clinical variables and metabolic pa-
rameters in the univariate analysis were entered into the mul-
tivariate Cox regression, and MTVand IPI were identified as
independent prognostic factors and were used to build the
metabolism-based model. Likewise, the metabolism-based
model for OS prediction was built using the SUVmax, MTV,
and ECOG PS.

Validation and comparison of the model

The results of the C-index and the Hosmer-Lemeshow test are
shown in Table 4. The calibration curves of the models are
shown in the Supplementary Materials. For PFS prediction,
the radiomics-based model showed better discrimination than
the metabolism-basedmodel in the training cohort (C-index =
0.811 vs. 0.751) but poorer discrimination in the validation
cohort (C-index = 0.588 vs. 0.693). The Hosmer-Lemeshow
test showed that the calibration of the radiomics-based model
was poorer than that of the metabolism-based model (training

cohort: p = 0.415 vs. 0.428; validation cohort: p = 0.228 vs.
0.652). The calibration curves showed that the calibration of
the twomodels was better in the training cohort than that in the
validation cohort (Supplementary Figs. S1 and S2).

For OS prediction, the discrimination of the radiomics-
based model was poorer than that of the metabolism-based
model in the training cohort (C-index = 0.818 vs. 0.828) and
the validation cohort (C-index = 0.628 vs. 0.753). The
Hosmer-Lemeshow test indicated that the calibration of the
radiomics-based model was poorer than that of the
metabolism-based model (training cohort: p = 0.853 vs.
0.885; validation cohort: p < 0.05 vs. 0.913). According to
the calibration curves, the calibration of the two models was
better in the training cohort than that in the validation cohort
(Supplementary Figs. S3 and S4).

Discussion

In the present study, we developed R-signatures with moder-
ate predictive ability in a training cohort and a validation

Fig. 2 Feature selection for the prediction using the LASSO model, tuning parameter (λ) selection in the LASSO model involved the use of tenfold
cross-validation with minimum criteria ((a) PFS and (b) OS); coefficient profiles of the radiomics features ((c) PFS and (d) OS)
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cohort (R-signaturePFS: AUC = 0.788 and 0.473, respectively;
R-signatureOS: AUC = 0.637 and 0.730, respectively).
Although no significant association was found between the
R-signaturePFS and PFS in the validation cohort, the R-
signatures were associated with PFS in the training cohort
and with OS in both cohorts. These results provide evidence
that radiomic features extracted from pretreatment 18F-FDG
PET images can predict lymphoma outcomes. We further de-
veloped radiomics-based models combining R-signatures and
clinical variables to predict PFS and OS among patients with
ENKTL, and the models were then visualised via nomograms
with the aim of identifying patients at a high risk of early

progression and death who could be offered an alternative
treatment strategy. The radiomics-based models achieved
good predictive values (PFS: C-index = 0.811 and 0.588,
p = 0.415 and 0.228; OS: C-index = 0.818 and 0.628, p =
0.853 and < 0.05). However, the performance of the
radiomics-based model was inferior to that of the
metabolism-based model in the two cohorts.

The main goal of radiomics is to build a prediction model
for clinical outcomes using selected radiomic features, and
integrating radiomic features with traditional prognostic indi-
cators (clinical indicators) in one model can improve the pre-
diction performance of a single prognostic indicator [8, 9, 31,

Fig. 3 The Kaplan-Meier survival curves (a R-signaturePFS, training cohort; b R-signatureOS, training cohort; c R-signaturePFS, validation cohort; and d
R-signatureOS, validation cohort)
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32]. Traditional PET metabolic parameters have been con-
firmed to be significant prognostic indicators for outcomes
of patients with ENKTL and are widely used in clinical man-
agement [4, 5]. However, most radiomic indices extracted
from PET images have been considered to be significantly
correlated with metabolic parameters, especially MTV and
TLG [33, 34], and such correlations are postulated to be in-
herent to the definitions of the features as opposed to being
variable depending on the tumour type or acquisition/
reconstruction protocols [11], which were also reported to
differ in susceptibility to methodological, biological, and

metabolic features [35, 36]. Based on these considerations,
we built radiomics-based models to investigate the potential
added prognostic value of radiomic features in ENKTL pa-
tients by comparing the models with metabolism-based
models. Our results suggested that the radiomics-based
models may provide limited prognostic information for
ENKTL patients compared with the metabolism-based model.

Our findings are in line with those of recent studies indicat-
ing that the performance of PET-derived radiomic features for
tumour prognosis prediction is poor compared with that of
PET-derived metabolic parameters. In a cohort of 82 patients

Table 2 The results of the univariate Cox regression analysis

Variables PFS OS

HR (95% CI) p value HR (95% CI) p value

Clinical variables

Age (≤ 60/> 60) NS 0.587 NS 0.465

Gender (male/female) NS 0.474 NS 0.517

BS (no/yes) NS 0.142 NS 0.099

BM (no/yes) NS 0.152 5.648 (1.264–25.238) 0.023

ECOG PS (0–1/≥ 2) 4.674 (2.013–10.853) < 0.001 4.645 (1.722–12.531) 0.002

Ann Arbor stage (I–II/III–IV) 1.950 (1.466–2.595) < 0.001 8.422 (2.871–24.704) < 0.001

LDH (≤ 245/> 245 U/L) 3.736 (1.717–8.130) 0.001 4.226 (1.463–12.203) 0.008

IPI (0–1/≥2) 5.231 (2.459–11.128) < 0.001 1.800 (1.353–2.394) < 0.001

EB DNA (negative/positive) NS 0.538 NS 0.350

Metabolic parameters

SUVmax (≤ 11.05/> 11.05) 2.366 (1.089–5.137) 0.030 2.924 (1.013–8.442) 0.047

MTV (≤ 22.4/> 22.4 mL) 4.333 (1.949–9.623) < 0.001 6.437 (2.055–20.163) 0.001

TLG (≤ 134.5/> 134.5) 4.685 (2.046–10.730) < 0.001 5.927 (1.890–18.589) 0.002

R-signature

R-signaturePFS (≤ 0.34/> 0.34) 3.971 (1.683–9.368) 0.002 NA NA

R-signatureOS (≤ 0.06/> 0.06) NA NA 6.119 (1.727–20.163) 0.005

NS not significant, NA not apply

Table 3 The results of the multivariate Cox regression analysis

Variables PFS OS

Metabolism-based model Radiomics-based model Metabolism-based model Radiomics-based model

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Ann Arbor stage 0.286 0.444 0.151 0.061

ECOG PS 0.539 0.632 3.612 (1.118–11.664) 0.032 4.930 (1.652–14.956) 0.005

LDH 0.167 0.133 0.183 0.266

IPI 4.667 (2.152–10.112) < 0.001 4.199 (1.729–9.815) < 0.001 0.936 0.574

BM NA NA NA NA 0.046 0.228

SUVmax 0.200 NA NA 3.231 (1.067–9.785) 0.038 NA NA

MTV 3.885 (1.722–8.762) 0.001 NA NA 5.161 (1.427–18.666) 0.012 NA NA

TLG 0.259 NA NA 0.891 NA NA

R-signature NA NA 5.505 (2.536–11.951) 0.001 NA NA 4.279 (1.133–16.167) 0.032
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with aggressive B cell lymphoma, MTV was correlated with
the response to therapy, but texture features could not predict
the therapy response, although several features were correlated
with the presence of a residual mass and outcomes [18].
Rogasch et al reported that the asphericity feature could predict
the response after chemotherapy in 50 children with paediatric
Hodgkin’s lymphoma (HL), although MTV showed a better
performance [35]. In contrast, several studies have reported
promising results for the utilisation of radiomic features derived
from PET to risk-stratify patients with lymphoma. Lue et al
found that the intensity nonuniformity of pretreatment PET
was a prognostic indicator in 42 patients with HL and may
outperform MTV [31]. In a cohort of 17 patients with
ENKTL, texture features (dissimilarity and LISZE) extracted
from pretreatment PET images were independent predictors of
PFS, whereas the SUVmax, MTV, and TLG were not associated
with PFS [37]. Wang et al demonstrated a relationship between
PET radiomic features and OS in 19 patients with renal/adrenal
lymphoma, and MTV was not an independent factor [38].

These differences may be attributed to many sources. First,
as mentioned above, several studies incorporated radiomic
and metabolic features into one model, which may result in
an underlying risk of redundancy and underestimation of the
performance of both types of features. Second, a sample size
of at least 10 to 15 patients per predictor variable has been

proposed to be required to produce valid estimates for multi-
ple regression models [39]. We reduced the number of
radiomic features to 4 and 3, which is reasonable for minimising
false detection rates. Previous studies with small sample
sizes and datasets may have a risk of bias. Additionally, many
variables may affect the stability and prognostic value of PET-
based radiomic features, such as the scanner, segmentation,
reconstruction parameters, formulas used to define the
radiomic features, and software [40, 41]. Heterogeneity
among different studies may have contributed to controversial
results. Lastly, validation analysis has been regarded as an
indispensable step in radiomics research to show the potential
value of a radiomics model for clinical application [8, 42]. In
this study, the performance of the models in the internal val-
idation cohort was inferior to that in the training cohort, sug-
gesting that the stability of the models should be considered
with caution. Comparing previous findings directly is difficult
considering the limited number of lymphoma radiomics stud-
ies that have performed internal and/or external validation.

Segmentation is an important step in radiomics research as
edges can substantially affect feature values. No consensus on
optimal segmentation is available for lymphoma because lym-
phoma lesions usually have heterogeneous sizes, shapes, and
locations. On PET images, some normal organs with high
uptake and physiological FDG uptake and excretion may

Fig. 4 The nomograms of the radiomics-based models (a) for PFS and (b) for OS

Table 4 The results of the C-index and the Hosmer-Lemeshow test

Training cohort Validation cohort

C-index (95% CI) p valuea C-index (95% CI) p valuea

PFS

Radiomics-based model 0.811 (0.733–0.888) 0.415 0.588 (0.363–0.812) 0.228

Metabolism-based model 0.751 (0.650–0.851) 0.428 0.693 (0.495–0.892) 0.652

OS

Radiomics-based model 0.818 (0.693–0.944) 0.853 0.628 (0.462–0.796) < 0.05

Metabolism-based model 0.828 (0.735–0.921) 0.885 0.753 (0.598–0.907) 0.913

a p value for the Hosmer-Lemeshow test
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cause confusion [43]. Therefore, identifying accurate and ro-
bust segmentation methods for lymphoma is important. We
defined ROIs using a semiautomatic threshold-based method
(the 40% threshold segmentation method) and assessed the
interobserver repeatability of the segmentation, and the results
of the ICC analysis indicated that 27 of 38 radiomic features
had good repeatability (ICC ≥ 0.85), which is consistent with
previous studies demonstrating that most PET image features
exhibited high stability in test-retest and interobserver analy-
ses [40, 44]. Several different segmentation methods have
been devised for lymphoma [43, 45, 46]. Hu et al proposed
an entropy-based optimisation strategy to detect and segment
lymphoma in PET images and reported a good performance
[43]. Hu et al proposed an automatic approach for ENKTL
segmentation that was more stable than traditional deep-
learning segmentation [46].

The limitations of the present study are as follows. First,
this was a single-centre, retrospective study, and external val-
idation was not performed, which may have impacted patient
selection, the examination protocol, and the radiomic quanti-
fication results. Second, we used only 18F-FDG PET images
to extract radiomic features. PET images have relatively low
spatial resolution and high noise, which may influence lesion
identification [9]. A combination of PET and CT images may
expand the feature pool and lead to the discovery of more
predictive radiomic features. In addition, we extracted only
traditional radiomic features, whichmay contain limited infor-
mation. Other types of features (model- or transform-based
features and deep-learning features) have gained popularity
because they are more specific to data and clinical outcomes
[47], and such features should be further investigated to better
understand the predictive power of radiomics.

Conclusions

In conclusion, a pretreatment 18F-FDG PET radiomics-based
model was designed and showed significant stratification
power in predicting PFS and OS in ENKTL, but the perfor-
mance was inferior to that of the metabolism-based model.
Therefore, further multi-centre, prospective studies with exter-
nal validation are required to ensure that the results are repro-
ducible and do not require refinement to achieve a higher level
of evidence.
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