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Abstract
Objectives To develop a breast cancer risk model to identify women at mammographic screening who are at higher risk of breast
cancer within the general screening population.
Methods This retrospective nested case-control study used data from a population-based breast screening program (2009–2015).
All women aged 40–75 diagnosed with screen-detected or interval breast cancer (n = 1882) were frequency-matched 3:1 on age
and screen-year with women without screen-detected breast cancer (n = 5888). Image-derived risk factors from the screening
mammogram (percent mammographic density [PMD], breast volume, age) were combined with core biopsy history, first-degree
family history, and other clinical risk factors in risk models. Model performance was assessed using the area under the receiver
operating characteristic curve (AUC). Classifiers assigning women to low- versus high-risk deciles were derived from risk
models. Agreement between classifiers was assessed using a weighted kappa.
Results The AUC was 0.597 for a risk model including only image-derived risk factors. The successive addition of core biopsy
and family history significantly improved performance (AUC = 0.660, p < 0.001 and AUC = 0.664, p = 0.04, respectively).
Adding the three remaining risk factors did not further improve performance (AUC= 0.665, p = 0.45). There was almost perfect
agreement (kappa = 0.97) between risk assessments based on a classifier derived from image-derived risk factors, core biopsy,
and family history compared with those derived from a model including all available risk factors.
Conclusions Women in the general screening population can be risk-stratified at time of screen using a simple model based on
age, PMD, breast volume, and biopsy and family history.
Key Points
• A breast cancer risk model based on three image-derived risk factors as well as core biopsy and first-degree family history can
provide current risk estimates at time of screen.

• Risk estimates generated from a combination of image-derived risk factors, core biopsy history, and first-degree family history
may be more valid than risk estimates that rely on extensive self-reported risk factors.

• A simple breast cancer risk model can avoid extensive clinical risk factor data collection.
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Abbreviations
ANOVA Analysis of variance
AUC Area under the receiver

operating characteristic curve
BCSC Breast Cancer Surveillance Consortium
BMI Body mass index
Bvol Breast volume
BxHx History of core biopsy
DICOM Digital Imaging and Communications inMedicine
FHx Family history of first-degree relative with breast

cancer
HRT Hormone replacement therapy
PMD Percent mammographic density

Introduction

Eligibility for breast cancer screening is often determined by
sex and age, but breast cancer risk varies greatly across the
population of women eligible for screening. Yet, as is evident
by the various risk models in use [1–7], many other risk fac-
tors including family history, breast health history,
reproductive-related factors (e.g., parity, age at menarche),
body mass index (BMI), exogenous hormone exposure (e.g.,
hormone replacement therapy, HRT), and breast density may
be used to determine risk (see Table 1). The widely used Gail
[1] and Breast Cancer Surveillance Consortium (BCSC)
models [2] include a moderate number of risk factors, but do
not leverage the image-level data available from digital mam-
mography. The most recent Tyrer-Cuzick model includes nu-
merous risk factors, including mammographic density and a
single-nucleotide polymorphism score [6, 7], but this restricts
the utility of the model at mammographic screening.

Personalized screening based on a woman’s risk has
the potential to decrease breast cancer morbidity and
mortality while minimizing the harms of screening and
decreasing resource utilization [8–12]. Ideally, risk-
stratified screening protocols would be based on accu-
rate risk estimates from data easily obtained in the clin-
ical setting [13]. The results of a simulation study in the
USA indicated that screening frequency can be tailored
using information about breast density, age, family his-
tory, and biopsy history [9]. A Spanish study demon-
strated that, for every 2000 women screened using an
optimal risk-based strategy, there were 1.5 fewer
overdiagnosed cases, 97 fewer false positives, 6 fewer
biopsies, and €250,000 saved, at the cost of one addi-
tional false negative [8].

The utility of a breast cancer risk model depends on the
quality of available risk factor information. Many risk
factors are self-reported and poor recall may negatively
impact the risk estimates obtained [14]. In addition, wom-
en tend to overestimate height and underestimate weight,
thereby underestimating BMI, a problem compounded by
the fact that the amount of bias may change over time [15,
16]. Self-reports of extended family history are not prac-
tical to implement because the health status of more dis-
tant relatives may be unknown or of poor quality [17].
Other risk factors may not be available or cost-effective
for a screened population, such as genetic risk factors,
which are more useful for predicting risk in younger
women [18–20]. An ideal risk model would discriminate
risk while maximizing the use of readily available data
and minimizing the use of extensive self-reported risk
factors. In addition to age and clinical history, readily
available high-quality data include risk factors derived

Table 1 Risk factors included in
common breast cancer risk
models

Risk factor Gail
[1]

BCSC
[2]

Claus
[3]

BRCAPRO
[4]

BOADICEA
[5]

Tyrer-
Cuzick [6,
7]

Age Yes Yes Yes Yes Yes Yes

Body mass index No No No No No Yes

Age at menarche Yes No No No No Yes

Age at first live birth Yes No No No No Yes

Menopause No No No No No Yes

Hormone replacement therapy No No No No No Yes

Biopsy history/atypical ductal
hyperplasia

Yes Yes No No No Yes

First-degree family history of
breast cancer

Yes Yes Yes Yes Yes Yes

Second-degree family history of
breast cancer

No No Yes Yes Yes Yes

First- and second-degree family
history of ovarian cancer

No No No Yes Yes Yes

Breast density No Yes No No No Yes

5418 Eur Radiol (2020) 30:5417–5426



from screening mammograms such as breast density,
which can be reliably measured using commercially avail-
able software.

The purpose of this study was to develop a breast cancer
risk model for use at time of screen in a general screening
population.

Materials and methods

This retrospective case-control study was nested within a co-
hort of women aged 40–75 years screened in a population-
based breast screening program with full-field digital mam-
mography between January 1, 2009, and December 31, 2015
(n = 8015). Due to missing risk factor data, 245 women were
excluded. The final sample included 7770 women: 1882 with
histologically confirmed unilateral or bilateral screen-detected
or interval breast cancer (cases), and 5888 without screen-
detected breast cancer (controls). Breast cancer was defined
as ductal carcinoma in situ or invasive breast cancer. Women
were considered to have screen-detected breast cancer if they
were diagnosed as a result of an abnormal screening mammo-
gram. Women were considered to have interval breast cancer
if they received a non-cancer result after a screening mammo-
gram but were diagnosed as a result of symptoms in the
24 months prior to the next regularly scheduled screen.
Eligible controls were defined as women whose screening
mammogram did not result in a diagnosis of breast cancer
(incident sampling approach). Controls were randomly sam-
pled and frequency-matched with cases on a 3:1 basis,
matching on both age and year of screen.

All screening mammograms were performed following the
practice guidelines for breast cancer screening and technical
standards for breast imaging by the Mammography
Accreditation Program of the Canadian Association of
Radiologists.

This study was approved by the institutional research ethics
board, which waived the requirement for informed consent
(NSHA-RS/2015-340).

Image-derived risk factors

All mammograms were obtained using a Siemens
MAMMOMAT Inspiration or MAMMOMAT Novation DR
imaging system. Age was obtained from the image metadata
(Digital Imaging and Communications in Medicine
(DICOM), header).

A fully automated mammographic density measurement
algorithm (densitas® densityai™, Densitas® Inc.) was used
to obtain percent mammographic density (PMD; 0–100%),
total breast area (cm2), and breast thickness (cm) using both
mediolateral-oblique and cranial-caudal views for all studies.
The algorithm processes “for-presentation” images used by

radiologists in clinic to generate an area-based PMD measure
that ranges from 0 to 100% and has demonstrated excellent
agreement with radiologists’ area-based visual assessments of
density (intraclass correlation coefficient = 0.91, 95% CI
0.89–0.92) [21]. Breast volume (cm3) was used as a surrogate
for BMI and calculated by multiplying total breast area by
breast thickness [22].

For women with screen-detected cancer, image-derived
risk factors were obtained from the screening mammogram
that led to the breast cancer diagnosis. For women with inter-
val cancer, these risk factors were obtained from the screening
mammogram immediately prior to the interval cancer
diagnosis.

Clinical risk factors

Clinical risk factors for breast cancer at screen were extracted
from the Breast Screening Program information system,
which contains information for all breast imaging procedures
in the province. Information was obtained for clinically report-
ed risk factors such as core biopsy history (yes/no, hereafter
referred to as biopsy history) and self-reported risk factors
such as first-degree family history of breast cancer (yes/no),
number of births, menopausal status at time of screen (pre/
post), and HRT use at time of screen (yes/no).

Statistical analyses

Descriptive statistics were computed for the image-derived
and clinical risk factors using means and standard deviations
or counts and percentages. An analysis of variance (ANOVA)
was used to evaluate the difference between women with and
without breast cancer for continuous risk factors. The chi-
square test was used to evaluate the association between breast
cancer status and categorical risk factors.

Multivariable logistic regression was used tomodel the risk
of breast cancer (outcome) as a function of image-derived risk
factors alone or in combination with clinical risk factors (co-
variates). All regression models, hereafter referred to as “risk
models,” included age as a covariate, plus one additional risk
factor. Additional risk models included age as a covariate plus
image-derived risk factors, both alone and in combination
with clinically reported risk factors (e.g., biopsy history). A
final set of risk models included the aforementioned covari-
ates and the self-reported clinical risk factors.

Boxplots were used to show the distribution of predicted
probabilities from the regression models; the range width,
defined as the maximum minus the minimum, was reported
for these predicted probabilities. The range width of the pre-
dicted probabilities generated by a risk model relates to the
model’s ability to discriminate between cancers and non-can-
cers. Models with wider range widths of predicted probabili-
ties will be able to better discriminate between women with
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and without breast cancer. For the primary outcome of the
study, the area under the receiver operating characteristic
curve (AUC) was used to evaluate how well different models
discriminated between women with and without breast cancer.
DeLong’s test was used to evaluate the difference in AUC
between models.

The predicted probabilities from the regression models
were used to assign women to low- (below 10th decile) and
high-risk (10th decile) groups, and a quadratically weighted
kappa statistic was used to evaluate the agreement between the
models for assigning women to these groups. Kappa values of
0.00–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00
were interpreted as slight, fair, moderate, substantial, and al-
most perfect agreement, respectively [23].

All women were divided into deciles (reference deciles)
separately for age (1 = youngest to 10 = oldest), PMD (1 =
lowest density to 10 = highest density), and the predicted
probabilities from the breast cancer risk model (1 = lowest risk
to 10 = highest risk). Women were then grouped into sets
based on their cancer status (no cancer or any cancer) and
mode of detection (screen-detected or interval cancer). For
each set, the percentage of women in each decile (1–10) was
calculated as the proportion of women in that decile relative to
all women within the set.

We calculated that a sample of 1437 cases and 4311 non-
cancer controls would achieve 80% power to detect a minimal
clinically significant difference of 0.02 between an AUC
curve of a risk model with an AUC of 0.58 and another risk
model with an AUC of 0.60 using a two-sided z-test at a
significance level of 0.05 [24, 25].

Statistical analyses were performed using R (version 3.2.2
for Mac OS). p values < 0.05 were considered statistically
significant.

Results

Study sample

The final dataset included images and corresponding risk fac-
tor data for 7770 women: 1595 with screen-detected breast
cancer, 287 with interval breast cancer, and 5888 without
breast cancer. Women with breast cancer were generally sim-
ilar to those without, but had slightly higher mean PMD and
breast volume and weremore likely to have a family history of
breast cancer and/or biopsy history (Table 2).

The range width of the predicted probabilities was
0.35 (min = 0.19, max = 0.54) for the model with age
and biopsy history, and it was 0.32 (min = 0.15, max =
0.47) for the model with age and PMD (Fig. 1a). The
range width of the predicted probabilities increased to
0.44 (min = 0.12, max = 0.56) when the three image-
derived risk factors were combined in a single model,

and increased to 0.69 (min = 0.10, max = 0.79) when bi-
opsy and family history were added to the model. The
range width was 0.71 (min = 0.09, max = 0.80) after the
addition of the three remaining self-reported risk factors
(number of births, menopausal status, and HRT use; Fig.
1b).

Among the risk models that included age and one other
risk factor, the model that included biopsy history best
predicted breast cancer risk (Table 3; Fig. 2). The risk
model that included the image-derived risk factors had a
predictive performance of AUC = 0.597 and the addition
of biopsy history increased the model’s predictive perfor-
mance to AUC = 0.660 (ΔAUC = 0.06; p < 0.001). The in-
clusion of first-degree family history to the model with
image-derived risk factors and biopsy history increased
the predictive performance to AUC = 0.664 (ΔAUC =
0.004; p = 0.04). However, the inclusion of number of
births, menopausal status, and HRT use to the model with
image-derived risk factors, biopsy history, and family his-
tory did not significantly improve model performance
(AUC = 0.665, ΔAUC = 0.001; p = 0.45).

83.6% of women remained in the same low- or high-risk
group whether the classifier was based on the riskmodel using
image-derived risk factors or from a model using image-
derived risk factors, biopsy history, and family history
(Table 4a). However, agreement between the classifiers was
poor (kappa = 0.09, 95% CI 0.06, 0.11). There was near-
perfect concordance (99.5%) and near-perfect agreement
(kappa = 0.97, 95% CI 0.97, 0.98) for the classifier based on
the risk model using image-derived risk factors, biopsy histo-
ry, and family history and that from amodel using all available
risk factors (Table 4b).

For the risk model using the three image-derived risk
factors, biopsy history, and family history, 22.6% of
women with breast cancer were in the top reference risk
decile and 4.9% were in the bottom reference risk decile
(Fig. 3). 36.7% of women with breast cancer and 47.7%
of those with interval cancer were in the top two refer-
ence risk deciles compared with 14.7% of those without
breast cancer. For reference PMD deciles established
using breast density, 15.2% of women with breast can-
cer were in the top decile and 5.7% were in the bottom
decile. 26.0% of women with breast cancer and 42.5%
of those with interval cancer were in the top two deciles
compared with 19.1% of those without breast cancer.
For deciles established using age at screening, 10.9%
of women with breast cancer were in the top reference
age decile and 9.1% were in the bottom decile (versus
11.0% and 8.5%, respectively, for those without breast
cancer).

Fifty-five percent (426/777) of the women in the top refer-
ence risk decile had breast cancer and 34% (264/777) of the
women in the ninth decile had breast cancer.
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Discussion

This study explored the potential for a breast cancer risk mod-
el to identify women at higher risk at mammographic

screening within a general screening population. A risk model
consisting of image-derived factors alone predicted breast
cancer risk with an AUC = 0.597. The predictive power of this
model was significantly improved with the addition of biopsy

Fig. 1 Boxplot of risk estimates for models including age plus additional risk factors

Table 2 Descriptive
characteristics of women with and
without breast cancer

Characteristic Breast cancer No breast cancer p value

Number of women 1882 5888

Mean (SD) age in years 59.3 (8.5) 59.4(8.4) 0.49*

Mean (SD) percent mammographic density 35.9 (18.1) 31.5 (16.5) < 0.001*

Mean (SD) breast volume (cm3) 886.1 (525.6) 848.9 (491.1) < 0.01*

Median (range) number of births 2 (0.8) 2 (0–10)

Frequency (%) 518 (27.5%) 452 (7.7%) < 0.001†

Frequency (%) 536 (28.5%) 1414 (24.0%) < 0.001†

Frequency (%) 1457 (77.4%) 4679 (79.5%) 0.23†

Frequency (%) 215 (11.4%) 769 (13.1%) 0.20†

SD standard deviation

*An ANOVAwas used to evaluate the difference between women with and without breast cancer for continuous
risk factors
†A chi-square test was used to evaluate the association between breast cancer status and categorical risk factors

5421Eur Radiol (2020) 30:5417–5426



and family history information (AUC = 0.664), but additional
risk factors did not further improve model performance.

The performance of the risk model based on image-derived
factors alone was comparable to published results from the
Breast Cancer Risk Assessment Tool (Gail model), which
has yielded AUCs of 0.58 for estimating the 5-year risk of
invasive breast cancer [26] and 0.55 for 10-year risk [27].
Similar to other studies, we observed that a hybrid model
including image-derived and clinical risk factors (biopsy and

family history) outperformed the models based on image-
derived or clinical risk factors alone [28]. Although the hybrid
model performed best, biopsy history contributed significant-
ly to the predictive performance of the models considered in
this study. False positive screening results may be a marker for
an underlying biological susceptibility for breast cancer and
may explain this finding [29].

The simplicity and accuracy of the model make it more
practical for use in a clinical setting than breast cancer risk

Fig. 2 Area under the receiver operating characteristic curve plots for models including age plus additional risk factors

Table 3 Area under the receiver
operating characteristic curve and
95% confidence intervals (CI) for
breast cancer risk models based
on age and other risk factors

Model AUC (95% CI)

Age and a single image-derived risk factor

Percent mammographic density (PMD) 0.584 (0.569, 0.598)

Breast volume (Bvol, cm3) 0.519 (0.504,0.534)

Age and a single clinical risk factor

Biopsy history (BxHx) 0.604 (0.589, 0.620)

Family history (FHx) 0.525 (0.510,0.540)

Number of live births (# births) 0.510 (0.495,0.525)

Menopausal status (Meno) 0.514 (0.499,0.529)

Hormone replacement therapy use (HRT) 0.512 (0.497,0.527)

Age and multiple risk factors

PMD + Bvol 0.597 (0.583,0612)

PMD + Bvol + BxHx 0.660 (0.646,0.675)

PMD + Bvol + FHx 0.601 (0.587,0.616)

PMD + Bvol + BxHx + FHx 0.664 (0.650,0.678)

PMD + Bvol + BxHx + FHx + # births +Meno + HRT 0.665 (0.650,0.679)

AUC area under the receiver operating characteristics curve, CI confidence interval
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models that rely on extensive self-reported family history and
genetic information. A breast cancer risk model for use at
mammographic screening in population-based screening must
be limited to a restricted number of easily acquired, high-
quality risk factors to be practical. Although one study found
that PMD assessments using a visual analog scale were more
strongly associated with breast cancer risk than four automat-
ed methods, the same study noted that visual assessments
were not practical for population-level screening [30]. In this
study, five risk factors were used to derive the best-performing
risk model. Age, PMD, and breast volume were obtained di-
rectly from the screening mammogram, biopsy history was
from the patient record, and first-degree family history was
self-reported. Both biopsy history and first-degree family his-
tory are likely to be readily recalled by women and robust to
recall and reporting bias. Because these data are often collect-
ed at time of screening exam, they present little burden to
women and the health care system in terms of time or cost.

Women in the top two risk deciles accounted for one in
three screen-detected cancers, and nearly one in two interval
cancers. In fact, the top risk-based deciles contained a substan-
tially higher proportion of women with breast cancer than the
top age- or PMD-based deciles. This finding suggests that risk
estimates generated by a simple five-factor breast cancer risk
model may be more informative for stratified screening than
proxy estimates of risk based on either age or mammographic
density. Further studies are needed to investigate whether
stratified screening based on this five-factor model could im-
prove performance measures such as the positive predictive
value of screening and cancer detection rates, and lead to
improved prognosis and reduced treatment costs.

Strengths and limitations

Our study was based on all women with screen-detected and
interval breast cancer within the population, eliminating the
potential for sampling bias. Moreover, the use of automated
software ensured that image-derived factors were assessed in a
standardized and reproducible manner from “for-presenta-
tion” full-field digital mammograms. Results from the litera-
ture show that the direction and magnitude of associations
between reproductive factors and PMD from digital mam-
mography are similar to those established from screen-film
mammography [31]. However, the use of automated software
limits the applicability to environments where such software is
available.

All clinical risk factors were extracted from a synoptic
reporting information system that supports the population-
based breast screening program. These data were collected
in a standardized manner during screening and reflect infor-
mation that is readily available in a clinical setting (e.g., men-
opausal status but not age at menopause, and current HRT use
but not duration of use). Information on BMI was not avail-
able, and we used breast volume as a proxy to overcome this
limitation [22, 32]. We estimated breast volume by multiply-
ing breast area and compression thickness from mammo-
graphic images. This method is strongly correlated with
post-mastectomy breast volume (r = 0.997) [33]. The mea-
sured breast thickness may differ slightly depending on
whether a rigid (Siemens Novation) or tilting (Siemens
Inspiration) compression paddle was used, but the impact on
the final estimate of breast volume is likely minimal. Overall,
the risk factors used in the proposed risk model include those

Table 4 Assignment to low-
(< 10th decile) and high-risk
(10th decile) group based on
classifications derived from breast
cancer risk models

(a)

Age + PMD + Bvol

Low risk High risk Total

Age + PMD + Bvol + BxHx + FHx Low risk 6354 639 6993

High risk 639 138 777

Total 6993 777 7770

(b)

Age + PMD + Bvol + BxHx +FHx + # births + Meno +
HRT

Low risk High risk Total

Age + PMD + Bvol + BxHx + FHx Low risk 6975 18 6993

High risk 18 759 777

Total 6993 777 7770

Age age at screen, PMD percent mammographic density, Bvol breast volume, BxHx core biopsy history, FHx
family history, # births number of live births, Meno menopausal status, HRT hormone replacement therapy use

Agreement between risk estimates from different breast cancer risk models demonstrates impact and utility of
inclusion of additional risk factors in risk models. (a) The inclusion of BxHx and FHx results in very poor
agreement between risk models (kappa = 0.09), indicating that inclusion of those risk factors reclassifies higher
risk women substantially. (b) The inclusion of # births, Meno, and HRT results in excellent agreement is risk
models (kappa = 0.97), indicating that inclusion of those risk factors reclassifies very few higher risk women
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identified as critical for personalized risk stratification [8, 9].
The lack of availability of age at diagnosis of first-degree
relatives for inclusion in the proposed risk model is a potential
limitation of this study.

A potential limitation of this study is that the risk model
was developed to provide tailored estimates of current breast
cancer risk, which differs from models that predict 5-year, 10-
year, or lifetime risk. However, it has been shown that current
and future risk estimates based on a combination of image-
derived and clinical risk factors can be similar [28].

An incident sampling approach was used for this study. As
a result, it is possible that the controls could have developed
interval cancer before their next planned screening

mammogram. Based on an interval cancer rate of 1 per 1000
screens [34], roughly 6 of the 5888 women without screen-
detected breast cancer might have later been diagnosed with
interval cancer. This small number of expected interval can-
cers is unlikely to have impacted the overall results.

Our study cohort was selected from a fairly homogeneous
Caucasian population, and our results may have limited gen-
eralizability to a more racially diverse population. However,
our model consists of a hybrid of image-derived factors plus
clinical risk factors similar to a study by others in which a
hybrid risk model consisting of image-derived factors plus
clinical risk factors has demonstrated comparable perfor-
mance for both white and African-American women [28].

Fig. 3 Percentage of women with
screen-detected/interval/both
cancers or no cancer by
risk/PMD/age deciles
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The proposed breast cancer risk model would benefit from
further validation in other populations.

Summary

Women can be risk-stratified at mammographic screening
using a simple model based on a small set of image-derived
and clinical history factors, including age at screen, PMD,
breast volume, and biopsy and family history.

Funding information This study has received funding from the Capital
District Health Authority Research Fund and the Dalhousie University
Radiology Research Foundation. In-kind support (i.e., automated mam-
mography processing software) was provided by Densitas Inc.

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Mohamed
Abdolell.

Conflict of interest The authors of this manuscript declare relationships
with the following companies: Two authors, MohamedAbdolell and Pam
Talbot, are affiliated with Densitas Inc. (Founder/CEO and Employee,
respectively), the company that provided the automated mammography
image processing software used to extract the image-derived risk factors
that were included in the risk model. A third author, Jennifer Payne, is the
spouse of the Founder/CEO of Densitas Inc.

Statistics and biometry One of the authors has significant statistical
expertise.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• Retrospective
• Case-control study
• Performed at one institution

References

1. Gail MH, Brinton LA, Byar DP et al (1989) Projecting individual-
ized probabilities of developing breast cancer for white females
who are being examined annually. J Natl Cancer Inst 81:1879–1886

2. Breast Cancer Surveillance Consortium Risk Calculator. Available
via http://tools.bcsc-scc.org/BC5yearRisk/. Accessed 10 Aug 2019

3. Claus EB, Risch N, Thompson WD (1994) Autosomal dominant
inheritance of early-onset breast cancer. Implications for risk pre-
diction. Cancer 73:643–651

4. Berry DA, Parmigiani G, Sanchez J, Schildkraut J, Winer E (1997)
Probability of carrying a mutation of breast-ovarian cancer gene
BRCA1 based on family history. J Natl Cancer Inst 89:227–238

5. Antoniou AC, Pharoah PDP, McMullan G et al (2002) A compre-
hensive model for familial breast cancer incorporating BRCA1,
BRCA2 and other genes. Br J Cancer 86:76–83

6. Tyrer J, Duffy SW, Cuzick J (2004) A breast cancer prediction
model incorporating familial and personal risk factors. Stat Med
23:1111–1130

7. IBIS Risk evaluator input file description. Available via http://
www.ems-trials.org/riskevaluator/documents/170711_tc_inputv8_
varlist.doc. Accessed 2 Jun 2018

8. Vilaprinyo E, Forne C, Carles M et al (2014) Cost-effectiveness and
harm-benefit analyses of risk-based screening strategies for breast
cancer. PLoS One 9:e86858

9. Schousboe JT, Kerlikowske K, Loh A, Cummings SR (2011)
Personalizing mammography by breast density and other risk fac-
tors for breast cancer: analysis of health benefits and cost-effective-
ness. Ann Intern Med 155:10–20

10. Chiu SYH, Duffy S, Yen AMF, Tabár L, Smith RA, Chen HH
(2010) Effect of baseline breast density on breast cancer incidence,
stage, mortality, and screening parameters: 25-year follow-up of a
Swedish mammographic screening. Cancer Epidemiol Biomarkers
Prev 19:1219–1228

11. BoydNF, Rommens JM, Vogt K et al (2005)Mammographic breast
density as an intermediate phenotype for breast cancer. Lancet
Oncol 6:798–808

12. Wolfe JN (1976) Risk for breast cancer development determined by
mammographic parenchymal pattern. Cancer 37:2486–2492

13. Nickson C, Procopio P, Velentzis LS, Carr S, Devereux L, Mann
GB (2018) Prospective validation of the NCI breast cancer risk
assessment tool (Gail model) on 40,000 Australian women. Breast
Cancer Res 20:155

14. Hassan E (2005) Recall bias can be a threat to retrospective and
prospective research designs. Int J Epidemiol. https://doi.org/10.
5580/2732

15. Drieskens S, Demarest S, Bel S, De Ridder K, Tafforeau J (2018)
Correction of self-reported BMI based on objective measurements:
a Belgian experience. Arch Public Health 76:10

16. Gorber SC, Tremblay MS (2010) The bias in self-reported obesity
from 1976 to 2005: a Canada-US comparison. Obesity (Silver
Spring) 18:354–361

17. Quante AS, Whittemore AS, Shriver T, Strauch K, Terry MB
(2012) Breast cancer risk assessment across the risk continuum:
genetic and nongenetic risk factors contributing to differential mod-
el performance. Breast Cancer Res 14:R144

18. Dite GS,MacInnis RJ, Bickerstaffe A et al (2015) Breast cancer risk
prediction using clinical models and 77 independent risk-associated
SNPs for women aged under 50 years: Australian Breast Cancer
Family Registry. Cancer Epidemiol Biomarkers Prev 25:359–365

19. Feld SI, Fan J, Yuan M et al (2018) Utility of genetic testing in
addition to mammography for determining risk of breast cancer
depends on patient age. AMIA Jt Summits Transl Sci Proc 2017:
81–90

20. Folse HJ, Green LE, Kress A, Allman R, Dinh TA (2013) Cost-
effectiveness of a genetic test for breast cancer risk. Cancer Prev
Res (Phila) 6:1328–1336

21. Abdolell M, Tsuruda KM, McDougall EE, Iles S, Lightfoot C,
Caines J (2015) Towards personalized breast screening protocols:
validation of mammographic density estimation from full-field dig-
ital mammograms. Insights Imaging 6(Suppl 1):S212

22. Duffy SW,Morrish OWE, Allgood PC et al (2018)Mammographic
density and breast cancer risk in breast screening assessment cases
and women with a family history of breast cancer. Eur J Cancer 88:
48e56

23. Landis JR, Koch GG (1977) The measurement of observer agree-
ment for categorical data. Biometrics 33:159–174

24. Hanley JA, McNeil BJ (1983) A method of comparing the areas
under receiver operating characteristic curves derived from the
same cases. Radiology 148:839–843

5425Eur Radiol (2020) 30:5417–5426

http://tools.bcsc-scc.org/BC5yearRisk/
http://www.ems-trials.org/riskevaluator/documents/170711_tc_inputv8_varlist.doc
http://www.ems-trials.org/riskevaluator/documents/170711_tc_inputv8_varlist.doc
http://www.ems-trials.org/riskevaluator/documents/170711_tc_inputv8_varlist.doc
https://doi.org/10.5580/2732
https://doi.org/10.5580/2732


25. Obuchowski N, McClish D (1997) Sample size determination for
diagnostic accuracy studies involving binormal ROC curve indices.
Stat Med 16:1529–1542

26. Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA (2001)
Validation of the Gail et al model of breast cancer risk prediction
and implications for chemoprevention. J Natl Cancer Inst 93:358–
366

27. Brentnall AR, Harkness EF, Astley SM et al (2015)Mammographic
density adds accuracy to both the Tyrer-Cuzick and Gail breast
cancer risk models in a prospective UK screening cohort. Breast
Cancer Res 17:147

28. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019) A deep
learning mammography-based model for improved breast cancer
risk prediction. Radiology 292:60–66

29. Román M, Hofvind S, von Euler-Chelpin M, Castells X (2019)
Long-term risk of screen-detected and interval breast cancer after
false-positive results at mammography screening: joint analysis of
three national cohorts. Br J Cancer 120:269–275

30. Astley SM, Harkness EF, Sergeant JC et al (2018) A comparison of
five methods of measuring mammographic density: a case-control
study. Breast Cancer Res 20:10

31. Alexeeff SE, OdoNU,McBride R et al (2019) Reproductive factors
and mammographic density: associations among 24,840 women
and comparison of studies using digitized film-screen mammogra-
phy and full-field digital mammography. Am J Epidemiol 188:
1144–1154

32. Hudson S, VikHjerkindK,Vinnicombe S et al (2018) Adjusting for
BMI in analyses of volumetric mammographic density and breast
cancer risk. Breast Cancer Res 20:156

33. Kayar R, Civelek S, Cobanoglu M, Gungor O, Catal H, Emiroglu
M (2011) Five methods of breast volume measurement: a compar-
ative study of measurements of specimen volume in 30mastectomy
cases. Breast Cancer (Auckl) 5:43–52

34. Payne JI, Caines JS, Gallant J, Foley TJ (2013) A review of interval
breast cancers diagnosed among participants of the Nova Scotia
Breast Screening Program. Radiology 266:96–103

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

5426 Eur Radiol (2020) 30:5417–5426


	Assessing...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Image-derived risk factors
	Clinical risk factors
	Statistical analyses

	Results
	Study sample

	Discussion
	Strengths and limitations
	Summary

	References


