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and lacunarity analyses may predict the meningioma grade

Yae Won Park1 & Soopil Kim2
& Sung Soo Ahn1

& Kyunghwa Han1
& Seok-Gu Kang3

& Jong Hee Chang3
& Se Hoon Kim4

&

Seung-Koo Lee1
& Sang Hyun Park2

Received: 21 September 2019 /Revised: 30 October 2019 /Accepted: 2 March 2020
# European Society of Radiology 2020

Abstract
Objective To assess whether 3-dimensional (3D) fractal dimension (FD) and lacunarity features from MRI can predict the
meningioma grade.
Methods This retrospective study included 131 patients with meningiomas (98 low-grade, 33 high-grade) who underwent
preoperative MRI with post-contrast T1-weighted imaging. The 3D FD and lacunarity parameters from the enhancing portion
of the tumor were extracted by box-counting algorithms. Inter-rater reliability was assessed with the intraclass correlation
coefficient (ICC). Additionally, conventional imaging features such as location, heterogeneous enhancement, capsular enhance-
ment, and necrosis were assessed. Independent clinical and imaging risk factors for meningioma grade were investigated using
multivariable logistic regression. The discriminative value of the prediction model with and without fractal features was evalu-
ated. The relationship of fractal parameters with the mitosis count and Ki-67 labeling index was also assessed.
Results The inter-reader reliability was excellent, with ICCs of 0.99 for FD and 0.97 for lacunarity. High-grade meningiomas had
higher FD (p < 0.001) and higher lacunarity (p = 0.007) than low-grade meningiomas. In the multivariable logistic regression, the
diagnostic performance of the model with clinical and conventional imaging features increased with 3D fractal features for predicting
themeningioma grade, with AUCs of 0.78 and 0.84, respectively. The 3D FD showed significant correlations with bothmitosis count
and Ki-67 labeling index, and lacunarity showed a significant correlation with the Ki-67 labeling index (all p values < 0.05).
Conclusion The 3D FD and lacunarity are higher in high-grade meningiomas and fractal analysis may be a useful imaging
biomarker for predicting the meningioma grade.
Key Points
• Fractal dimension (FD) and lacunarity are the two parameters used in fractal analysis to describe the complexity of a subject
and may aid in predicting meningioma grade.

• High-grade meningiomas had a higher fractal dimension and higher lacunarity than low-grade meningiomas, suggesting
higher complexity and higher rotational variance.

• The discriminative value of the predictive model using clinical and conventional imaging features improved when combined
with 3D fractal features for predicting the meningioma grade.
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Abbreviations
2D 2-Dimensional
3D 3-Dimensional
FD Fractal dimension
ICC Intraclass correlation coefficient
IDI Integrated discrimination improvement
NRI Net reclassification index
OR Odds ratio
TE Echo time
TIC T1-weighted
TR repetition time
WHO World Health Organization

Introduction

Meningiomas are the most common primary intracranial neo-
plasms in adults, comprising 36.7% of all intracranial tumors
[1], and approximately 22.0–35.5% are World Health
Organization (WHO) grade II or III high-grade meningiomas
[2]. Compared with low-grade (benign [WHO grade I]) me-
ningiomas, high-grade (atypical [WHO grade II] or anaplastic
[WHO grade III]) tumors have an aggressive biological be-
havior and an increased risk of recurrence, as well as an in-
creased risk of mortality [3]. The standard management typi-
cally involves surgical resection and often adjuvant radiation
therapy for high-grade (WHO grades II–III) meningiomas.

Preoperative prediction of the meningioma grade is impor-
tant because it influences treatment planning, including the
surgical resection strategy. Further, according to the recent
guideline published by the European Association of Neuro-
Oncology [4], incidentally discovered and radiologically pre-
sumed meningiomas may be managed solely by observation;
thus, the histological grade may not be confirmed in some
cases. Clinical information such as age and sex have shown
a weak association with the grade [3], and currently, there are
no reliable parameters that can predict the tumor grade and
associated clinical course [5]. Thus, noninvasive prediction of
the meningioma grade may enhance clinical decision-making
by providing information on whether observation should be
performed. Previous studies have focused on conventional
imaging [6, 7], diffusion and perfusion imaging [8–11], amide
proton imaging, and PET to predict the meningioma grade;
however, up to now, the value of grading meningioma on
imaging has been low [5].

Fractal features are model-based features that characterize
the shape complexity of an object over a range of scales using
mathematical approaches [12, 13]. They enable quantification
of natural objects with high structural complexities that are
poorly represented by the conventional Euclidean geometry.
Fractal dimension (FD) and lacunarity are the two parameters
used in fractal analysis to describe the complexity and distri-
bution of a shape or subject. FD is a non-integer value that

describes the intrinsic shape of an object; as the FD increases,
the complexity increases [13]. Lacunarity is a geometric mea-
sure that represents the degree of gappiness and rotational (or
translational) invariance [13]. Several studies have performed
fractal analysis on differentiating glioma grade, differentiating
glioblastoma from CNS lymphoma, and predicting survival in
glioblastoma [14–16]. However, to the best of our knowledge,
no study has applied fractal analysis for meningioma.
Therefore, we hypothesized that 3-dimensional (3D) fractal
features could quantify the complexity of meningiomas and
subsequently aid in predicting the meningioma grade
noninvasively.

Materials and methods

Patient population

Our institutional review board waived the requirement to ob-
tain informed consent from patients for this retrospective
study. We retrospectively reviewed meningioma cases in
which pathological confirmation and preoperative conven-
tional MRI were performed between June 2009 and
March 2018. Exclusion criteria were as follows: (1) patients
with a previous history of operation (n = 7), (2) patients with a
history of tumor embolization or gamma knife surgery before
MRI examination (n = 2), and (3) patients with absence of
post-contrast T1-weighted (T1C) images or suboptimal image
quality (n = 1). Overall, 131 patients were included in this
study (105 women and 26 men; mean age, 57.8 ± 13.0 years).

MRI protocol

Preoperative MRI was performed using a 3.0-T MRI scanner
(Achieva, Philips Medical Systems) with an eight-channel
sensitivity-encoding head coil. The preoperative MRI proto-
col included T1-weighted (repetition time [TR]/echo time
[TE], 2000/10 ms; field of view, 230 mm; section thickness,
5 mm; matrix, 320 × 198) and T1C images (TR/TE, 1800–
2000/10 ms; field of view, 240–250 mm; section thickness,
2 mm; and matrix, 256–312 × 256–312). T1C images were
acquired after the administration of 0.1 mL/kg of
gadolinium-based contrast material (Gadovist; Bayer).

Pathologic diagnosis

Pathological diagnosis was performed by a neuropathologist,
according to the 2016WHO criteria [12]. Criteria for an atyp-
ical meningioma (WHO grade II) comprised 4–19 mitoses per
10 high-power fields, the presence of brain invasion, or the
presence of at least three of these features: “sheet-like”
growth, hypercellularity, spontaneous necrosis, large and
prominent nucleoli, and small cells; criteria for an anaplastic
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meningioma (WHO grade III) comprised frank anaplasia (his-
tology resembling carcinoma, sarcoma, or melanoma) or ele-
vated mitosis count (> 20 mitoses per 10 high-power fields)
[12]. The mitosis count was evaluated using the mitotic mark-
er phosphohistone-H3. The mitosis index was determined by
counting the number of unequivocal mitotic figures in 10 con-
secutive high-power fields (× 400) containing the highest
number of mitoses. The Ki-67 labeling index was estimated.

Tumor segmentation

Segmentation was performed by a neuroradiologist (Y.W.P.
with 7 years of experience) who was blinded to the clinical
information and histopathologic results. ROIs were drawn on
each tumor section on T1C images, using a semiautomatic
method with an interactive level-set volume of interest and
intensity-based algorithms. Gross cystic, hemorrhagic, or ne-
crotic areas were avoided by using conventional T1 and T1C
images. To test inter-reader reliability, images from 30 patients
were randomly selected and independently segmented by an-
other neuroradiologist (S.S.A. with 14 years of experience).
The regions of interests were segmented using a multi-plat-
form, free, open-source software package for visualization and
medical image computing (3D slicer, version 4.6.2-1; avail-
able at: http://slicer.org).

3D fractal analysis

The 3D FD and lacunarity values were computed from the
segmentation annotated by neuroradiologists using the box-
counting algorithms [17]. The 3D FD was calculated by the
change of the number of boxes that included a part of the 3D
binary mask with respect to different box sizes. The 3D
lacunarity was calculated by the average of the square of co-
efficient of variation values of multiple boxes that included a
part of the 3D binary mask [18]. Since the optimal box size
was unknown, both FD and lacunarity values were computed
with different 3D box sizes, ranging from 21 to 27 isotropic
voxels. The mean FD and lacunarity values were calculated in
each patient. Figure 1 shows the pipeline for fractal analyses.
Details of FD and lacunarity calculations are available in the
Supplementary Material.

Qualitative evaluation of conventional imaging
features

Previously known conventional imaging features for
predicting the meningioma grade [5, 7, 19] including the lo-
cation (skull base vs. non-skull base), capsular enhancement,
heterogeneous enhancement, and presence of necrosis were
evaluated independently by two neuroradiologists (Y.W.P.
and S.S.A.), who were blinded to the clinical information
and histopathologic results. Discrepancies were settled

through a consensus discussion. A detailed explanation of
the definition of imaging findings is available in the
Supplementary Material.

Statistical analysis

Baseline characteristics were compared between patients
with low-grade and high-grade meningiomas using the
chi-square or Fisher exact test for categorical variables,
and independent t test or Mann-Whitney U test for contin-
uous variables according to normality. Inter-reader reliabil-
ity of fractal parameters was assessed by two-way inter-
class correlation. Interobserver agreement in the imaging
evaluation was calculated by using the Cohen kappa index
[20]. Univariable and multivariable logistic regression
analyses were performed to find the significant clinical
and imaging features associated with high-grade meningi-
omas. Variables of interest in the univariable analysis
(p < 0.05) were included in the multivariable models by
using the enter method. To determine whether inclusion
of 3D fractal features with the predictive model improved
the discriminative value, two different models with and
without 3D fractal features were assessed based on the
receiver operating characteristic curve using c-statistics
(the Harrell concordance index). The net reclassification
index (NRI) and integrated discrimination improvement
(IDI) values of the two models were also calculated to
evaluate the increase in the discriminative value [21]. The
precision-recall curves were also calculated.

In addition, the correlation between fractal parameters with
the mitosis count and the Ki-67 labeling index was evaluated
by the Pearson correlation coefficient analysis.

All statistical analyses were performed using the statistical
software R (version 3.5.1; R Foundation for Statistical
Computing). A p value < 0.05 was considered statistically
significant.

Results

The clinical, histopathological, and imaging characteristics of
the 131 patients are summarized in Table 1. Ninety-eight pa-
tients were pathologically diagnosed with low-grade meningi-
omas, including 48 (36.6%) transitional, 29 (22.1%)
meningothelial , 11 (8.4%) fibroblastic, 4 (3.1%)
psammomatous, 3 (2.3%) angiomatous, 2 (1.5%) microcystic,
and 1 (0.8%) secretory. Thirty-three patients were pathologi-
cally diagnosed as having high-grade meningiomas, with 29
(22.1%) atypical and 4 (3.1%) anaplastic meningiomas.
Patients with high-grade meningiomas were significantly
older than those with low-grade meningiomas (61.7 vs.
56.5 years, p = 0.047).
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Inter-reader reliability of 3D fractal features

The FD showed 1.55 ± 0.81 and 1.56 ± 0.80, and lacunarity
showed 4.99 ± 3.0 and 5.1 ± 3.2 in the 30 patients from each
reader, respectively. The inter-reader reliability was excellent,
with intraclass correlation coefficients of 0.99 (95% confi-
dence interval [CI] 0.98–0.99) for FD and 0.97 (95% CI
0.96–0.98) for lacunarity.

Interobserver agreement of conventional imaging
features

The interobserver agreement between the two neuroradiolo-
gists was nearly perfect (κ = 0.823) for location, substantial
(κ = 0.739) for heterogeneous enhancement, moderate (κ =
0.545) for capsular enhancement, and substantial (κ = 0.695)
for necrosis.

Comparison of prediction models for meningioma
grades

In the entire group, results of the univariable analysis showed
that older age (odds ratio [OR] = 1.034 [95% CI 1.001–
1.067], p = 0.049), negative capsular enhancement (OR = 6.6
[95% CI 2.6–16.7], p < 0.001), heterogeneous enhancement
(OR = 5.3 [95% CI 2.0–14.0], p = 0.001), necrosis (OR = 3.7
[95% CI 1.6–8.7], p = 0.002), higher FD (OR = 93.6 [95% CI

8.0–1088.5], p < 0.001), and higher lacunarity (OR = 1.9
[95% CI 1.2–3.2], p = 0.008) were associated with high-
grade meningiomas. (Boxplots of representation of the fractal
dimension and lacunarity according to different meningioma
grades are shown in Fig. 2).

Inmultivariable analysis of the six variables, FD (OR= 184.8
[95% CI 7.5–4565.6], p = 0.001) and lacunarity (OR 2.7 [95%
CI 1.4–5.2], p = 0.003) were independent variables for
predicting the meningioma grade. In the comparison of the pre-
dictive power for high-grade meningiomas in the two multivar-
iable models (model 1 with covariates such as age, negative
capsular enhancement, heterogeneous enhancement, and necro-
sis; model 2 with model 1 with covariates such as age, negative
capsular enhancement, heterogeneous enhancement, necrosis,
FD, and lacunarity) using c-statistics analysis, model 2 exhibited
a better diagnostic performance than model 1 (AUC 0.84 [95%
CI 0.75–0.92] vs. 0.78 [95%CI 0.69–0.87]; p = 0.148).Model 2
also exhibited better performance with an NRI of 0.77 (95% CI
0.41–1.13) and IDI of 0.13 (95% CI 0.07–0.20) (Table 2).
Figure 3a and b show the ROC curve and precision-recall curve.

Relationship of fractal parameters with the mitosis
count and Ki-67 labeling index

FD showed a significant correlation with both the mitosis
count (r = 0.192, p = 0.045) and Ki-67 labeling index (r =
0.228, p = 0.010). Lacunarity showed a significant correlation

Fig. 1 The schematic of fractal
analysis in our study. a
Visualization of the box-counting
algorithm with varying box sizes
for the fractal dimension analysis.
b Visualization of the coefficient
of variation with varying box
sizes for the lacunarity analysis
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with the Ki-67 labeling index (r = 0.230, p = 0.009), but not
with the mitosis count (r = 0.109, p = 0.256). Scatter plots are
shown in Supplementary Fig. 1.

Discussion

The present study emphasizes the potential applications of 3D
fractal analysis for the differentiation and characterization of

different grades of meningiomas. The results of multivariable
regression analysis with clinical and conventional imaging
features and 3D fractal features as covariates revealed only
3D fractal features as being independently associated with
high-grade meningiomas. The diagnostic improvement of
the predictive model upon inclusion of 3D fractal features
was also confirmed by the NRI and IDI, which exhibited
values greater than zero. The ability to differentiate between
low-grade and high-grade meningiomas before treatment has

Table 1 Clinical and imaging
characteristics according to the
meningioma grade

Variable Low-grade
meningioma (n = 98)

High-grade meningioma (n = 33) p value*

Age (years)† 56.5 ± 11.9 61.7 ± 15.3 0.047

Sex 0.216

Female 81 (82.7) 24 (72.7)

Male 17 (17.3) 9 (27.3)

Mitosis count† 1.1 ± 0.3 7.5 ± 5.7 < 0.001

Ki-67 labeling index† 1.7 ± 0.9 7.7 ± 5.7 < 0.001

Fractal parameters

3D FD† 1.7 ± 0.2 1.9 ± 0.2 < 0.001

3D lacunarity† 5.6 ± 0.8 6.1 ± 0.9 0.007

Imaging findings

Location 0.072

Skull base 114 (74.0) 36 (87.6)

Non-skull base 40 (26.0) 5 (12.5)

Absent capsular enhancement 11 (11.2) 15 (45.5) < 0.001

Heterogeneous enhancement 45 (45.9) 27 (81.8) < 0.001

Necrosis 19 (20.2) 16 (48.5) 0.002

Unless otherwise indicated, data are presented as numbers of patients (%)
* Calculated from the Student t test orMann-WhitneyU test for continuous variables, and chi-square test or Fisher
exact test for categorical variables
†Data are presented as a mean ± standard deviation

FD fractal dimension; 3D 3-dimensional

Fig. 2 Boxplot representation of the (a) fractal dimension and (b) lacunarity according to different meningioma grades
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potentially profound clinical utility. In routine clinical settings,
surgery is usually recommended for patients with neurologic
symptoms, large tumors, and associated cerebral edema [4].
However, patients with high-grade meningiomas could bene-
fit from early resection even in the absence of these clinical
and radiological findings.

The FD was significantly higher for high-grade meningio-
mas than for low-grade meningiomas, suggesting that high-
grade meningiomas exhibit a more complicated texture pat-
tern on MRI than low-grade meningiomas. Supporting our
results, a previous study has also stated that irregular tumor
border was correlated with high-grade meningioma [7].
Previous studies have shown that meningioma with a high
proliferative potential may exhibit highly heterogeneous dis-
tributions of proliferating cells in the tumor, and this hetero-
geneity may produce irregular shapes [6, 22]. Our study

shows that quantitative assessment of the complexity is useful
in grading meningioma. Additionally, the lacunarity of high-
grade meningiomas was significantly higher than that of low-
grade meningiomas, suggesting that the necrosis or cystic
change visualized as gaps in the tumor lesion may increase
its rotational variance. In other words, we indirectly quantified
the amount of necrosis or cystic change via lacunarity. Fractal
analysis is a measure of the complexity of structures and com-
plex geometric patterns. Fractal features have the potential to
become a powerful and useful tool; they are relatively stable
and less susceptible to imaging noise than other texture fea-
tures [23], and could be used for longitudinal assessment in a
single patient [24]. For non-Euclidean objects, FD usually
exceeds topological dimension and is a non-integer, whereas
for ordinary shapes, it is equal to the traditional Euclidean
dimension. Therefore, FD as an index of statistical complexity

Fig. 3 a Receiver operating characteristic curves and (b) precision-recall curves of the multivariable logistic model with and without 3-dimensional
fractal parameters

Table 2 Performance comparison
of multivariable logistic
regression models with and
without 3D fractal features for
predicting the meningioma grade

Variable Model 1 Model 2

Adjusted OR (95% CI) p value Adjusted OR (95% CI) p value

Age (years) 1.0 (1.0–1.1) 0.131 1.0 (1.0–1.1) 0.297

Absent capsular enhancement 3.7 (1.3–10.6) 0.014 2.6 (0.8–8.2) 0.120

Heterogeneous enhancement 2.2 (0.7–6.9) 0.194 1.7 (0.5–4.9) 0.393

Necrosis 2.0 (0.7–5.6) 0.164 1.5 (0.5–4.6) 0.484

3D FD 184.8 (7.5–4565.6) 0.001

3D lacunarity 2.7 (1.4–5.2) 0.003

AUC 0.78 (0.69–0.87) 0.84 (0.76–0.92)

NRI Reference 0.77 (0.41–1.13)

IDI Reference 0.13 (0.07–0.20)

CI confidence interval; IDI integrated discrimination index; FD fractal dimension; NRI net reclassification index;
OR odds ratio; 3D 3-dimensional
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has been applied in several fields of tumor study [14, 15].
Previous studies on brain tumors have mostly focused on 2D
fractal analyses using imaging software with an averaging of
parameter values on several contiguous axial images [14–16];
however, 2D analyses have limited value because a 2D image
cannot exhibit true fractal behavior of a 3D object [25]. The
2D analysis may not be fully representative of the tumor as a
whole and supports the case for investigating 3D analysis
techniques. The 3D fractal analyses are known to provide
values with larger magnitude, which reflects the volume
assessed.

The 3D fractal features were also correlated with the mito-
sis count and Ki-67 labeling index. The mitosis count and Ki-
67 labeling index are important tools in addition to routine
histological evaluation; these proliferation indices were corre-
lated with an increased risk of recurrence and are known to be
important prognostic factors in cases of meningiomas [26,
27]. Higher FD was correlated with a higher mitosis count
and Ki-67 index, and higher lacunarity was correlated with a
higher Ki-67 index, suggesting that a more complicated pat-
tern and increased rotational variance is correlated with pro-
liferation activity.

Previous studies have reported that conventional imaging
findings such as non-skull base location, unclear tumor-brain
interface, heterogeneous enhancement, or presence of
necrosis/hemorrhage were associated with the probability of
a high-grade meningioma [7, 28–30]. Our study showed sim-
ilar results; however, the inter-rater agreement ranged from a
kappa value from moderate to nearly perfect, suggesting the
subjectivity of visual assessment, whereas the fractal analysis
of meningiomas showed excellent inter-rater reliability.
Moreover, the power ofmany of these studies has been limited
by both a small sample size and the significant overlapping in
imaging features of low-grade and high-grade meningiomas.
On the other hand, recent studies showed the potential of
radiomics features not only on glioma grading or molecular
differentiation [31, 32] but also for differentiating the menin-
gioma grade [30, 33], but fractal features have not been rou-
tinely implemented in the previous radiomics studies on me-
ningiomas. Moreover, radiomics studies are prone to
overfitting due to high dimensionality, and the large number
of features requires intensive computational resources [34].
The multiplicity of data can result in high probability of a
false-positive rate [34]. In our study, fractal parameters
showed high inter-rater reliability, and we used a conventional
T1C sequence rather than advanced imaging techniques, sug-
gesting a more feasible methodology. Advanced sequences
such as DWI and perfusion studies have shown contradictory
results in grading meningioma [8–11, 35], and the practical
usage of amide proton imaging or PET is limited in clinical
setting although promising results have been shown [36, 37].

Our study has several limitations. First, our study was
based on a single institution and retrospectively collected

dataset, with a limited sample size. Further study with a larger
number of patients is needed to validate our results. Second,
there is currently a lack of standardization in the fractal anal-
ysis algorithms. However, we used mean values from the box-
counting method because it is the most commonly used algo-
rithm to assess fractal parameters of natural objects in biomed-
ical research.

In conclusion, 3D FD and lacunarity are higher in high-
grade meningiomas and fractal analysis may be a useful im-
aging biomarker for predicting the meningioma grade.
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