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Machine learning and radiomic phenotyping of lower grade gliomas:
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Abstract
Background and purpose Recent studies have highlighted the importance of isocitrate dehydrogenase (IDH) mutational status in
stratifying biologically distinct subgroups of gliomas. This study aimed to evaluate whether MRI-based radiomic features could
improve the accuracy of survival predictions for lower grade gliomas over clinical and IDH status.
Materials and methods Radiomic features (n = 250) were extracted from preoperative MRI data of 296 lower grade glioma
patients from databases at our institutional (n = 205) and The Cancer Genome Atlas (TCGA)/The Cancer Imaging Archive
(TCIA) (n = 91) datasets. For predicting overall survival, random survival forest models were trained with radiomic features;
non-imaging prognostic factors including age, resection extent, WHO grade, and IDH status on the institutional dataset, and
validated on the TCGA/TCIA dataset. The performance of the random survival forest (RSF) model and incremental value of
radiomic features were assessed by time-dependent receiver operating characteristics.
Results The radiomics RSF model identified 71 radiomic features to predict overall survival, which were successfully validated
on TCGA/TCIA dataset (iAUC, 0.620; 95% CI, 0.501–0.756). Relative to the RSF model from the non-imaging prognostic
parameters, the addition of radiomic features significantly improved the overall survival prediction accuracy of the random
survival forest model (iAUC, 0.627 vs. 0.709; difference, 0.097; 95% CI, 0.003–0.209).
Conclusion Radiomic phenotyping with machine learning can improve survival prediction over clinical profile and genomic data
for lower grade gliomas.
Key Points
• Radiomics analysis with machine learning can improve survival prediction over the non-imaging factors (clinical and molec-
ular profiles) for lower grade gliomas, across different institutions.
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Abbreviations
FLAIR Fluid-attenuated inversion recovery
iAUC Integrated area under the ROC curve
IDH Isocitrate dehydrogenase

IRB Institutional research board
LGG Lower grade glioma
OS Overall survival
RF Random forest
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ROC Receiver operating characteristics
RSF Random survival forest
T1C T1-weighted contrast-enhanced
T2 T2-weighted
TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archive
TE Echo time
TR Repetition time

Introduction

Glioma is the most common primary brain tumor, accounting
for approximately 51% of all central nervous system tumors
[1]. Lower grade gliomas (LGGs) are WHO grade II and III
tumors; they show heterogeneous survival outcomes, with
some LGGs exhibiting high therapeutic sensitivity [2]. Thus,
prior studies have investigated important clinical predictors of
survival for patients with LGG, such as age and extent of
tumor resection [3, 4]. The importance of molecular bio-
markers, such as isocitrate dehydrogenase (IDH) mutational
status in survival prediction for LGG has been recognized [5];
IDH mutation is associated with better survival outcomes for
patients with LGG [5–7]. Additionally, imaging biomarkers,
such as enhancement pattern, have been investigated for sur-
vival prediction [8]. However, most imaging parameters in
prior studies were heterogeneous and non-quantitative
[8–10]. Here, we attempted to extract extensive quantitative
information by radiomics analysis and apply it for survival
prediction using machine learning tools.

Radiomics is based on the conversion of medical images to
high-dimensional quantitative information that reflects under-
lying pathophysiology, especially tumor heterogeneity [11].
Radiomics has recently gathered attention for its role in
predicting genetic status and survival in patients with brain
tumors [12–14]. However, many prior studies have focused
on the prediction of survival or genetic alterations such as IDH
status of LGG by radiomics alone, and some have not per-
formed external validation. However, decision-making for
LGG patients depends on multi-level prognostic information
including IDH status and clinical information such as age or
extent of tumor resection; therefore, we focused on the role of
radiomics in predicting survival within such multi-level prog-
nostic information. We also conducted external validation
using the TCGA/TCIA (The Cancer Genome Atlas/The
Cancer Imaging Archive) dataset to assess the generalizability
of radiomic phenotyping. The aim of this study was to evalu-
ate whether MRI-based radiomic features could improve the
accuracy of survival predictions for LGG over clinical and
IDH status.

Materials and methods

This retrospective study was conducted with approval from
our institutional research board (IRB). The need for acquiring
informed consent was waived. The National Institute of
Health/National Cancer Institute–approved TCGA and
TCIA databases contain publicly available datasets in which
all data are anonymized [2, 15]. Therefore, IRB approval from
individual institutions was not required to use information
from TCGA and TCIA databases in this present study.

Study cohort

A flow chart of patient enrollment is shown in Fig. 1. Two
cohorts were enrolled, i.e., an institutional cohort and a
TCGA/TCIA cohort (hereinafter referred to as the “TCGA
cohort”). In the institutional cohort, 232 patients were patho-
logically diagnosed with WHO grade II and III gliomas and
underwent preoperative MRI between September 2007 and
January 2017. The inclusion criteria were as follows: (1) his-
topathologically confirmed WHO grade II or III glioma; (2)
known IDHmutation status; (3) no prior brain biopsy, surgery,
or other treatments; (4) age ≥ 18 years; and (5) availability of
preoperative T2-weighted (T2), fluid-attenuated inversion re-
covery (FLAIR), and T1-weighted contrast-enhanced (T1C)
images. Based on these criteria, the following were excluded:
(1) unknown IDHmutation status (n = 5); (2) previous history
of biopsy or operation of brain tumor (n = 3); (3) absence of
FLAIR or T1C images (n = 16); and (4) error in image pro-
cessing (n = 3).

For TCGA cohort, the medical records of 199 patients with
available MRI data from the LGG dataset of the TCGA/TCIA
database [2] were retrospectively reviewed. The inclusion
criteria were as follows: (1) pathologically confirmed WHO
grade II and III gliomas; (2) known clinical information, in-
cluding age, IDH mutation status, and extent of tumor resec-
tion; (3) no prior brain biopsy, surgery, or other treatments;
and (4) availability of preoperative T2, FLAIR, and T1C im-
ages. Based on these criteria, the following were excluded: (1)
absence of FLAIR, T2, or T1C images (n = 80); (2) previous
history of biopsy or surgery (n = 17); (3) unavailability of
information on extent of tumor resection (n = 8); and (4) inad-
equate image quality (n = 3). Thus, a total of 205 and 91 pa-
tients were selected for the institutional and TCGA cohorts,
respectively.

IDH mutation status and clinical information

In the institutional cohort, the IDH R132H mutation was de-
tected using peptide nucleic acid–mediated clamping poly-
merase chain reaction and immunohistochemical analysis.
Along with IDH status, WHO grade and the clinical informa-
tion including age, sex, resection extent, and overall survival
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(OS) information were recorded. Resection extent was cate-
gorized as subtotal (gross tumor removal ≥ 75% but < 100%),
or partial (gross tumor removal, < 75%) or biopsy based on
postoperative MRI findings. Details on IDH mutation status
and clinical information are available in Table 1.

For the TCGA cohort, histological findings and grad-
ing of tissues submitted to TCGA were confirmed by
neuropathology review, as previously described [2, 15].
The clinical information, WHO grade, and IDH status
for the TCGA cohort were recorded, similar to the in-
stitutional cohort.

Image acquisition and postprocessing

The image processing workflow is shown in Fig. 2. MR im-
ages of the institutional cohort were acquired using a 3.0-T
MRI (Achieva, Philips) and an 8-channel SENSE head coil.

The preoperative MRI protocol included acquisition of T1-
weighted (repetition time [TR], 2000 ms; echo time [TE],
10 ms; field of view [FOV], 240 mm; slice thickness, 5 mm;
and matrix size, 256 × 256); T2 (TR, 3000 ms; TE, 80 ms;
FOV, 240 mm; slice thickness, 5 mm; and matrix size, 256 ×
256); and FLAIR (TR, 10,000 ms; TE, 125 ms; FOV,

Table 1 Clinical characteristics of the patients

Clinical characteristics Institutional cohort (n = 205) TCGA cohort (n = 91) p value*

Median overall survival (days) 2986 1859 0.008a

Number of deaths observed 49 (23.4%) 22 (24.2%)

Age, in years 44.6 (12.7) 46.8 (13.6) 0.195

Gender 0.389

Male 108 (52.7%) 43 (47.3%)

Female 97 (47.3%) 48 (52.7%)

Resection extent 0.189

Total 90 (43.9%) 48 (52.7%)

Subtotal or partial 89 (43.4%) 37 (40.7%)

Biopsy 26 (12.7%) 6 (6.6%)

IDH mutation 0.059

Wild type 69 (33.7%) 20 (22.0%)

Mutant 136 (66.3%) 71 (78.0%)

WHO grade

Grade II 122 (59.5%) 42 (46.2%) 0.045

Grade III 83 (40.5%) 49 (53.8%)

Data are expressed asmeanwith standard deviation in parentheses or number with percentage in parentheses, except median overall and progression-free
survival

NA not applicable
a Calculated from the log-rank test

*Calculated from the Student t test for continuous variables and chi-square test for categorical variables, if not otherwise mentioned

Fig. 1 Patient enrollment
processes for the institutional (a)
and TCGA (b) cohorts. IDH,
isocitrate dehydrogenase; FLAIR,
fluid-attenuated inversion recov-
ery images; LGG, lower grade
gliomas; T1C, T1-weighted con-
trast-enhanced images; T2, T2-
weighted images; TCGA, The
Cancer Genome Atlas; TCIA,
The Cancer Imaging Archive
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240 mm; slice thickness, 5 mm; and matrix size, 256 × 256)
images. Additionally, 3-D T1C images (TR, 6.3 ms; TE,
3.1 ms) were acquired after the administration of a
gadolinium-based contrast agent (0.1 ml/kg gadobutrol,
Gadovist, Bayer Schering Pharma).

Owing to the difference and heterogeneity of image proto-
col of TCGA cohort including spatial resolution, T2 images
from the institutional and TCGA cohorts were resampled to 2-
D spatial resolution of 1 × 1 × 5 mm. FLAIR and T1C images
were registered to the resampled T2 images after skull strip-
ping, using the FMRIB software library (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FSL). After image registration, image signal
intensity was normalized using the WhiteStripe R package
[16]. Regions of interest (ROIs) were drawn to segment the
entire tumor (which was defined as a hyperintense area on
FLAIR images), including edema, using semiautomatic
methods from an open-source application (Medical Image
Processing, Analysis and Visualization, available at https://
mipav.cit.nih). The ROIs were drawn by a neuroradiologist
(Y.S.C., with 9 years of experience) and confirmed by an
independent reviewer (S.S.A., with 12 years of experience).

A total of 250 radiomic features, including shape (n = 16), first
order (n = 19), gray-level co-occurrence matrix (GLCM; n =
27), gray-level run length matrix (GLRLM; n = 16), and gray-
level size zone matrix (GLSZM; n = 16), were extracted from
ROIs on T1C, T2, and FLAIR images using a Python-based
open-source module (Pyradiomics 1.2.0, http://www.
radiomics.io/pyradiomics.html), with the following
parameter setting: “binWidth”, 1; “force2D”, True [17].
Details of the radiomic features are available at
Supplementary Material S1 and https://pyradiomics.
readthedocs.io/en/latest/features.html.

Statistical analysis and machine learning

Models to predict OS based on radiomic features, clinical
profile, and IDH mutations status were trained using the ran-
dom survival forest (RSF) method. RSF is an extension meth-
od of random forest that intended to analyze right-censored
survival data, which uses log-rank test for node splitting in-
stead of logistic regression used in random forest [18]. We
chose RSF over commonly used Cox regression–based

Fig. 2 Workflow of external validation of radiomics models for
predicting OS. GLCM, gray-level co-occurrence matrix; GLRLM,
gray-level run-length matrix; GLSZM, gray-level size zone matrix;

iAUC, integrated area under the time-dependent ROC curve; IDH,
isocitrate dehydrogenase; OS, overall survival; ROC, receiver operating
characteristic
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methods for survival analysis, because RSF does not rely on
restrictive assumptions such as proportional hazards, and au-
tomatically handles non-linear effects and interactions of hun-
dreds of radiomic features [18]. The feature selection and
training of RSF models to predict OS were conducted
completely within the institutional data; the TCGA/TCIA data
was used for external validation only. The overall workflow of
RSF machine learning and other statistical analyses are shown
in Fig. 2. All statistical analyses were performed using R
package (R version 3.2.4; R Foundation for Statistical
Computing). A p value (p) < 0.05 was considered statistically
significant.

To evaluate whether radiomic phenotyping improves sur-
vival prediction over models established from non-imaging
prognostic factors, three RSF models were trained, as follows:
(1) a radiomics RSF model based on radiomic features (model
1); (2) a clinical RSF model based on the non-imaging prog-
nostic factors consisting of age, resection extent, WHO grade,
and IDH status (model 2); and (3) a combined RSF model
based on radiomic features and the non-imaging factors (mod-
el 3). For training of the radiomics RSF model (model 1), the
250 radiomic features were subjected to two steps of feature
selection using the univariate log-rank test and minimal depth
as follows: First, patients were dichotomized on the basis of
each radiomic feature, using the optimal cutoff that yielded the
most significant survival difference as calculated from the
“cutp” function from the “survMisc” R package. Then, the
OS from the dichotomized groups of the institutional cohort
were compared using the log-rank test. Only those features
with p values < 0.05 in the log-rank test were considered for
the second step of feature selection using minimal depth.
Minimal depth is a dimensionless statistic that measures the
predictive ability of a variable in a survival tree of RSF, and
has shown to be useful to select relevant features in high-
dimensional problems using RSF [19]. The selected radiomic
features based on the univariate log-rank test and minimal
depth were used to train the radiomics RSF model (model
1). Theminimal depth–based feature selection and RSFmodel
training were performed using the “var.select” and “rfsrc”
function from “randomForestSRC” of R package, respective-
ly. For clinical RSF model (model 2) training, all the non-
imaging prognostic factors consisting of age, resection extent,
WHO grade, and IDH status were used without feature selec-
tion. Age was considered a continuous variable, while resec-
tion extent, WHO grade, and IDH status were considered cat-
egorical variables. For the combined RSF model (model 3),
the selected radiomic features from model 1 and the non-
imaging factors frommodel 2 were subjected to further feature
selection based on minimal depth, where only radiomic fea-
tures from model 1 were targeted for further feature selection
based on minimal depth, and the non-imaging factors from
model 2 were retained in the final version of model 3. This
process was to remove the unhelpful radiomic features in

presence of the non-imaging factors and reduce the total num-
ber of features in model 3, while retaining the well-known
non-imaging prognostic factors in the final model. As the
RSF model training uses intrinsic randomization for selecting
bagging samples and features, and prediction error from out of
bag samples [18], cross-validation was not separately con-
ducted for RSF model training.

After feature selection and RSF training of models 1–3
within the institutional cohort, models 1–3 were externally
validated on TCGA cohort. To measure the performance of
each RSF model from external validation, the OS predicted
risks of models 1–3 from validation on TCGA cohort were
entered into time-dependent receiver operating characteristic
(ROC) analysis, and the integrated area under the ROC curve
(iAUC) was calculated. To evaluate the incremental value of
radiomic features in OS prediction, iAUC differences between
model 2 (clinical RSF model) and model 3 (combined RSF
model with radiomic features and non-imaging prognostic
factors) were calculated with 1000 iterations of bootstrapped
resampling. The iAUC difference was considered statistically
significant if its 95% confidence interval (95% CI) did not
contain a zero value. Instead of one p value, the iAUC differ-
ences and their 95% CI values were provided because it has
been suggested that providing a bootstrapped CI is preferred
whenever there is a cause to doubt the assumed underlying
parametric CIs, such as CI for iAUC values [20, 21], and the
interval estimation may be more informative than just one
p value [22].

In addition, to evaluate whether the radiomics model (mod-
el 1) stratifies OS, patients were dichotomized on the basis of
the optimal cutoff of the predicted risk in model 1 and OS was
compared between these two dichotomized groups using the
log-rank test. This optimal cutoff was determined to yield the
most significant OS difference between the dichotomized
groups and was calculated using the “cutp” function from
the “survMisc” module of R package.

Results

Population characteristics

The clinical characteristics of the study cohort are summarized
in Table 1. In the institutional cohort (total, n = 205; IDH-
mutant gliomas, n = 136; IDH wild-type gliomas, n = 69),
the mean age of patients was 44.6 ± 12.7 years, and the
male-to-female ratio was 108:97. In TCGA cohort (total,
n = 91; IDH-mutant gliomas, n = 71; IDH wild-type gliomas,
n = 20), the mean age of patients was 46.8 ± 13.6 years, and
the male-to-female ratio was 43:48. Patients from the institu-
tional cohort showed significantly longer OS (median OS du-
ration, 2986 vs. 1859 days; p = 0.008), a non-significant trend
towards a lower proportion of IDH mutation (66.3% vs.
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78.0%; p = 0.059), and a higher proportion of WHO grade II
gliomas (59.5% vs. 46.2%; p = 0.045) compared with the
TCGA cohort. The male-to-female ratio and resection extent
were not significantly different between the institutional and
TCGA cohorts (p = 0.389 and 0.189, respectively).

Improved survival prediction by radiomic
phenotyping

For the radiomics model (model 1), 71 radiomic features were
selected for predicting OS (Fig. 3 and SupplementaryMaterial
S2). The radiomics model (model 1) was successfully validat-
ed on the TCGA cohort with an iAUC of 0.620 (95% CI,
0.501–0.756). The predicted risk from model 1 significantly

stratified OS in the TCGA cohort (HR, 4.08; 95% CI, 1.40–
11.91; log-rank p = 0.007), as well as in the institutional co-
hort (HR, 11.29; 95%CI, 4.44–28.67; log-rank p < 0.001; Fig.
3). The 71 selected radiomic features consisted of 9 shape
features, and 25, 26, and 11 first-order or texture (i.e.,
GLCM, GLRLM, and GLSZM) features from T1C, T2, and
FLAIR, respectively, among which the top 4 most relevant
features consisted of shape features. The clinical model (mod-
el 2) with non-imaging prognostic factors yielded an iAUC of
0.627 (95% CI, 0.529–0.745) on validation on the TCGA
cohort.

When radiomic features from model 1 were integrated into
the clinical model (model 2), the newly established combined
model 3 showed significantly improved OS prediction, as

Fig. 3 Kaplan–Meier curves (a, b) and radiomic feature heat map (c) of
the low-risk and high-risk groups stratified by a radiomics RSF model for
predicting OS, and time-dependent ROC curve analysis (d) to show the
incremental value of radiomic phenotyping over clinical profile and IDH

status in the prediction of OS. IDH, isocitrate dehydrogenase; OS, overall
survival; ROC, receiver operating characteristic; RSF, random survival
forest
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compared with model 2 (Table 2 and Fig. 3; iAUC, 0.627 vs.
0.709; difference, 0.097; 95% CI, 0.003–0.209). In the further
feature selection for model 3, 19 out of 71 radiomic features
from model 1 were retained in the presence of the non-
imaging prognostic factors. The 19 selected radiomic features
consisted of 6 shape features, and 9, 3, and 1 first-order or
texture features from T1C, T2, and FLAIR, respectively
(Supplementary Material S3). Similar to model 1, the top 4
most relevant features out of 19 radiomic features were shape
features. With regard to the non-imaging prognostic factors
constituting model 3, the IDH status was the top important
feature, and age, resection extent, and WHO grade were 8th,
16th, and 17th important features among total 23 features in
model 3, respectively.

Discussion

We investigated the role of radiomic phenotyping to improve
survival prediction for patients with LGG in presence of the
non-imaging prognostic factors from molecular and clinical
profiles. We performed external validation to test the model
generalizability, and found that the accuracy of OS prediction
was significantly improved by integrating radiomic features
with the non-imaging prognostic factors.

Radiomic phenotyping has shown the potential to predict
survival outcome of the patients with gliomas [13, 23–25].
However, many previous studies were based on a single insti-
tutional cohort [13, 23, 24]. As radiomic features are likely
sensitive to differences in MRI protocols from different insti-
tutions, our study was conducted with external validation to
assess the generalizability and robustness of the radiomic phe-
notyping models across heterogeneous MRI protocols and
clinical composition of the patient population. Clinically,
many patients with LGG undergo surgery, and survival out-
come is predicted based on various non-imaging prognostic
factors that was obtained before and after surgery, such as IDH
mutation status, age, WHO grade, and extent of tumor resec-
tion. The IDH mutation is the most important prognostic bio-
marker in gliomas that recently integrated into the 2016WHO

guidelines for classification of glioma [26], and is associated
with better prognosis and response to chemoradiotherapy than
IDH wild-type gliomas of the same histopathological grade
[27]. Therefore, IDH status and other non-imaging prognostic
information should be considered when investigating the role
of imaging biomarkers in survival prediction. Previous studies
[24, 28] reported that the radiomic features extracted from
preoperative MRI can help improve survival prediction be-
yond molecular and clinical profiles in patients' glioblastoma.
However, the role of radiomic features in LGG in consider-
ation of non-imaging prognostic factors has not been well
established yet; one study [25] established and externally val-
idated a nomogram that was built upon clinicopathologic risk
factors and a radiomic risk score from T2 images, to predict
progression-free survival of LGG patients. However, the ad-
dition of radiomic risk score to the nomogram yielded rela-
tively small improvement in survival prediction (C-index,
0.668 vs. 0.684 and 0.815 vs. 0.823 for the nomograms before
and after the addition of radiomic risk score to the clinicopath-
ologic risk factors, on the training and validation sets, respec-
tively), and the significance of this improvement by radiomic
risk score was not tested in this study [25]. On the contrary,
our study focused on the incremental value of radiomic fea-
tures within non-imaging prognostic factors, and allowed flex-
ibility in radiomic feature selection in consideration of the
non-imaging factors for model 3.

In the feature selection for models 1 and 3 of our study,
shape features were constantly selected as the top relevant
features. This result is in line with previous results that report-
ed the association between tumor shape and prognosis
[28–30]; one study [30] reported that tumor surface irregular-
ity measuring how much the tumor surface deviates from a
sphere of the sample volume, was a powerful predictor of
survival outcome in glioblastoma patients. Another study
[28] identified 18 radiomic features that predicted OS of glio-
blastoma patients, and 7 out of 18 features were shape fea-
tures. Aside from shape features, it is also noteworthy that all
the texture and first-order features that were retained in model
3 were from either T1C or T2, except one feature from
FLAIR. This implies that FLAIR sequence may not be

Table 2 The iAUCs to measure performances of RSF models in OS prediction

Model Included parameters iAUC (95% CI) Difference in iAUCa (95% CI)

Model 1 Radiomic features 0.620 (0.501–0.756) NA

Model 2 Non-imaging prognostic factors (age + resection extent + WHO grade + IDH status) 0.627 (0.529–0.745) NA

Model 3 Non-imaging prognostic factors + radiomic featuresb 0.709 (0.623–0.843) 0.097 (0.003–0.209)

iAUC integrated area under the time-dependent ROC curve, NA not applicable
a Difference in iAUC caused by the addition of radiomics to model 2 with non-imaging prognostic factors, which was calculated from 1000 times
bootstrapping
b The radiomics features from model 1 underwent further feature selection based on minimal depth, while other prognostic factors were kept in final
model 3
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mandatory to achieve compatible performance from the com-
bination of radiomic features and non-imaging factors. In ad-
dition, given that 19 out of 71 radiomic features from model 1
were retained in model 3, our results imply that a subset of
features from radiomic phenotyping might be independent
from the non-imaging prognostic information, thus providing
an added value for survival prediction. However, although
better than random prediction, the performance of survival
prediction by radiomic features alone (model 1) was not opti-
mal probably owing to differences in MRI protocols and the
clinical composition of the patient populations, including the
different incidences of IDH mutation. In future investigations
aimed at enhancing generalizability, the radiomic feature–
based model should be trained on a more heterogeneous co-
hort that includes external cohort samples, or a prospective
study can be conducted where protocols are specified, thereby
mitigating potential differences in imaging protocols among
institutions. As seen in the model with radiomic features, the
model with non-imaging prognostic factors also showed sub-
optimal performance for OS prediction. These results suggest
that compromised model performance from limited generaliz-
ability in different cohorts is a general issue across various
non-imaging prognostic factors, as well as in radiomics.
Nonetheless, our results indicate that the added prognostic
value of radiomic features over non-imaging prognostic fac-
tors can be retained in an external cohort, despite the limited
performance of individual models.

Our study has several limitations. First, the number of
clinical prognostic factors was limited in the TCGA
dataset, so that other important clinical factors such as
Karnofsky performance status and postoperative treatment
were not considered in the clinical RSF model; therefore,
this clinical RSF model might not thoroughly reflect the
performance of more comprehensive clinical factors in
real-world clinical settings. Future investigations are nec-
essary to confirm the added prognostic value of radiomic
features when more comprehensive clinical prognostic in-
formation with uncompensated prognostic values are pro-
vided within a large and homogeneous cohort. Second, due
to the heterogeneity of MRI protocols, 2-D spatial resolu-
tion (i.e., 1 × 1 × 5 mm) was used for image resampling,
which is below the resolution of 3-D isotropic T1C from
current consensus recommendations [31]. This is because a
considerable number of samples from TCGA data had 2-D
T1C images, and we thought that resampling TCGA set
images to a higher resolution than the original resolution
may synthesize non-informative pixels, which may nega-
tively affect the model performance from external valida-
tion on the TCGA set. The performance of the radiomics
model may vary depending on MRI protocol, especially
spatial resolution of the original images, which may limit
the reproducibility of model performance. However, in our
opinion, the strength of our study lies in that the potential

of radiomic phenotyping for improving survival prediction
was demonstrated by resolving this heterogeneity of orig-
inal images with postprocessing techniques.

Conclusions

We have shown that radiomic phenotyping using machine
learning tools improves survival prediction in LGGs over clin-
ical profile and IDH status. Our validation on a multi-institute
TCGA cohort suggests that analytic tools developed using
machine learning and radiomics analysis could be employed
across different scanners and institutes.
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