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Abstract
Objectives To investigate whether a deep learning model can predict the bone mineral density (BMD) of lumbar vertebrae from
unenhanced abdominal computed tomography (CT) images.
Methods In this Institutional Review Board–approved retrospective study, patients who received both unenhanced CT
examinations and dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae, in two institutions (1 and 2), were
included. Supervised deep learning was employed to obtain a convolutional neural network (CNN) model using axial CT
images, including the lumbar vertebrae as input data and BMD values obtained with DXA as reference data. For this
purpose, 1665 CT images from 183 patients in institution 1, which were augmented to 99,900 (= 1665 × 60) images
(noise adding, parallel shift and rotation were performed), were used. Internal (by using data of 45 other patients in
institution 1) and external validations (by using data of 50 patients in institution 2) were performed to evaluate the
performance of the trained CNN model. Correlations and diagnostic performances were evaluated with Pearson’s cor-
relation coefficient (r) and area under the receiver operating characteristic curve (AUC), respectively.
Results The estimated BMD values, according to the CNN model (BMDCNN), were significantly correlated with the
BMD values obtained with DXA (r = 0.852 (p < 0.001) and 0.840 (p < 0.001) for the internal and external validation
datasets, respectively). Using BMDCNN, osteoporosis was diagnosed with AUCs of 0.965 and 0.970 for the internal and
external validation datasets, respectively.
Conclusions Using deep learning, the BMD of lumbar vertebrae could be predicted from unenhanced abdominal CT images.
Key Points
• By applying a deep learning technique, the bone mineral density (BMD) of lumbar vertebrae can be estimated from unenhanced
abdominal CT images.

• A strong correlation was observed between the estimated BMD and the BMD obtained with DXA.
• By using the estimated BMD, osteoporosis could be diagnosed with high performance.
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Abbreviations
AUC Area under the receiver operating

characteristic curve
BMD Bone mineral density
BMDCNN Bone mineral density obtained with

a convolutional neural network
CNN Convolutional neural network
CT Computed tomography
DXA Dual-energy X-ray absorptiometry
DICOM Digital imaging and communications in medicine
ROC Receiver operating characteristic
ROI Region of interest
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Introduction

Vertebral fractures and hip fractures are associated with
hospitalisation and disability and are major causes of mor-
bidity. Patients with these fractures have been demonstrat-
ed to be at increased risk of mortality [1]. In Europe, these
fractures were reported to account for 1,180,000 quality-
adjusted life years that were lost during 2010 [2].
Therefore, the prevention of these fractures is important.
Osteoporosis, which is characterised by reduced bone
mineral density (BMD), is one of the causes of these
fractures. Therefore, knowing the BMD of patients could
help physicians to prevent these fractures. Elderly patients
tend to have lower BMD and, in this era of global popu-
lation ageing, the prevalence of osteoporosis has been
increasing. In 2010, 27.5 million Europeans were reported
to have osteoporosis [3]. Dual-energy X-ray absorptiom-
etry (DXA) enables estimation of BMD. Though measure-
ments with this method is affected by atherosclerosis of
aorta and sclerosis of vertebra, DXA is used most com-
monly to evaluate the BMD, and it is recommended by
guidelines [3–5]. Patients diagnosed with osteoporosis are
managed to prevent fragile fractures by recommending
adequate dietary intake, fall prevention measures and/or
pharmacological interventions. However, DXA is not nec-
essarily readily available in every institution [3].

Computed tomography (CT) allows detailed evaluations of
several diseases. As the number of elderly patients who tend to
have multiple diseases is increasing throughout the world, CT
examinations have been utilised increasingly. In 2015, 143.1
CT examinations per 1000 in the population were reported to
be performed in the Organisation for Economic Co-operation
and Development countries [6]. It is not rare that vertebral
fractures, which can sometimes occur without causing serious
symptoms, are incidentally detected at CT examinations per-
formed for evaluations of other diseases [7]. If the BMD can
be predicted from CT images, it will allow physicians to make
appropriate strategies to prevent fragile fractures, which will
benefit many patients.

Since Krizhevsky et al showed that deep learning with a
convolutional neural network (CNN) can achieve high perfor-
mance levels in visual recognition tasks [8], the application of
deep learning to radiological imaging diagnosis has been
gaining wide attention [9–11]. Successful applications of a
deep learning technique to the evaluation of radiological im-
ages have been reported, such as image processing [12], the
differential diagnosis of diseases [13, 14] and the detection of
diseases [15–17]. This technique has also been applied to
obtain parameters from radiological images (e.g. liver fibrosis
stages from CT and magnetic resonance images [18, 19] and
bone age estimation from plain radiographs of the hand [20]).
We hypothesised that the BMD can be estimated from CT
images with deep learning.

The purpose of this study was to investigate whether the
BMD of the lumbar vertebrae can be estimated from
unenhanced abdominal CTscans using a deep learning method.

Materials and methods

This retrospective study was approved by the Institutional
Review Board and the requirement for obtaining written in-
formed consent from patients was waived.

Overview of this study

In this study, supervised training of a CNN was performed
using axial unenhanced abdominal CT images at the L1–4
level as input data and the BMD of the corresponding lumbar
vertebrae measured with DXA as reference data. To manage
the potential of an overfitting problem associated with deep
learning, the CNN was trained with training datasets and the
performance of the trained CNN was evaluated with internal
and external validation datasets (hereafter, we denote these as
validation datasets I and E, respectively) that were not includ-
ed in the training datasets.

Patients

Patients who underwent unenhanced CT examinations (in-
cluding any of L1, L2, L3 or L4 for training datasets;
including all the L1, L2, L3 and L4 for validation
datasets) within 500 days from the DXA examination
were included in this study. CT examinations performed
from April 2015 to September 2015 and those from
October 2017 to April 2018 in institution 1 were used as
the training dataset and validation dataset I, respectively.
CT examinations performed from January 2018 to
February 2018 in institution 2 were used as validation
dataset E. The exclusion criteria were the following: pa-
tients with a history of lumbar surgery (including surgery
for fracture), with severe scoliosis and with vertebrae that
had a compression fracture or deformity (due to
spondylosis) in L1–4 [5]. As for the validation group,
patients whose CT images were included in the training
datasets were also excluded.

CT scanning technique

For the training dataset and validation dataset I (institution 1),
CT examinations were performed with Aquilion ONE (Canon
Medical Systems). For validation dataset E, the following CT
scanners were used: Aquilion PRIME, Aquilion Precision,
Aquilion ONE (Canon Medical Systems) and Discovery CT
750 HD (GEHealthcare). The details of the scanning and image
reconstruction parameters are shown in Table 1. Because the
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aim of this study was to find reduced BMD status in opportu-
nistic CT, the bone mineral equivalent phantom was not used.

Input image data

We used a cropped axial unenhanced CT image of the lumbar
vertebrae as input data for the CNN (Fig. 1). From Picture
Archiving and Communication System, CT images were ex-
tracted in the digital images and communications in medicine
(DICOM) format. For the training datasets, up to 3 axial CT
images were obtained from each lumbar vertebra at and near
the mid-vertebral level, so that the model became robust
against a selection of axial slice levels. For the validation
datasets I and E, only 1 CT image was obtained from each
lumbar vertebra at the mid-vertebral level. For example, if a
vertebra was included in 5 axial CT images, the second to
fourth images and the third image were included in the train-
ing dataset and the validation datasets, respectively.

Then, the DICOM format images were preprocessed with
the Python 3.6.4 programming language (https://www.
python.org/), pydicom 1.2.2 package (https://pydicom.
github.io/pydicom/stable/index.html) and pillow 5.0.0
package (https://pillow.readthedocs.io/en/stable/#) on the
command line. Regions around the vertebrae were cropped
using a crop box that was 250 × 250 pixels (Fig. 1). These
imaging data were resized to 96 × 96 pixels.

For the training dataset, augmentation was performed
so that the models become robust against differences in
the scanning condition (slight shift and rotation of the
patients’ positions and image noise). CT image data
cropped with 15 parallel shifted crop boxes were generat-
ed. From these imaging data, rotated images (with 5 and
355 degrees; 15 × 2 images) and noise-added images
(mean = 0, sigma = 15; 15 images) were also generated.
Therefore, from one DICOM format CT image, 60 input
image datasets (= 15 + 15 × 2 + 15 images) were generated
by augmentation for the training dataset.

Table 1 Scanning and reconstruction parameters of CT examinations

Institution 1 (training dataset and
validation dataset I)

Institution 2 (validation dataset E)

Vendor Canon Medical Systems (n = 228) Canon Medical Systems (n = 28) GE Healthcare (n = 22)

CT scanner Aquilion ONE (n = 228) Aquilion PRIME (n = 16) Discovery CT750 HD (n = 22)
Aquilion Precision (n = 8)

Aquilion ONE (n = 3)

Aquilion (n = 1)

Tube voltage (kVp) 120 120 120

Tube current (automatic exposure control) SD = 13.0 SD = 13.0 Noise index = 11.36

Helical pitch 0.828 (n = 228) 0.8125 (n = 27) 1.375 (n = 16)

0.828 (n = 1) 0.984 (n = 6)

Gantry rotation time (s) 0.5 0.5 0.5

Reconstruction algorithm Filtered back projection Filtered back projection Filtered back projection

Kernel for reconstruction FC03 FC03 Standard

Slice thickness (mm) 5.0 5.0 5.0

Field of view (mm) 360–500 mm 340–500 mm 350–400 mm

Fig. 1 a Pre-processing of input
images. From the computed to-
mography images (512 × 512
pixels), a region including the
vertebra (250 × 250 pixels; white
line box) was cropped. The
cropped images were resized to
96 × 96 pixels and used as input
data to the convolutional neural
network. b Region of interest
(yellow circle) was put on verte-
bral body avoiding cortical bone
and basivertebral vein
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Reference standard

DXA examination was performed with Prodigy Primo (GE
Healthcare). Patients underwent the examination in an
antero-posterior position. The BMD of the lumbar vertebrae
(L1, L2, L3, L4) and the % young adult mean, which was
calculated using the BMD of L2–4 and the young adult mean
value [5] in the DXA examination report, were recorded.

Deep learning with a CNN

Deep learning was performed with a computer equipped
with a Core i9-7900X (Intel) central processing unit, a
random access memory of 128 GB and a Quadro P6000
(NVIDIA) graphics processing unit. The programming
language Python 3.6.4 and the deep learning framework
of Chainer (https://chainer.org/) were used to perform
deep learning with the CNN.

The preprocessed image data on the command line, as de-
scribed in the previous section, were inputted to the CNN. The
schema of the CNN structure is illustrated in Fig. 2. The CNN
comprised four combinations of convolutional layers and
max-pooling layers and three fully connected layers. Batch
normalisation, which can accelerate the learning process and
also reduce the risk of overfitting [21], was implemented with-
in the CNN. Supervised learning was performed so that the
mean squared error between the output data (BMD obtained
with CNN [BMDCNN]) and reference data (BMD measured
with DXA) would become small. In the supervised training of
the CNN, the following hyper-parameters were used: number
of epochs, 20; optimiser, Adam [22]; and minibatch size, 15.

Validation with the trained CNN

After the completion of the supervised training, the perfor-
mance of the trained CNN was evaluated using the validation

datasets I and E. Any data in these datasets were not included
in the training dataset.

CT value measurements

Previous studies aimed to estimate the BMD obtained
with DXA from the CT values of the lumbar vertebrae
[23, 24]. To compare the usefulness of the BMDCNN and
CT values in estimating the BMD, a radiologist (K.Y.,
with 9 years of imaging experience) placed a circular re-
gion of interest (ROI) with a diameter of 15 mm on the
cancellous bone part of the vertebral body to measure the
CT values of the vertebra for validation datasets I and E.
In placing the ROIs, attention was paid so that the cortical
bone and basivertebral vein were not included. The mean
CT value (in Hounsfield unit [HU]) within the ROI was
recorded.

Extrapolating the CNN to another vertebra

To assess whether the CNN could be used to estimate the
BMD of other vertebrae that were not included in the training,
a CNN model was also trained using the data of L2–4 in the
training dataset, and the performance was tested using the data
of L1 in the validation datasets I and E.

Statistics

The following statistical analyses were performed with R ver-
sion 2.4.0 (https://www.r-project.org/). For continuous values,
data were shown as the mean ± standard deviation.

All the BMD, BMDCNN and CT value followed normal
distribution according to Kolmogorov-Smirnov test (p values
of 0.6273, 0.9988 and 0.9995, respectively). For each verte-
bra, Pearson’s correlations between the BMD and BMDCNN

and between the BMD and CT values were calculated.

Fig. 2 Schema of the
convolutional neural network.
BN= batch normalisation, c =
number of filters, Conv =
convolutional layer, FC = fully
connected layer, k = size of filters,
MP =max-pooling layer,
ReLU= rectified linear unit, s =
size reduction rate, u = number of
units
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For each patient, the BMDCNN and CT values were aver-
aged for L2, L3 and L4. The performance of the averaged
BMDCNN and averaged CT values in diagnosing osteopenia
and osteoporosis were evaluated with receiver operating char-
acteristic (ROC) analysis and the area under the ROC curve
(AUC) was calculated. Patients were diagnosed as having
osteopenia and osteoporosis when the % young adult mean
of the BMD evaluated with DXAwas 80% or less and 70% or
less, respectively [5]. A De Long test was performed to com-
pare the AUCs of the averaged BMDCNN and the averaged CT
values in diagnosing osteopenia and osteoporosis [25]. Using
cutoff values which achieve the Youden index, sensitivity,
specificity and accuracy were calculated.

Results

Patients

For the training dataset, validation dataset I and validation
dataset E, 183, 45 and 50 patients met the inclusion criteria
and 1665, 180 and 200 vertebral CT images were obtained,
respectively. For training dataset, a total of 99,900 images (=
1665 × 60) were generated with augmentation. Patient base-
line characteristics are summarised in Table 2.

BMD measurement per vertebra analysis

The mean BMD values were 1.065 ± 0.234 g/cm2 for the
training dataset. The mean BMD values and CT values were
1.037 ± 0.220 g/cm2 and 128.4 ± 56.8 HU, respectively, for
the validation dataset I. The mean BMD values and CT values
were 0.983 ± 0.235 g/cm2 and CT 112.1 ± 59.3 HU, respec-
tively, for the validation dataset E.

The correlation between the BMD and BMDCNN of the
lumbar vertebrae (r = 0.852 [95% confidence interval
(CI), 0.806–0.887], p < 0.001) was higher than that be-
tween the BMD and CT values (r = 0.425 [95% CI,
0.297–0.538], p < 0.001) in validation dataset I (Fig. 3a
and c). The correlation between the BMD and BMDCNN

of the lumbar vertebrae (r = 0.840 [95% CI, 0.794–0.877],

p < 0.001) was also higher than that between the BMD
and CT values (r = 0.675 [95% CI, 0.591–0.744],
p < 0.001) in validation dataset E (Fig. 3b and d).

Reduced BMD per patient analysis

There were 12 and 21 patients with osteopenia in validation
datasets I and E, respectively. The AUCs to diagnose
osteopenia using the averaged BMDCNN were 0.903–0.955
and they tended to be better than when the averaged CT value
(AUC= 0.837–0.894; Table 3) was used.

There were two and nine patients with osteoporosis in val-
idation datasets I and E, respectively. The AUCs to diagnose
osteoporosis using the averaged BMDCNN were 0.965–0.97
and they were better than when the averaged CT value
(AUC= 0.829–0.953; Table 3) was used. A statistically sig-
nificant difference between the averaged BMDCNN and the
averaged CT value to diagnose osteoporosis (p = 0.013) was
observed in validation dataset E.

The sensitivity, specificity and accuracy in diagnosing
osteopenia and osteoporosis are shown in Table 4.

Extrapolating the CNN to another vertebra

The correlation coefficients between the BMDCNN values
of L1 outputted by the CNN model trained with L2–4 data
in the training dataset and the BMD of L1 derived from
DXA were 0.839 (95% CI, 0.724–0.909; p < 0.001) and
0.810 (95% CI, 0.686–0.888; p < 0.001) for validation
datasets I and E, respectively.

Discussion

Osteoporosis, which is characterised by a reduced BMD, is
associated with fragile bone fractures. DXA is used as a ref-
erence standard for evaluations of the BMD. In this study, the
estimated BMD values, by applying a deep learning technique
to unenhanced abdominal CT images, were found to be highly
correlated with the BMD values derived from DXA. Our
method was found to be superior to simply measuring CT

Table 2 Patient baseline characteristics

Training dataset Validation dataset I Validation dataset E

Men/women (n) 86/97 14/31 12/38

Mean age (years) 60.6 ± 15.5 63.5 ± 16.1 67.2 ± 12.3

Mean body height (cm) 161.2 ± 9.5 158.1 ± 9.3 157.3 ± 9.8

Mean body weight (kg) 55.8 ± 10.8 55.4 ± 14.0 54.2 ± 10.9

Mean body mass index (kg/m2) 21.4 ± 3.4 22.1 ± 5.1 21.9 ± 3.9

Median (with interquartile range) time interval between the DXA and CT (days) 5.0 (1.0–55.5) 8.0 (1.0–113.0) 73.0 (32.2–203.8)
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values of the lumbar vertebrae in estimating the BMD. The
CNN model trained with L2–4 data also allowed the estima-
tion of the BMD of L1. By using the estimated BMD values,
osteoporosis was diagnosed with higher performance than by
using CT values of the lumbar vertebrae. These results were
confirmed by external validation as well as internal validation.

Deep learning, which is one of the methods of artificial
intelligence, has been applied to musculoskeletal radiological

imaging diagnosis. However, to our knowledge, most of these
studies have focused on detecting fractures on radiological
images [15–17]. When fractures occur in patients, they may
suffer from disability and/or pain. Resources to manage these
conditions place a large burden on medical economics.
Therefore, the prevention of fractures is rather important. As
our model can be applied to CT images, which are usedwidely
in daily clinical practice, patients with osteoporosis can be

Fig. 3 Scatterplots of correlation between BMDCNN and BMD (g/cm2) in validation dataset I (a) and validation dataset E (b) and that between the CT
values (Hounsfield unit) and BMD (g/cm2) in validation dataset I (c) and validation dataset E (d)
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diagnosed before the occurrence of fragile fractures on CT
examinations performed for other purposes. In addition,
these patients will have opportunities to be treated to pre-
vent fragile fractures by being advised on adequate die-
tary intake, using fall prevention methods and receiving
pharmacological interventions [3].

Some modalities are used to evaluate BMD. DXA is the
method used most commonly for this purpose. However,
DXA is not necessarily readily available at all institutions.
Also, patients may not undergo this examination if they are
not suspected of osteoporosis by specialised physicians.
Quantitative ultrasonometry can also be used as a screen-
ing method to detect patients at risk for fractures. However,
while the diagnostic DXA criteria established by the World
Health Organization and recommended by the American
Association of Clinical Endocrinologists apply only to
the axial measurements, calcaneus bones of peripheral sites
are measured with this modality. Therefore, quantitative
ultrasonometry is not used to diagnose osteoporosis [26].
Quantitative CT can also be used to assess the BMD; how-
ever, a dedicated phantom should be placed beneath the
patients when being scanned. While there are several mo-
dalities to evaluate the BMD, each has merits and demerits.
Our proposed algorithm, which can be applied to routine
clinical CT images, can become another strategy to esti-
mate the BMD.

Our study revealed that the BMDCNN was superior to
the CT values of the lumbar vertebrae to estimate the
BMD assessed with DXA. This means that when
unenhanced abdominal CT images exist, our model allows
the estimation of the past BMD of patients more precisely
than simply measuring the CT values of the lumbar ver-
tebrae. The time course of the BMD can also be more
reliably estimated with our model. Also, our model will
allow the estimation of the BMD in institutions where
DXA is not available. While accurate reasons for the im-
proved performance remain unclear due to the black-box
nature of deep learning algorithms, we speculate that the
texture of the trabecular bone in addition to CT attenua-
tion might have been considered in estimating the BMD
from CT images. The other reason might have come from
the difference of modalities. According to Hendrickson
et al, when mean and standard deviation for CT values
of young adults (μref and σref, respectively) were used as
reference, lumbar CT value T-scores calculated as
(Lumbar CT value T-score = (CT value − μref) / σref)
were reportedly lower than DXA T-scores [24].

The model trained with data of L2–4 allowed a pre-
cise estimation of the BMD of L1, with correlation co-
efficients between the BMDCNN and BMD derived from
DXA of 0.810–0.839. Vertebral compression fractures
occur commonly in the thoracolumbar junction area

Table 3 Diagnostic performance
for diagnosing osteopenia and
osteoporosis

BMDCNN CT value p value

Osteopenia

Validation dataset I 0.955 (0.901–1.000) 0.894 (0.799–0.988) 0.167

Validation dataset E 0.903 (0.823–0.983) 0.837 (0.729–0.946) 0.242

Osteoporosis

Validation dataset I 0.965 (0.887–1.000) 0.953 (0.882–1.000) 0.860

Validation dataset E 0.970 (0.915–1.000) 0.829 (0.693–0.965) 0.013

Area under the receiver operating characteristic curve (AUC) values with 95% confidence intervals are shown. A
De long test was performed to compare AUC values between the BMDCNN and CT values

Table 4 Sensitivity, specificity
and accuracy in diagnosing
osteopenia and osteoporosis

Cutoff Sensitivity Specificity Accuracy

Osteopenia

Validation dataset I Averaged BMDCNN 0.984 1.000 (12/12) 0.818 (27/33) 0.867 (39/45)

Averaged CT value 107.29 0.917 (11/12) 0.818 (27/33) 0.844 (38/45)

Validation dataset E Averaged BMDCNN 1.010 0.810 (17/21) 0.862 (25/29) 0.840 (42/50)

Averaged CT value 102.91 0.915 (19/21) 0.655 (19/29) 0.760 (38/50)

Osteoporosis

Validation dataset I Averaged BMDCNN 0.849 1.000 (2/2) 0.930 (40/43) 0.933 (42/45)

Averaged CT value 55.97 1.000 (2/2) 0.930 (40/43) 0.933 (42/45)

Validation dataset E Averaged BMDCNN 0.876 0.889 (8/9) 0.976 (40/41) 0.960 (48/50)

Averaged CT value 72.02 0.778 (7/9) 0.829 (34/41) 0.820 (41/50)

Cutoff values were chosen to achieve the Youden index
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(T10–L2) [27]. Our model may have the potential to
estimate the BMD of these vertebrae that are at high
risk of compression fractures.

Some limitations should be acknowledged in this study.
First, the design of our study was retrospective. Future pro-
spective studies are necessary to consolidate our results.
Second, we did not assess the relationship between the
BMDCNN and fracture risk. Third, because contrast mate-
rials alter the CT number of the bone marrow as well as
other abdominal tissues, our model, which was established
by using unenhanced abdominal CT images as input data,
cannot be applied to contrast-enhanced CT images. Fourth,
although we used a single type of DXA machine, BMD
measurements with DXA are not free from a reproducibility
problem, which was reported to be instrument-related [28]
or to be introduced by operators’ and subjects’ variability
[29]. Fifth, our model cannot detect osteoporotic fracture on
CT images. Whether osteoporotic fracture can be detected
automatically with CNN on CT images or not needs to be
assessed in future studies. Sixth, our result cannot be ap-
plied to patients with compression fracture because we ex-
cluded them from this study. However, it will not affect
clinical management of them, because patients with fragil-
ity fracture can be diagnosed as osteoporosis without using
BMD values [5]. Seventh, BMD values estimated by DXA
is not necessarily equal to a true bone density measurement.
Also, in identifying elderly who subsequently had a non-
vertebral fracture, the sensitivity of DXA-determined oste-
oporosis was reportedly only 21–44% [30]. However, DXA
is recommended by guidelines [3–5] and is most widely
used to estimate BMD. Finally, our model was found to
estimate the BMD of other vertebrae that were not included
in the training. However, as we did not investigate the cor-
relation of thoracic vertebrae, further investigation will be
required to evaluate them.

In conclusion, by applying deep learning with a CNN, the
BMD can be estimated from unenhanced abdominal CT im-
ages. There would be a possibility that osteoporosis is diag-
nosed with higher performance by using BMDCNN values
than CT values of the lumbar vertebrae; however, future pro-
spective studies including a large number of patients would be
required to consolidate this finding.
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