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Radiomics from magnetic resonance imaging may be used to predict
the progression of white matter hyperintensities and identify
associated risk factors
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Abstract
Objective The progression of white matter hyperintensities (WMH) varies considerably in adults. In this study, we aimed to
predict the progression and related risk factors of WMH based on the radiomics of whole-brain white matter (WBWM).
Methods A retrospective analysis was conducted on 141 patients with WMH who underwent two consecutive brain magnetic
resonance (MR) imaging sessions from March 2014 to May 2018. The WBWM was segmented to extract and score the
radiomics features at baseline. Follow-up images were evaluated using the modified Fazekas scale, with progression indicated
by scores ≥ 1. Patients were divided into progressive (n = 65) and non-progressive (n = 76) groups. The progressive group was
subdivided into anyWMH (AWMH), periventricular WMH (PWMH), and deepWMH (DWMH). Independent risk factors were
identified using logistic regression.
Results The area under the curve (AUC) values for the radiomics signatures of the training sets were 0.758, 0.749, and 0.775 for
AWMH, PWMH, and DWMH, respectively. The AUC values of the validation set were 0.714, 0.697, and 0.717, respectively.
Age and hyperlipidemia were independent predictors of progression for AWMH. Age and body mass index (BMI) were
independent predictors of progression for DWMH, while hyperlipidemia was an independent predictor of progression for
PWMH. After combining clinical factors and radiomics signatures, the AUC values were 0.848, 0.863, and 0.861, respectively,
for the training set, and 0.824, 0.818, and 0.833, respectively, for the validation set.
Conclusions MRI-based radiomics of WBWM, along with specific risk factors, may allow physicians to predict the progression
of WMH.
Key Points
• Radiomics features detected by magnetic resonance imaging may be used to predict the progression of white matter
hyperintensities.

• Radiomics may be used to identify risk factors associated with the progression of white matter hyperintensities.
• Radiomics may serve as non-invasive biomarkers to monitor white matter status.
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Abbreviations
AUC Area under the curve
AWMH Progression of WMH in any (periventricular and/

or deep) region
BMI Body mass index
DTI Diffusion tensor imaging
DWMH Deep white matter hyperintensities
FLAIR Fluid attenuated inversion recovery
GLCM Gray-level co-occurrence matrix
ICC Intraclass correlation coefficient
LASSO The least absolute shrinkage and selection

operator
LDL Low-density lipoprotein
MRI Magnetic resonance imaging
NAWM Normal-appearing white matter
PWMH Periventricular white matter hyperintensities
RLM Run-length matrix
ROC Receiver operating characteristic
ROI Region of interest
WBWM Whole-brain white matter
WMH White matter hyperintensities

Introduction

White matter hyperintensities (WMH) refer to the neuroimag-
ing feature of small blood vessel disease found during brain
magnetic resonance imaging (MRI). WMH have been associ-
ated with cognitive decline, depression, and Alzheimer’s dis-
ease [1]. Accordingly, it is particularly important to identify
and prevent the progression of WMH [2]. However, this has
been difficult as the pathogenesis of WMH remains unclear
[3–5]. Certain factors such as age and hypertension have been
associated with WMH [6], but the determinants involved in
the formation of WMH are likely different from those in-
volved in the progression of WMH [7]. Once the risk factors
associated with the progression ofWMHhave been identified,
early intervention strategies may be developed to attenuate
brain injury.

Radiomics, which is a promising and rapidly growing dis-
cipline, is a method for extracting a large number of quantita-
tive features from medical images and converting the infor-
mation into mineable data [8–10]. These data can be subse-
quently analyzed to construct biomarkers for disease predic-
tion and diagnosis through feature selection. Radiomics has
been widely used in neurological diseases, including small
vascular disease [4], multiple sclerosis [11], and traumatic
brain injury [12]. Diffusion tensor imaging (DTI) or arterial
spin labeling can detect microscopic changes in the whole-
brain white matter (WBWM) to assess the severity and pro-
gression of WMH status, and some studies have revealed that
microstructures have changed in normal-appearing white mat-
ter (NAWM) [13, 14]. NAWM is visually similar to healthy

tissues, yet WMH may be detected by advanced MRI tech-
niques. Understanding the conversion of NAWM to WMH
may further help identify patients at risk of developing pro-
gressive WMH, bringing valuable information for clinicians
to offer precise preventive and therapeutic options to patients.
Compared with those advanced MRI studies, radiomics has
the benefit of using clinical routineMRI sequences to evaluate
the status of WMH.

In our previous study using MRI [15], we found that the
radiomics analysis of WMH penumbra was predictive of the
development of WMH while in the early form of NAWM.
However, this is difficult to achieve in the traditional clinic
as WMH penumbra must be drawn manually and accurately,
which is difficult and time-consuming. The WBWM, includ-
ing normal white matter, WMH, and the penumbra, can easily
be extracted on T1-weighted fluid-attenuated inversion recov-
ery (FLAIR) using the software. Accordingly, we utilized the
radiomics score of WBWM from conventional brain MRI
scans to predict the progression and identify associated risk
factors of WMH. The purpose of the current study was to
investigate whether radiomics of WBWM could be used to
predict the progression and identify associated risk factors of
WMH based on radiomics features extracted from different
brain regions.

Materials and methods

This retrospective study was approved by our institutional
review board, and the requirement for informed consent was
waived.

Study population

The MRI data of 1073 patients who underwent brain MRI
scans at our hospital from March 2014 to May 2018 were
retrospectively analyzed. Among the patients, 141 patients
with WMH who underwent two consecutive brain MRI scans
were used in this study, including 71 males and 70 females
(mean age, 67 years; range, 50–87 years). Patients were in-
cluded based on the following criteria: (1)WMHswere visible
on T2-weighted imaging and T2FLAIR; (2) patients were
≥ 50 years of age; (3) no stroke lesions on current diffusion-
weighted imaging (except lacunar infarction); and (4) no in-
dications of multiple sclerosis, Alzheimer’s disease,
Parkinson’s disease, or traumatic brain injury. The exclusion
criteria were as follows: (1) non-vascular white matter lesions
(i.e., demyelinating autoimmune disease, metabolism, poison,
infection); (2) signs of intracranial hemorrhage; or (3) serious
head motion artifacts.

Clinicodemographic data were collected, including age,
gender, diabetes status, hypertension, hyperlipidemia, and cor-
onary heart disease. Smoke and alcohol consumption history
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in the past 5 years was also obtained. Smoking was defined as
having more than 10 cigarettes per day, and alcohol consump-
tion was defined as the amount of ethanol ≥ 40 g per day for
men and ≥ 20 g per day for women, respectively.
Hypertension was defined as a systolic blood pressure of
≥ 140 mmHg, diastolic pressure of ≥ 90 mmHg, or with the
cur ren t usage of an t ihyper tens ive medica t ions .
Hyperlipidemia was defined as the overnight fasting low-
density lipoprotein (LDL) of ≥ 130 mg/dl.

MRI acquisition

All brain MRI scans were performed in a local hospital on a
3.0 T MRI scanner (Discovery MR 750, GE Healthcare) with
an eight-channel head coil using the same MR parameters.
The routine sequences included T1FLAIR, T2-weighted im-
aging, diffusion-weighted imaging, and T2FLAIR. Axial
T2FLAIR was used for observing the WMH with the follow-
ing parameters: repetition time/echo time = 9000/120 ms and
field of view = 256 × 256 mm, matrix = 256 × 256, flip an-
gle = 160°, echo chain = 18, bandwidth = 50, section thick-
ness = 5 mm, inter-slice gap = 0. T1FLAIR was used to seg-
ment the white matter with repetition time = 1750 ms, echo
time = 24 ms, field of view = 256 × 256 mm, resolution =
256 × 256, flip angle = 111°, echo chain = 10, bandwidth =
31.25, section thickness = 5 mm, and inter-slice gap = 0.

Processing of MRI scans

All T1FLAIR baseline images were imported into the SPM12
software (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
for automatic segmentation of the white matter. The WBWM
was manually modified by an experienced neuroradiologist
who was blinded to the clinical data using the ITK-SNAP
software (http://www.itksnap.org/pmwiki/pmwiki.php). This
was accomplished by the following steps: (1) removal of
non-brain tissues, brainstem, and cerebellum; and (2) modi-
fied white matter segmentation. The WBWM is shown in
Figure S1.

The segmented WBWM was imported into the AK soft-
ware (Artificial Intelligence Kit V3.0.0.R, GE Healthcare) for
feature extraction. Radiomics features, including histogram,
formfactor, gray-level co-occurrence matrix (GLCM), and
run-length matrix (RLM), were calculated. Several pre-
processing steps using the AK software were performed to
extract the radiomics features. First, all WBWM images were
resampled to change the voxels to 1 × 1 × 1 mm by linear
interpolation to eliminate the effect of anisotropy on the fea-
tures. Gaussian filtering was used to reduce noises in the im-
age. The magnetic field migration correction was performed,
which also assisted in reducing external interference factors.
Finally, histogrammapping and intensity standardization were

performed to limit the gray level of all images to 0–255 for
comparative analysis of the features.

Progression of WMH

The visual rating scale proposed by Prins et al [16] was used to
assess the progression of WMH in follow-up MRI scans,
ranging from − 3 to + 3 in periventricular regions and − 4 to
+ 4 in deep regions. The progression of WMH was defined as
a score of ≥ 1. Two experienced neuroradiologists, who were
blinded to clinical information, reviewed the images indepen-
dently to assess the changes in WMH. A disagreement be-
tween the neuroradiologists was resolved by discussion until
a consensus was reached. Since the pathogenesis of
periventricular WMH and subcortical WMH may be different
[17], the group showing progressive WMH was divided into
three subsets based on regions: periventricular white matter
hyperintensity (PWMH) progression, deep white matter
hyperintensity (DWMH) progression, and progression of
WMH in any periventricular or deep region (AWMH).
PWMH was defined as WMH directly connected to ventri-
cles, while DWMH was defined as WMH connected to the
subcortical area without extending to ventricles [18, 19].

Extraction of radiomics features and construction
of the radiomics signature

Patients in each subgroup were randomly divided into the
training (n = 98) and validation (n = 43) sets according to a
ratio of 7 to 3, respectively, and the radiomics features were
extracted for each patient. In total, 328 features were extracted
for each patient, including 32 histogram features, eight
formfactor features, 144 GLCM features, and 144 RLM fea-
tures. The extracted features were standardized, and dimen-
sion reductions were performed. The least absolute shrinkage
and selection operator (LASSO) was used to select the most
powerful features of the training set to build the radiomics
signature. Next, the radiomics signature was used to calculate
the radiomics score (rad-score) for each patient, and this score
was defined as the risk score for the progression of WMH. A
radiomics score was calculated for each patient in the valida-
tion set using the same formula constructed for the training set.
The predictive accuracy of the radiomics signature was quan-
tified by the area under the receiver operating characteristic
(ROC) curve (AUC) in the training and validation sets.
Additional information about the process of radiomics feature
extraction and feature selection can be found in the
Supplementary Materials.

We initially chose 30 random images for the region of
interest (ROI) segmentation and feature extraction, which
was performed independently by the two neuroradiologists
(combined 19 years of experience) who were blinded to the
clinical information. The inter-observer reproducibility of
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feature extraction was initially analyzed between the two ra-
diologists. For assessing intra-observer reproducibility, the
first neuroradiologist repeated the feature extraction process
twice during a 2-week period using the same procedures.

Construction and assessment of the radiomics model

The clinical data of patients with progressive WMH in each
subgroup were dichotomized, and the differences in the
radiomics score between the two classifications were com-
pared for selecting potential predictive variables. In the train-
ing set, a univariate logistic regression analysis was performed
for each potential predictive factor. Next, a multivariable lo-
gistic regression analysis was used to establish a radiomics
model for assessing the progression of WMH, combining
the independent clinical risk factors and radiomics signature.
Internal validation of the radiomics model was performedwith
the validation set. The model was assessed using a calibration
curve, and the Hosmer-Lemeshow test was performed to as-
sess the goodness-of-fit of the model. Furthermore, the AUC
was used to evaluate the discrimination of the model.

Statistical analysis

The statistical analyses were performed using SPSS 17.0,
MedCalc15.8 software, and GraphPad Prism 6. The
Kolmogorov-Smirnov test was applied to evaluate the normal-
ity of distribution, and the chi-square test was used for cate-
gorical data. This study carried out two classifications of con-
tinuous variables, including body mass index (BMI) with
≥ 25 kg/m2 being defined as obese, age with ≥ 60 years being

defined as an older adult, and low-density lipoprotein (LDL)
levels with ≥ 130 mg/dl being defined as hyperlipidemia.
After conducting a comparative analysis of radiomics scores
between the two subgroups for each risk factor, through the
Student’s t test or Mann-Whitney test, statistically significant
risk factors were included in the univariate logistic regression
to evaluate whether the risk factor was independently associ-
ated with the progression of WMH. A predictive model was
established using the multivariable logistic stepwise regres-
sion for progression of WMH in sub-regions, and the predic-
tive performance was evaluated with the ROC curve. Finally,
a correlation analysis was performed between the independent
risk factors and radiomics signatures. Statistically significant
values were those with p values of ≤ 0.05.

Results

Patient characteristics

The radiomics workflow is presented in Fig. 1. A total of 141
patients with WMH were included in the study, of which 65
subjects were divided into the progression group and 76 sub-
jects in the non-progression group. The number of patients
having coronary heart disease or hyperlipidemia reached sta-
tistically significant levels between the two groups (p ≤ 0.05).
No significant differences were observed in the other clinical
factors, including MR interval, age, BMI, diabetes, hyperten-
sion, smoking history, alcoholic history, and baseline Fazekas
scores (all p ≤ 0.05), as shown in Table 1.

Fig. 1 Radiomics workflow of normal white matter
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Inter-observer and intra-observer reproducibility
of radiomics feature extraction

The intra-observer intra-class correlation coefficient (ICC),
which was calculated based on two measurements from the first
neuroradiologist, ranged from 0.826 to 0.937. The inter-
observer agreement between the two neuroradiologist readers
ranged from 0.773 to 0.916. These results indicated favorable
intra- and inter-observer reproducibility of the feature extraction
process.

Radiomics signatures

The most powerful characteristics were selected to construct the
radiomics signatures, which included eight features in the
AWMH subgroup, nine features in the PWMH subgroup, and
11 features in the DWMH subgroup. Additional information
about these features is shown in Table S1. The radiomics prop-
erties extracted from the three subgroups were used to develop
the radiomics signatures by LASSO. Additional details regard-
ing the creation of the radiomics and the results may be found
in the Supplementary Materials. Using the formula for the
radiomics signature, the rad-score was calculated and found to
be significantly different between progression and non-

progression groups in the AWMH, PWMH, and DWMH sub-
groups (all p ≤ 0.05). The predictive efficacies for the radiomics
scores of the training and validation sets were also significantly
different between the three subgroups. The AUC values were
0.758 and 0.714 for AWMH, 0.749 and 0.697 for PWMH, and
0.775 and 0.717 for DWMH (Table 2).

Clinical factors in the progressive WMH subgroups

Among all of the clinical risk factors in subgroups, age, sex,
hypertension, smoking, and hyperlipidemia were associated
with AWMH progression of (p < 0.05); age, sex, hypertension,
coronary heart disease, smoking, and hyperlipidemia were asso-
ciated with PWMH progression (p < 0.05); age, weight,
smoking, and hyperlipidemia were associated with the progres-
sion of DWMH (p < 0.05); see Table 3 for more details.

Logistic regression analyses of progression in three
WMH subgroups

Multivariable logistic regression analyses revealed specif-
ic radiomics signatures that were independent predictors
for all of the subgroups. Age and hyperlipidemia were
independent predictors of progression of AWMH, age

Table 1 Clinical and
demographic information of
patients in this study

Characteristic Study Population
(n = 141)

Progression of WMH p value

No (n = 76) Yes (n = 65)

Demographics

Age (y)* 66.8 ± 8.2 64.3 ± 7.1 67.9 ± 8.3 0.372

Male sex (n)▲ 71 (50.4) 35 (46.1) 36 (55.4) 0.269

MR interval (months)* 38 ± 4 37 ± 3 38 ± 4 0.089

Cardiovascular risk factors

BMI (kg/m2)* 23.65 ± 2.93 23.53 ± 2.92 23.79 ± 2.96 0.599

Hypertension (n)▲ 87 (61.7) 43 (56.6) 44 (67.7) 0.176

Diabetes mellitus (n)▲ 49 (34.8) 24 (31.6) 25 (38.5) 0.392

Coronary heart disease (n)▲ 23 (16.3) 7 (9.2) 16 (24.6) 0.014

Hyperlipidemia (n)▲ 54 (38.3) 16 (21.1) 38 (58.5) < 0.05

Smoking in past 5 years (n)▲ 20 (14.2) 8 (10.5) 12 (18.5) 0.178

Alcohol intake in past 5 years (n)▲ 16 (11.3) 12 (15.8) 4 (6.2) 0.072

The Fazekas score of WMH at baseline

0 (n) 0 0 0

1 (n) 11 (7.8) 7 (9.2) 4 (6.2) 0.5

2 (n) 38 (26.95) 23 (30.2) 15 (23.1) 0.338

3 (n) 31 (21.99) 18 (23.7) 13 (20) 0.599

4 (n) 24 (17.02) 13 (17.1) 11 (16.9) 0.977

5 (n) 27 (19.15) 11 (14.5) 16 (24.6) 0.127

6 (n) 10 (7.09) 4 (5.3) 6 (9.2) 0.36

Data represents the mean ± SD, number of participants (%). Comparisons between non-progression group and
progression group. * Data are mean ± standard deviation. ▲Data are the number of patients, with percentages in
parentheses. MR, magnetic resonance; BMI, body mass index; WMH, white matter hyperintensities
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Table 3 Statistical analysis of the radiomics scores based on the subgroups of clinical risk factors

Progression of AWMH (n = 65) Progression of PWMH (n = 44) Progression of DWMH (n = 53)

Age ≤ 60 − 0.566 ± 1.62 − 0.594 ± 1.664 − 0.537 ± 1.079
> 60 − 0.465 ± 1.295 − 0.486 ± 1.578 − 0.436 ± 1.63
p value 0.003* 0.032* 0.001*

Gender Male − 0.392 ± 1.314 − 0.252 ± 1.345 − 0.504 ± 1.268
Female − 0.694 ± 1.613 − 0.829 ± 0.947 − 0.616 ± 1.005
p value 0.014* 0.038* 0.324

BMI < 25 − 0.268 ± 1.539 − 0.474 ± 1.307 − 0.431 ± 1.347
≥ 25 − 0.528 ± 1.407 − 0.545 ± 0.953 − 0.707 ± 1.006
p value 0.515 0.224 0.015*

Diabetes mellitus No − 0.343 ± 1.478 − 0.451 ± 1.372 − 0.391 ± 1.391
Yes − 0.619 ± 1.482 − 0.627 ± 1.671 − 0.502 ± 1.507
p value 0.433 0.683 0.284

Hypertension No − 0.062 ± 1.576 − 0.21 ± 1.589 − 0.223 ± 1.5
Yes − 0.482 ± 1.815 − 0.83 ± 1.685 − 0.248 ± 1.55
p value 0.006* 0.016* 0.463

Coronary heart disease No − 0.312 ± 1.748 − 0.314 ± 1.145 − 0.529 ± 1.164
Yes − 0.872 ± 1.447 − 1.325 ± 0.664 − 0.886 ± 1.267
p value 0.188 0.001* 0.379

Alcohol intake No − 0.324 ± 1.486 − 0.334 ± 1.574 − 0.332 ± 1.41
Yes − 0.613 ± 1.704 − 0.709 ± 1.627 − 0.632 ± 1.458
p value 0.184 0.732 0.286

Smoking No − 0.287 ± 1.653 − 0.444 ± 1.645 − 0.292 ± 1.436
Yes 0.056 ± 1.795 − 0.03 ± 1.664 0.061 ± 1.866

p value 0.003* 0.017* 0.021*

Hyperlipidemia No − 0.185 ± 1.576 − 0.262 ± 1.549 − 0.111 ± 1.436
Yes − 0.818 ± 3.066 − 0.937 ± 2.939 − 1.253 ± 1.315
p value 0.027* 0.015* 0.004*

*p < 0.05; BMI, bodymass index;AWMH, white matter hyperintensities in any (periventricular and/or deep) region;PWMH, periventricular white matter
hyperintensities; DWMH, deep white matter hyperintensities

Table 2 Comparison of radiomic scores between the training and validation sets in the three subgroups of AWMH, PWMH, and DWMH

Group AWMH PWMH DWMH

Training set
(n = 98)

validation set
(n = 43)

Training set
(n = 98)

validation set
(n = 43)

Training set
(n = 98)

validation set
(n = 43)

Non− progression 0.67 ± 1.282 0.615 ± 1.261 0.413 ± 1.211 0.635 ± 1.211 0.660 ± 1.23 0.579 ± 1.166

Progression − 0.605 ± 1.375 − 0.423 ± 1.514 − 0.621 ± 1.109 − 0.373 ± 1.337 − 0.525 ± 1.203 − 0.684 ± 1.413

p value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

AUC 0.758 0.714 0.749 0.697 0.775 0.717

Sensitivity 0.815 0.646 0.892 0.625 0.823 0.629

Specificity 0.717 0.896 0.523 0.767 0.719 0.753

Accuracy 0.794 0.725 0.766 0.721 0.783 0.734

F1 Score 0.741 0.722 0.673 0.614 0.726 0.713

AWMH, white matter hyperintensities in any (periventricular and/or deep) region; PWMH, periventricular white matter hyperintensities; DWMH, deep
white matter hyperintensities; AUC, area under the curve
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and BMI were independent predictors of DWMH, and
hyperlipidemia was an independent predictor of PWMH.
Prediction models were established based on the results of
the multivariate logistic regression. The Hosmer-
Lemeshow test in the three subgroups showed no signif-
icant differences in the goodness-of-fit for the training set
models (p = 3.493, 2.385, and 2471 for AWMH, DWMH,
and PWMH, respectively). The calibration curve showed
excellent calibration in the training and validation sets of
the three subgroups. Additionally, we evaluated the accu-
racy of the radiomics model for the training and validation
sets in the three subgroups. For AWMH, the AUC was
0.848 and 0.824, for the training and validation sets, re-
spectively. For PWMH, the AUC was 0.863 and 0.818,
respectively. For DWMH, the AUC was 0.861 and 0.833,
respectively (Table 4; Figs. 2, 3, and 4).

Correlations between radiomics signatures
and independent risk factors

Seven radiomics features were significantly correlated with
independent risk factors (Figs. 5 and 6). In the AWMH

subgroup, SurfaceArea of the formfactor feature was neg-
atively correlated with age and LDL (r = − 0.571, − 0.403,
p < 0.001), and InverseDifferenceMoment_ALLDirection_
offset1_SD of GLCM feature was positively correlated
with age (r = 0.638, p < 0.001). In the PWMH subgroup,
Compactness2 of the formfactor feature was negatively
correlated with LDL (r = − 0.592, p < 0.001), and
InverseDifferenceMoment_angle0_offset7 of GLCM fea-
ture was positively correlated with LDL (r = 0.204,
p < 0.001). In the DWMH subgroup, LongRunEmphasis_
angle135_offset7 of RLM feature was negatively correlat-
ed with age (r = − 0.293, p < 0.001), and GLCMEntropy
_angle45_offset4 of GLCM characteristic was positively cor-
r e l a t ed wi th age (r = 0 .301 , p = 0 .006) . Las t ly,
InverseDifferenceMoment_angle0_offset7 of the GLCM fea-
ture was positively correlated with BMI (r = 0.394, p < 0.001).

Discussion

We used radiomics to predict the progression of WMH and
identify the associated risk factors. Our findings suggest that

Table 4 Risk factors associated with the progression of WMH in different regions by logistic regression analysis

Subgroups Univariate logistic regression Multivariate logistic regression

OR (95%CI) p value OR (95%CI) p value

AWMH group

Age (years) (< 60 vs. ≥ 60) 2.326 (1.036 − 5.226) 0.041 4.264 (1.447 − 12.565) 0.009

Sex (male vs. female) 0.963 (0.437 − 2.122) 0.925 NA NA

Hypertension (No vs. Yes) 1.356 (0.594 − 3.099) 0.470 NA NA

Smoking (No vs. Yes) 2.980 (0.851 − 10.429) 0.088 NA NA

Hyperlipidemia (No vs. Yes) 5.249 (2.208 − 12.479) < 0.001 3.787 (1.407 − 10.191) 0.008

Radiomics score (per 0.1 increase) 0.473 (0.333 − 0.673) < 0.001 0.443 (0.292 − 0.672) < 0.001

PWMH group

Age (years) (< 60 vs. ≥ 60) 2.895 (1.206 − 6.951) 0.017 NA NA

Sex (male vs. female) 0.983 (0.419 − 2.307) 0.968 NA NA

Hypertension (No vs. Yes) 1.383 (0.564 − 3.388) 0.478 NA NA

Coronary heart disease (No vs. Yes) 3.594 (1.125 − 11.484) 0.071 NA NA

Smoking (No vs. Yes) 1.867 (0.465 − 7.494) 0.379 NA NA

Hyperlipidemia (No vs. Yes) 7.944 (3.052 − 20.682) < 0.001 5.495 (1.739 − 17.361) 0.004

Radiomics score (per 0.1 increase) 0.380 (0.246 − 0.588) < 0.001 0.336 (0.191 − 0.590) < 0.001

DWMH group

Age (years) (< 60 vs. ≥ 60) 3.068 (1.309 − 7.191) 0.01 4.576 (1.453 − 14.413) 0.009

Body Mass Index (kg/m2) (< 25 vs. ≥ 25) 5.750 (2.346 − 14.094) < 0.001 4.541 (1.585 − 13.006) 0.005

Smoking (No vs. Yes) 3.257 (0.976 − 10.873) 0.055 NA NA

Hyperlipidemia (No vs. Yes) 1.019 (0.877 − 11.82) 0.809 NA NA

Radiomics score (per 0.1 increase) 0.423 (0.283 − 0.632) < 0.001 0.375 (0.232 − 0.607) < 0.001

NA, not available. These variables were evaluated in the multivariate logistic regression model, so the OR and p values were not available. AWMH, white
matter hyperintensities in any (periventricular and/or deep) region; PWMH, periventricular white matter hyperintensities; DWMH, deep white matter
hyperintensities
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radiomics ofWBWM could be used to predict the progression
of WMH, which may support the theory of the existence of
WBWH penumbra proposed by Maillard et al [2]. We also
found that the clinical risk factors associated with the progres-
sion ofWMHwere different in PWMH and DWMH, suggest-
ing that the pathogenesis may be different between these re-
gions [20, 21]. Finally, specific radiomics signatures were
found to be associated with risk factors for the progression
of WMH, revealing the potential pathophysiological transfor-
mations from NAWM to WMH.

One of the advantages of the current study is that we ex-
tracted radiomics features from WBWM other than sporadic
and progressive WMH, which could reflect the changes in

white matter structures from NAWM to WMH, suggesting
that it may be more powerful than features fromWMH alone.
The microstructural integrity of NAWM changed due to axo-
nal injury and demyelination [22], and we believe this may be
the reason for the significant differences in radiomics scores
detected between the progression and non-progression
groups. In addition, the radiomics score of the DWMH sub-
group was lower than that of PWMH, which indicated that the
heterogeneity of PWMH was more remarkable. This finding
is consistent with a previous pathological finding that progres-
sion between DWMH and PWMH is different [23], yet it
supports our hypothesis that radiomics may reflect the patho-
physiological changes of WMH.

Fig. 2 Calibration of the radiomics model for progression of WMH in
any region of the training and validation sets. The dashed line represents a
reference line where an ideal model would lie. The dotted line represents

the performance of a hybrid model, while the solid line corrects for any
bias in the hybrid model. The prediction performance of the ROC curves
for AWMH and the AUC were 0.848 and 0.824, respectively
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Furthermore, we demonstrated that the clinical factors per-
tinent to the progression of WMH were selectively associated
with radiomics signatures in different regions. Accordingly,
the combination of the prediction model and risk factors was
more effective than radiomics alone, implying that specific
risk factors may accelerate the progression of WMH. In fact,
microvascular structures are changed inMRI scans of visually
NAWM [24–26]. Previously, Maillard et al [27] suggested
that the early detection of microstructural damage in NAWM
would require advanced MRI techniques, such as diffusion
tensor imaging (DTI), rather than conventional MRI

sequences like T1FLAIR to quantify the NAWM integrity.
However, our findings suggest that conventional sequences,
such as T1FLAIR, when combined with radiomics can be
used to quantify heterogeneity of visually NAWM.

We noticed that some risk factors, such as high blood pres-
sure, did not survive in our regression model, though hyperten-
sion is thought to be a major burden of WMH. We suspect that
patients with hypertension in this study were taking antihyper-
tensive drugs for a long time, which might lead to changes in
NAWM that are difficult to detect. A previous study showed
that antiplatelet therapy was not effective in slowing down the

Fig. 3 Calibration of the radiomics model for progression of
periventricular WMH in the training and validation sets. The dashed
line represents a reference line where an ideal model would lie. The
dotted line represents the performance of a hybrid model, while the

solid line corrects for any bias in the hybrid model. The prediction
performance of the ROC curves for AWMH and the AUC were 0.863
and 0.818, respectively
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progression of WMH [28]. However, further studies are
needed to determine if antihypertensive medications can
decelerate the progression of WMH. Age was demonstrat-
ed as an independent risk factor for the progression of
WMH, which is consistent with the literature [29, 30].
Interestingly, age was not found to be an independent risk
factor for PWMH, which supports a previous pathological
study showing that reduced vascular density in WMH was
not associated with age [31]. Our research further demon-
strated that only changes in PWMH were unrelated to age,
which explains why the prediction model for PWMH
showed the lowest performance. However, this conclusion

is limited, as this is a preliminary study using a small
sample size. In addition, hyperlipidemia was shown to
be a risk factor for the progression of WMH. Previous
studies have shown that hyperlipidemia leads to microvas-
cular hemodynamic regulation disorder [32, 33], which
increases viscosity and resistance of blood flow [34]. We
speculate that the PWMH burden is more likely to be
determined by chronic hemodynamic effects (low perfu-
sion). Hyperlipidemia may be related to other risk factors,
such as high blood pressure or obesity, for the progression
of WMH [35]. BMI was found to be an independent risk
factor for the progression of DWMH, which is consistent

Fig. 4 Calibration of the radiomics model for progression of DWMH in
the training and validation sets. The dashed line represents a reference line
where an ideal model would lie. The dotted line represents the

performance of a hybrid model, while the solid line corrects for any
bias in the hybrid model. The prediction performance of the ROC
curves for AWMH and the AUC were 0.861 and 0.833, respectively
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Fig. 5 Correlation map between statistically significant clinical risk
factors and features of the radiomics signature in each subgroup. The
color bar on the right represents the size of the correlation coefficient;
the larger the circle in the figure, the higher the correlation and vice versa.
Asterisk indicates p < 0.05. Double asterisks indicate p < 0.005. AWMH,

white matter hyperintensities in any (periventricular and/or deep) region;
PWMH, periventricular white matter hyperintensities; DWMH, deep
white matter hyperintensities; BMI, body mass index; LDL, low-
density lipoprotein

Fig. 6 The scatter plots between the radiomics features and different independent risk factors. The different colors represent different feature categories
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with the findings of Griffantia et al [36], indicating the
progression of DWMH might be delayed by controlling
the BMI of patients.

Many studies have investigated potential biomarkers for
assessing the progression and severity of WMH [37, 38].
Compared with those biomarkers, radiomics may serve as a
non-invasive biomarker to reflect white matter status. Our
research showed that dimensionality-reduced features were
primarily GLCM, RLM, and formfactor features, very similar
to the existing study on the texture analysis of white matter
[39, 40]; GLCM represents heterogeneity and homogeneity,
which indirectly indicates the heterogeneity changes during
the conversion from NAWM toWMH. The results are similar
to a previous study by Loizou [41], who found that GLCM
and formfactor features were significantly different in the pro-
gression of NAWM. Formfactor features, such as
SurfaceArea, represent changes in volume, area, or shape that
may reflect microscopic structures. The volume and morphol-
ogy of WMH may change with age [40], which can also be
confirmed by SurfaceArea being present in all three sub-
groups. In addition, the study showed that the RLM, which
reflects roughness and directionality, was also associated with
the progression of WMH, as features with directionality have
a longer run length at a specific angle [42]. Healthy white
matter fiber bundles are oriented and regulated, but myelin
damaged causes them to lose their regular structure and be-
come thickened and blurred [43], indicating that WMH pro-
gression could be indicated from WBWM using RLM, espe-
cially in the DMWH subgroup, which had a close correlation
with age. This suggests that deep white matter is more suscep-
tible to myelin damage over time, which is consistent with our
results that the radiomics score was lowest in the DWMH
subgroup. These results also indicate that the radiomics fea-
tures of WBWM can reveal the relationship between the pro-
gression and risk factors of WMH in conventional MRI.

Our study has some limitations. First, we selected a single
time interval for the progression of WMH, yet continuous
changes cannot be fully observed in the process of NAWM
converting to WMH. However, we could elucidate the patho-
logical mechanism in the formation and progression of WMH
based on radiomics features. Furthermore, we did not use vol-
umetric measurements to assess the progression of WMH,
which may lead to deviations in the assessment of progressive
WMH. Nevertheless, the visual WMH changes scale used in
the current study was highly correlated with changes in the
volume of WMH [44]. Lastly, we performed a retrospective
study in a single-center, and our results cannot be directly ap-
plied to patients at other institutions with WMH. Nevertheless,
this study established a radiomics-based biomarker for
assessing the progression of WMH using conventional MRI,
which may be helpful in future multicenter prospective studies.

In conclusion, the radiomics analysis of WBWM showed
that the progression of WMH involved diffuse damage far

beyond visually hyperintense areas on conventional MRI se-
quences. High-risk populations with possible progressive
WMH can be identified using radiomics of WBWM.
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