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Abstract
Objective To assess the value of qualitative and quantitative MRI radiomics features for noninvasive prediction of immuno-
oncologic characteristics and outcomes of hepatocellular carcinoma (HCC).
Methods This retrospective, IRB-approved study included 48 patients with HCC (M/F 35/13, mean age 60y) who underwent
hepatic resection or transplant within 4 months of abdominal MRI. Qualitative imaging traits, quantitative nontexture related and
texture features were assessed in index lesions on contrast-enhanced T1-weighted and diffusion-weighted images. The associ-
ation of imaging features with immunoprofiling and genomics features was assessed using binary logistic regression and
correlation analyses. Binary logistic regression analysis was also employed to analyse the association of radiomics, histopath-
ologic and genomics features with radiological early recurrence of HCC at 12 months.
Results Qualitative (r = − 0.41–0.40, p < 0.042) and quantitative (r = − 0.52–0.45, p < 0.049) radiomics features correlated with
immunohistochemical cell type markers for T-cells (CD3), macrophages (CD68) and endothelial cells (CD31). Radiomics
features also correlated with expression of immunotherapy targets PD-L1 at protein level (r = 0.41–0.47, p < 0.029) as well as
PD1 and CTLA4 at mRNA expression level (r = − 0.48–0.47, p < 0.037). Finally, radiomics features, including tumour size,
showed significant diagnostic performance for assessment of early HCC recurrence (AUC 0.76–0.80, p < 0.043), while
immunoprofiling and genomic features did not (p = 0.098–0929).
Conclusions MRI radiomics features may serve as noninvasive predictors of HCC immuno-oncological characteristics and
tumour recurrence and may aid in treatment stratification of HCC patients. These results need prospective validation.
Key Points
•MRI radiomics features showed significant associations with immunophenotyping and genomics characteristics of hepatocel-
lular carcinoma.

• Radiomics features, including tumour size, showed significant associations with early hepatocellular carcinoma recurrence
after resection.
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MRI Magnetic resonance imaging
OR Odds ratio

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common
neoplasm and third leading cause of cancer-related mortality
worldwide [1]. The pathogenesis of HCC is heterogeneous
and complex [2]. HCC has a poor prognosis, since it often
presents at an advanced stage, at which novel targeted thera-
pies, including tyrosine kinase inhibitors and immune check-
point inhibitors [3, 4], alone or in combination with
locoregional therapy, are the only available therapeutic op-
tions. Recently, immunotherapy has shown a 20% response
rate in patients with advanced HCC [4], compared to only a
2% response rate reported for multi-kinase inhibitor sorafenib
[3].

Due to the marked heterogeneity of HCC and the emerging
role of targeted therapies, there is a need for advanced HCC
characterisation to appropriately inform patient management
and prognostication. The success of immunotherapy is depen-
dent on the tumour’s immune status [5]. Immunoprofiling of
tumours is therefore of critical importance in predicting re-
sponse to immunotherapy [6]. Multiplexed immunohisto-
chemistry is a promising advanced technique for assessment
of immune cell distribution and localisation in tumours [7].
HCC tumours have also been intensively profiled for genome-
wide gene expression, DNA copy number alterations, DNA
methylation and gene mutations, which may have a role for
the prediction of prognosis, microvascular invasion and treat-
ment response [8]. While immunoprofiling and genomics
evaluation are promising for prediction of HCC response to
therapy [9], these methods require invasive tissue sampling,
specialised equipment and analysis and are limited by sam-
pling bias and possible complications.

HCC is typically diagnosed and staged using noninvasive
imaging techniques such as computed tomography (CT) or
magnetic resonance imaging (MRI) [10]. Radiomics, a process
by which large numbers of features are extracted from digital
images, is motivated by the concept that biomedical images
contain valuable information reflecting the underlying patho-
physiology [11, 12]. Encouraging studies have been published
on the potential utility of radiomics for noninvasive character-
isation of HCC (reviewed in [13]). Recently, it was shown in a
preliminary study that multiparametric MRI histogram features
are associated with immunohistochemical HCC markers and
gene expression levels of HCC markers and therapeutic targets
[14]. In a retrospective analysis, associations of qualitative im-
aging traits from CT and MRI data with gene signatures of
aggressive HCC were observed [15]. While these initial reports
on the correlation of each of qualitative, histogram and texture
MRI features with several histopathological features and

genomics features of HCC are promising, an integrated analysis
of the association of MRI radiomics features with HCC
immuno-oncological features has not been performed. The de-
velopment of a comprehensive approach to assess and integrate
qualitative and quantitative data obtained from routine MRI
could potentially impact the care of patients with HCC.

The objective of our study was to assess the value of qual-
itative and quantitative MRI radiomics features for noninva-
sive prediction of immuno-oncologic characteristics and out-
comes of HCC.

Materials and methods

Patients

This retrospective HIPAA-compliant single-centre study was ap-
proved by our institutional review board with a waiver of in-
formed consent. Our centre’s pathological database was queried
between December 2014 and July 2016 using the search term
“hepatocellular carcinoma” or “HCC” or “hepatocarcinoma” or
“liver cancer”. Inclusion criteria were (a) patients with patholog-
ically proven HCC, (b) patients who underwent abdominal MRI
within 4months before surgery (resection or transplant) for HCC
and (c) patients who had not undergone treatment before surgery.
Exclusion criteria were (a) lesion size < 10 mm; (b) lack of
diffusion-weighted imaging (DWI); (c) technically inadequate
MRI exams (due to motion, image artefacts) as evaluated by
observers 1 (SL) and 2 (CB), two abdominal radiologists with
8 and 7 years’ experience, respectively; and (d) histopathologic
diagnosis other than HCC. A total of 48 patients with HCC (M/F
35/13, mean age 60 years, range 36–77 years) comprised our
study population (Fig. 1).

MRI acquisition

Routine abdominal MRI was performed at either 1.5 T (n =
34) or 3 T (n = 14). All MRI exams included multiphasic
contrast-enhanced MRI with liver-specific gadoxetic acid

Fig. 1 Study flow chart of our single-centre patient population
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injection (n = 33) or extracellular agent (n = 15), and DWI,
among other routine sequences. While DWI b-values varied
among MRI scanners, all but one DWI protocol consisted of
b50 and b750/800 acquisitions. The DWI data of the patient
without b50 and b750/800 data were not analysed, while the
other imaging data were kept for analysis. Additional infor-
mation on the acquisition and usedMRI systems can be found
in the Supplemental Material.

Qualitative MRI analysis

The qualitative MRI analysis was performed by two abdom-
inal radiologists in consensus (observers 1 and 2). The index
HCC lesion (the largest lesion that underwent histopathologic
sampling) was identified on MRI. The location (i.e. liver seg-
ment) and size of the lesion in the pathological report was used
to ensure analysis of the same lesion for the imaging and
histopathological and genomics analysis. The observers were
aware that patients had HCC, but were blinded to the clinical
and pathologic data. The observers categorised each index
lesion according to the CT/MRI Liver Imaging Reporting
and Data System (LI-RADS) 2018 diagnostic algorithm
[16]. In addition, the observers documented the presence/
absence of ancillary findings and the qualitative appearance
of lesions on conventional sequences (see list of imaging fea-
tures in Table 1 and representative examples in Supplemental
Fig. 1) [15].

Region of interest analysis

A third observer (observer 3, M.K., a 4th year radiology res-
ident with 1 year of experience in abdominal MRI) performed
the quantitative region of interest (ROI) measurements of each
index HCC to compute the signal intensity (SI) on contrast-
enhanced images (pre-contrast (n = 48), early arterial phase
(n = 35), late arterial phase (n = 41), portal venous phase
(n = 47), late venous phase (n = 46), hepatobiliary phase
(n = 33 in patients who received gadoxetic acid)) and apparent
diffusion coefficient (ADC) maps (n = 47) using OsiriX soft-
ware (version 5.8, Pixmeo). ROIs were placed in a single slice
in which the lesion appeared largest for lesions smaller than
3 cm. For lesions with a size larger than 3 cm, the SI was
measured on two consecutive slices on which the lesion ap-
peared largest. The entire lesion was covered in the ROI, in-
cluding areas of necrosis, if present. However, peripheral por-
tions of the lesion were avoided to exclude partial volume
effects of adjacent extra-lesional tissue.

Two types of quantitative features were extracted from the
ROIs: quantitative nontexture features (for the sake of brevity
referred to as quantitative features in the rest of the manu-
script) and texture features, as described below.

Quantitative features

Tumour size The largest diameter of the index lesion on the
axial slice on which the lesion appeared largest was recorded.

CE-T1WI Enhancement ratios (ER) = [(SI post − SI pre)/SI pre]
× 100% were computed for all post-contrast phases of
contrast-enhanced MRI for each lesion.

Apparent diffusion coefficient analysis ADC mean and mini-
mum values were calculated for each lesion using
monoexponential fit of DWI data from b50 and b750/800 s/
mm2.

Texture analysis

Observer 4 (S.J.H., an MRI physicist with 3 years of experi-
ence in abdominal MRI) computed Haralick texture features
(energy, contrast, correlation, variance, homogeneity, sum av-
erage, sum variance, sum entropy, entropy, difference vari-
ance, difference entropy, information correlation measures 1
and 2, maximal correlation [17]) in the HCC ROIs drawn on
the dynamic multiphasic contrast-enhanced images and ADC
maps using MATLAB (version 2016b, MathWorks, Inc.).
Before texture analysis, signal values in ROIs were normal-
ised to range between mean ± 3*standard deviation (SD) of
the signal values in the ROI [18] and decimated to 16 and 64
discrete bin values. Normalisation was performed to account
for inter-patient and inter-scanner differences in MRI signal
intensities. Two different grey scales were used to increase the
sensitivity of the texture features to both small and large in-
tensity variations in the image.

A total of 218 radiomics features were extracted, consisting
of 196 texture features (14 Haralick features × 7 imaging
sequences × 2 grey level scales), 14 qualitative features and
8 quantitative features.

Immunoprofiling

Standard clinical histopathologic evaluation of representative
H&E stained slides from the 48 HCCs was retrospectively
performed in consensus by two pathologists (S.W., with over
25 years’ experience and J.P., with 2 years’ experience). The
pathologists assessed tumour grade [19] and presence/absence
of microvascular invasion on representative tumour samples.

Immunoprofiling consisted of multiplexed immunohisto-
chemical consecutive staining on single slide (MICSSS) [7]
used to sequentially stain endothelial cells (CD31; clone J70,
ready-to-use concentration, Ventana Medical Systems), mac-
rophages (CD68; clone KP1, 1:100 dilution, Agilent Dako), T
cells (CD3; clone CD3, ready-to-use concentration, Ventana
Medical Systems) and cell surface ligand (PD-L1; clone
E1L3N, 1:100 dilution, Cell Signaling Technology).
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Table 1 Clinical characteristics, imaging features and pathological features assessed in 48 patients with 48 HCCs

Parameter Classification Value

Demographics

Age (year) Mean ± standard deviation (range) 60 ± 11 (36–77)

Sex M/F 35/13

Clinical characteristics

Aetiology of liver disease - Hepatitis C virus
- Hepatitis B virus
- Nonalcoholic steatohepatitis
- Alcohol
- Primary sclerosing cholangitis
- Unknown

- 12
- 26
- 1
- 2
- 1
- 6

Fibrosis stage* 0/1/2/3/4 3/6/10/13/14

Child-Pugh scores A/B/C 41/6/1

Model for End-Stage Liver Disease (MELD) score Mean ± standard deviation (range) 8.1 ± 2.3 (6–18)

Barcelona clinical liver cancer (BCLC) stage 0/A/B/C 11/13/22/2

American Joint Committee on Cancer (AJCC) stage** T1/T2/T3 12/27/6

Type of surgery Resection/transplant 46/2

Imaging appearance

Infiltrative pattern Y/N 1/47

Multiple lesions Y/N 5/43

Extranodular growth Y/N 12/36

Macrovascular invasion Y/N 2/46

Tumour necrosis Y/N 7/41

Tumour haemorrhage Y/N 5/43

Tumour fat content Y/N 7/41

Mosaic appearance Y/N 19/29

Internal arteries Y/N 11/37

Capsule Y/N 39/9

T2 hyperintensity Y/N 44/4

ADC hypointensity*** Y/N 20/27

Wash-in/wash-out Y/N 41/7

Hepatobiliary phase hypointensity**** Y/N 29/4

Quantitative imaging features (nontexture related)

Tumour size (cm) Mean ± standard deviation (range) 4.2 ± 3.3 (1.0–15)

ADC mean (10−3 mm2/s) Mean ± standard deviation 1.28 ± 0.35

ADC min (10−3 mm2/s) Mean ± standard deviation 0.60 ± 0.39

Enhancement ratio early arterial phase (%) Mean ± standard deviation 57.0 ± 55.0

Enhancement ratio late arterial phase (%) Mean ± standard deviation 97.0 ± 49.4

Enhancement ratio portal venous phase (%) Mean ± standard deviation 92.8 ± 40.3

Enhancement ratio late venous phase (%) Mean ± standard deviation 77.6 ± 35.4

Enhancement ratio hepatobiliary phase (%) Mean ± standard deviation 50.9 ± 37.0

Pathology features

Lesion size Mean ± standard deviation (range) 4.5 ± 4.2 (0.8–21)

Grade Well/moderately/poorly differentiated 4/31/13

Microvascular invasion Y/N 31/17

ADC = apparent diffusion coefficient

*Fibrosis stage not assessed for 2 patients

**AJCC stage not assessed for 3 patients

***No ADC map in 1 patient

****No HBP in 15 patients
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Endothelial cells, macrophages and T cells were stained to
visualise tissue vasculature, inflammation and immune status,
respectively. PD-L1 was chosen as immunotherapy target be-
cause of well-established antibodies available for PD-L1
staining [7]. Stained HCC sections were digitally imaged at
× 20 magnification using a whole-slide scanner (NanoZoomer
C13210-01). Threshold-based segmentation was performed in
MATLAB to detect stained pixels [14] (Supplemental
Figure 2). Stained tumour fractions were then measured from
these segmentations.

Genomics analysis

Isolated total RNA samples were extracted from paraffin-
embedded HCC samples of all 48 patients using High Pure
RNA Paraffin Kit (Roche). RNA was subjected to the
Elements HCC assay (NanoString) as previously reported
[20]. Transcriptomic HCC subtypes (S1, S2 and S3) described
by Hoshida et al [21] were defined using the nearest template
prediction algorithm [20]. Raw transcript count data were nor-
malised by scaling with geometric mean of built-in normal-
isation genes. The following HCCmarker genes and therapeu-
tic targets were profiled: HCC subclass signature genes
(IQGAP1, S100A11, RAB31, CD37, POSTN, ARHGDIB,
ALOX5AP, LAPTM5, CSPG2, ARPC2, COL2A1, GPC3,
AFP, AHCY, TARBP1, ARID3A, FGFR3, SMARCC1,

RPS5, EIF4A2, GLYAT, SERPINC1, APOC4, MTHFD1,
GPT, HPD, SERPING1, DPAGT1, PCK1, HGD), liver-
specific Wnt target (GLUL) [22], stemness markers
(EPCAM, KRT19) [23, 24], early HCC markers (BIRC5,
HSP70, LYVE1, EZH2) [25, 26], pharmacological target
(FGFR4) [27], potentially targetable angiogenesis marker
(VEGFA) [28] and targetable immune checkpoints (PD-L1,
PD-1, CTLA4) [14, 21].

Outcome analysis

Follow-up imaging data (CT or MRI) was reviewed by
observer 5, D.S., a radiologist with 1 year of experience
in abdominal MRI. For patients who had follow-up im-
aging until at least 1 year after surgery, the presence of
early HCC recurrence [29] on radiological images was
noted.

Statistical analysis

Statistical analysis was performed in MATLAB and SPSS
(version 20, IBM Analytics). Logistic regression analysis
was used to determine the association of the imaging features
(qualitative, nontexture-related quantitative and texture fea-
tures) with histopathologic grade, microvascular invasion,
molecular subtype and clinical outcome. Prior to regression

Fig. 2 Clustergram of significant correlations, expressed as the Spearman
correlat ion coefficient r, between radiomics features and
immunohistochemical markers assessed by multiplex analysis. Only
radiomics features and immunohistochemical markers for which a
significant association (FDR-adjusted p < 0.05) was observed are

shown. Correlations are coloured according to the colour bar shown on
the left. Nonsignificant correlations are displayed with a checkerboard
pattern. ADC = apparent diffusion coefficient, EAP = early arterial
phase, ER = enhancement ratio, LAP = late arterial phase, LVP = late
arterial phase, OR = odds ratio, PVP = portal venous phase
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analysis, features were standardised to have zero mean and
unit standard deviation. Spearman correlation analysis was
employed to determine the correlation of radiomics features
with gene expression levels and immunohistochemical stained
fractions. p values were adjusted for multiple correlations by
using a false discovery rate (FDR) adjustment. An FDR-
adjusted p value below 0.05 was considered statistically
significant.

Results

Clinical, imaging and pathological characteristics
(Table 1)

The majority of the patients were male (35/48 = 72.9%)
and had chronic HBV infection (26/48 = 54.2%). Forty-
six of the patients underwent partial resection and 2
patients underwent liver transplantation. Pathological
evaluation showed that most lesions (44/48 = 91.7%)
were moderately or poorly differentiated. Microvascular
invasion was observed in 31/48 (64.6%) of the lesions.
In terms of imaging, 41/48 HCCs (85.4%) were
categorised as LI-RADS 5 and 7/48 (14.6%) as LI-
RADS 4. The vast majority of lesions exhibited nodular
morphology (47/48 = 97.9%), while one lesion was infil-
trative. A capsule was observed in 39 lesions (81.2%).
Typical wash-in/was-out enhancement pattern was seen
in 41/48 (85.4%) of the lesions.

Association of radiomics features with pathological
and immune features

No significant associations were observed between any of the
radiomics features and histopathologic grade and microvascu-
lar invasion (p = 0.075–1).

Despite the absence of significant association with
qualitative histopathologic features, radiomics features
were significantly associated with quantitative expression
of immune markers CD3, CD31, CD68 and PD-L1 as
assessed with MICSSS analysis (Fig. 2, Table 2). Most
of the significant correlations were found with expression
of CD68 (macrophages), including with several texture
features (r 0.33–0.45, p < 0.049) and qualitative features
mosaic appearance (r = 0.40, p = 0.023) and wash-in/
wash-out enhancement pattern (r = 0.37, p = 0.042).
Texture feature variance at the ADC map and the en-
hancement ratios at the portal and late venous phases
were significantly correlated with expression of check-
point inhibitor PD-L1 (r 0.41–0.47, p < 0.029).

Associations of radiomics and genomics features

The distribution of molecular subtypes was as follows:
S1, n = 18; S2, n = 9; S3, n = 21. ADC min was the only
quantitative feature that showed significant association
with molecular subtypes (aggressive subtypes S1/S2 vs.
less aggressive subtype S3, odds ratio (OR) = 2.00, p =
0.036, AUC = 0.68). Significant associations between
radiomics features and gene expression levels are shown
in Fig. 3 and Table 3. Eleven imaging features showed
significant associations with 14 gene expression levels
(r − 0.61–0.56, p < 0.043). Among these 11 features, there
were 9 texture features, 1 quantitative feature and 1 qual-
itative feature. Most correlations were found with

Table 2 Significant correlations of radiomics features with
immunoprofiling features in 48 HCCs

Marker Radiomics feature r FDR-adj p

CD3 Qualitative features

Tumour fat content − 0.41 0.019

CD31 Texture features

Pre variance 16 bins − 0.47 0.005

Pre information measure of
correlation 2 16 bins

− 0.38 0.038

LAP maximal correlation 16 bins − 0.52 0.003

Pre variance 64 bins − 0.47 0.005

Quantitative features

ER LVP 0.37 0.023

CD68 Texture features

Pre variance 16 bins 0.33 0.047

Pre sum average 16 bins 0.41 0.018

Pre sum variance 16 bins 0.41 0.018

Pre sum average 64 bins 0.37 0.049

Pre sum variance 64 bins 0.42 0.017

EAP sum entropy 64 bins 0.45 0.049

Qualitative features

Mosaic appearance 0.40 0.023

Wash-in/wash-out 0.37 0.042

PD-L1 Texture features

ADC variance 64 bins 0.41 0.029

Quantitative features

ER PVP 0.42 0.015

ER LVP 0.47 0.005

Correlation coefficient coefficients (r) resulted from Spearman correla-
tion analysis. p values were adjusted for multiple tests using a false dis-
covery rate (FDR) adjustment

ADC = apparent diffusion coefficient, AUC = area under the curve,
EAP = early arterial phase, ER = enhancement ratio, LAP = late arterial
phase, LVP = late venous phase, PVP = portal venous phase
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molecular subclass signature genes. The strongest corre-
lation was between texture at the early arterial phase with
expression of binding protein TARBP1 (r = − 0.61, p =
0.013). In terms of associations with HCC therapeutic
targets, significant correlations were observed between
late arterial phase texture features and immunotherapy
targets PD-1 and CTLA4 (Fig. 4).

Association of radiomics and immuno-oncologic
features with HCC recurrence (Table 4)

Follow-up imaging data up to at least 1 year after HCC sur-
gery was available for 43/48 (89.6%) patients. In 10 patients
(23.3%), early HCC recurrencewas detected on imaging with-
in 1 year after surgery. These patients had all previously un-
dergone hepatic resection. The average time to recurrence in
those patients was 227 days (range 106–396 days). While the
longest time to recurrence was more than 1 year, in that par-
ticular patient small enhancing lesions were already visible at
the 9 months follow-up imaging exam, indicating that recur-
rence had occurred within 1 year after resection. Several tex-
ture features were significantly associated with recurrence
(highest diagnostic performance for pre-contrast texture fea-
ture sum entropy with 16 bins; OR = 5.51, p = 0.028, AUC =
0.80). Tumour size ≥ 5 cmwas the only nontexture feature that
showed significant association with HCC recurrence (OR =
3.01, p = 0.004, AUC = 0.76). None of the immunogenomic
features were significantly associated with HCC recurrence
(p = 0.098–0.929).

Discussion

In this study, we sought to assess the potential value of
MRI-based radiomics analysis for noninvasive prediction
of immuno-oncologic characteristics of HCC as well as
outcome. There is increasing interest in the characterisa-
tion of HCC immune cell microenvironment, since im-
mune cells play a central role in tumour initiation, pro-
gression and metastasis [30]. Furthermore, immunologic
hallmarks of HCC are increasingly targetable with novel
immunotherapies [31]. Early studies have shown that pa-
tients who are treated with nivolumab (anti-PD-1) exhibit
reasonable objective response and tumour control [4]. In
our study, several MRI texture features showed correla-
tion with gene expression of immunotherapy targets
CTLA-4 and PD-1. In addition, significant associations
of texture features and quantitative enhancement ratios
with immunohistochemical PD-L1 expression were iden-
tified in our study. These results suggest that MRI
radiomics analysis may be used to predict expression of
immunotherapy targets in HCC, which may aid in strat-
ification of HCC patients for immunotherapy.

None of the radiomics features showed significant associ-
ation with pathological grade, in contrast to a previous study
[32]. These conflicting results may be due to the fact that we
employed statistical correction for multiple testing, which was
not performed in the previous study. Microvascular invasion
has been identified as predictor of recurrence and poor overall
survival [33]. There is increasing interest in noninvasive pre-
diction of microvascular invasion using imaging, both using

Fig. 3 Clustergram of significant correlations, expressed as the Spearman
correlation coefficient r, between radiomics features and gene expression
levels. Only radiomics features and genes for which a significant
association (FDR-adjusted p < 0.05) was observed are shown.
Correlations are coloured according to the colour bar shown on the left.
Nonsignificant correlations are displayed with a checkerboard pattern.

Radiomics features, in particular texture features, showed significant
association with gene expression levels of HCC markers and
therapeutic targets. ADC = apparent diffusion coefficient, EAP = early
arterial phase, ER = enhancement ratio, HBP = hepatobiliary phase,
LAP = late arterial phase, PVP = portal venous phase
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qualitative [34] and radiomics [35] features. Despite the ab-
sence of significant associations of radiomics features with
microvascular invasion in our study, combination of multiple
MRI features into radiomics signatures may improve the per-
formance of radiomics for prediction of microvascular inva-
sion [35].

Because up to 70% of early-stage HCC patients treat-
ed with either curative resection or locoregional therapy
will develop tumour recurrence within 5 years [36], we
sought to assess the association of imaging features with
early tumour recurrence within 1 year of surgery. It has
been previously shown that patients with early HCC
recurrence have worse prognosis in terms of median
survival [29]. Texture features again showed promise
for the prediction of recurrence. However, tumour size

from MRI at baseline showed similar diagnostic perfor-
mance. A recent study by Villanueva et al developed
prognostic models incorporating clinicopathologic and
genomic information in a larger cohort of 287 patients,
although imaging was not included in their analysis
[23]. Imaging-based prediction of outcome after surgery
may have clinical utility. If adverse outcome is predict-
ed by imaging assessment before surgery, neoadjuvant
therapies could potentially be employed which may im-
prove outcome [37]. MRI is already routinely performed
in HCC patients, making the imaging assessment a cost-
effective and noninvasive alternative to tissue sampling.

Our findings of significant associations with radiomics fea-
tures correspond to previous preliminary studies in which the
association of qualitative CT and MRI [15] and quantitative

Table 3 Significant correlations of radiomics features with gene expression levels in 48 HCCs

Gene Feature type Feature names r FDR-adj p

IQGAP1 Texture features LAP information measure of correlation 1 16 bins − 0.44 0.031

RAB31 Texture features LAP information measure of correlation 1 16 bins − 0.48 0.027

CD37 Texture features Pre information measure of correlation 1 16 bins − 0.42 0.036

POSTN Texture features LAP energy 16 bins 0.45 0.043

LAP entropy 16 bins − 0.55 0.011

LAP information measure of correlation 1 16 bins − 0.45 0.030

Qualitative features Mosaic appearance − 0.47 0.036

ALOX5AP Texture features Pre information measure of correlation 1 16 bins − 0.46 0.028

Pre information measure of correlation 2 16 bins 0.47 0.028

LAP entropy 16 bins − 0.46 0.039

LAP information measure of correlation 1 16 bins − 0.48 0.027

LAPTM5 Texture features Pre information measure of correlation 1 16 bins − 0.46 0.028

Pre information measure of correlation 2 16 bins 0.46 0.028

LAP information measure of correlation 1 16 bins − 0.42 0.036

CSPG2 Texture features Pre information measure of correlation 1 16 bins − 0.42 0.036

LAP energy 16 bins 0.50 0.028

LAP entropy 16 bins − 0.52 0.017

LAP information measure of correlation 1 16 bins − 0.46 0.030

AFP Quantitative features ER HBP 0.56 0.025

TARBP1 Texture features EAP variance 16 bins − 0.61 0.013

EAP variance 64 bins − 0.57 0.035

GLYAT Texture features ADC maximal correlation 16 bins − 0.54 0.009

MTHFD1 Texture features PVP maximal correlation 64 bins 0.56 0.002

DPAGT1 Texture features LAP energy 16 bins 0.47 0.037

PD1 Texture features LAP information measure of correlation 1 16 bins − 0.43 0.032

CTLA4 Texture features LAP energy 16 bins 0.47 0.037

LAP information measure of correlation 1 16 bins − 0.48 0.027

Only genes for which significant correlations were found are shown. Correlation coefficient coefficients (r) resulted from Spearman correlation analysis.
P values were adjusted for multiple tests using a false discovery rate (FDR) adjustment

ADC = apparent diffusion coefficient, EAP = early arterial phase, ER = enhancement ratio,HBP = hepatobiliary phase, LAP = late arterial phase, PVP =
portal venous phase
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multiparametric MRI histogram features [14] with HCC mo-
lecular characteristics was assessed. In the current study, we
combined qualitative and quantitative radiomics features to
provide a comprehensive overview of associations of
radiomics features with HCC pathology and genomics char-
acteristics in a cohort of patients with resected HCC. We also
included texture analysis, which was not performed in the
previous studies.

Our study is limited by its relatively small sample size,
precluding inclusion of a separate validation set. We are cur-
rently prospectively recruiting HCC patients to validate the

observed associations in our study. In addition, the develop-
ment of radiomics models was not feasible in our study, since
not all radiomics features could be calculated in all patients
because of the lack of certain contrast-enhanced MRI phases
in several patients. The study was also limited by the hetero-
geneity ofMRI platforms, protocols, sequence parameters and
contrast agents, which were not standardised because of the
retrospective design of the study. While numerous studies
have assessed reproducibility and repeatability of radiomics
features extracted from PET and CT images (reviewed in
[38]), little is known on the effect of MRI acquisition param-
eters on radiomics feature robustness. We also did not assess
inter-observer variability, although it has been demonstrated
that the vast majority of MRI radiomics features in HCC have
good-to-excellent inter-observer agreement [39, 40].

MRI, in particular when employing a radiomics approach
as supported by our results, can provide comprehensive HCC
characterisation that is essential to direct management, predict
patient prognosis and potentially enable personalised treat-
ment strat if icat ion. Widespread use of advanced
immunoprofiling and genomics analysis is hindered by limit-
ed resources and financial constraints. MRI can help by pro-
viding noninvasive surrogates of advanced immuno-
oncological information in patients with HCC.

In conclusion, we observed that texture features, extracted
from routine MRI, in conjunction with other qualitative and
quantitative imaging features, are associated with HCC
immuno-oncological characteristics, and potentially with out-
come. Based on these results, we believe that MRI radiomics
analysis may potentially be useful for patient-tailored treat-
ment decision-making in HCC patients. These results need
prospective validation.

Fig. 4 Energy texture maps overlaid on T1-weighted post-contrast image
obtained during the late arterial phase image. Left: 59-year-old male HBV
patient with a 3.7-cm HCC lesion in right hepatic lobe. Energy texture
map overlaid on T1-weighted post-contrast image obtained during the
late arterial phase image. Texture feature Energy with 16 bins was
0.025 in the lesion, with corresponding molecular expression of
immunotherapy target CTLA4 of 0.44. Right: 51-year-old male HBV
patient with a 3.3-cm HCC lesion in right hepatic lobe. Texture feature
energy with 16 bins was 0.061 in the lesion, with corresponding
molecular expression of immunotherapy target CTLA4 of 0.68. The
texture feature maps are coloured according to the scale bar on the right
with a range of [0–0.1]

Table 4 Significant associations of imaging features with HCC recurrence within 1 year after resection or transplant in 43 patients

Feature AUC (95% CI) p* Sensitivity (%) Specificity (%) PPV (%) NPV (%) OR p#

Texture features

Pre sum entropy 16 bins 0.80 (0.62–0.79) < 0.001 70 84 58 90 5.51 0.028

Pre entropy 64 bins 0.77 (0.69–0.96) 0.002 90 63 43 95 3.28 0.033

LAP information measure of correlation 1 64 bins 0.77 (0.57–0.97) 0.043 89 71 50 95 3.23 0.043

LAP information measure of correlation 2 64 bins 0.77 (0.60–0.93) 0.009 89 71 50 95 0.32 0.009

LVP information measure of correlation 2 64 bins 0.75 (0.58–0.91) 0.019 78 77 50 92 0.31 0.019

HBP information measure of correlation 1 64 bins 0.78 (0.60–0.95) 0.016 57 100 100 89 0.24 0.016

Other features

Size (≥ 5 cm) 0.76 (0.57–0.59) 0.004 82 82 54 90 3.01 0.004

*p value from AUC
# p value from logistic regression

Area under the curve (AUC) values from ROC analysis and odds ratios (OR) from logistic regression analysis are shown

AUC = area under the curve;HBP = hepatobiliary phase, LAP = late arterial phase, LVP = late venous phase;NPV = negative predictive value;OR = odds
ratio; PPV = positive predictive value
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