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Abstract
Objective The purpose of the study was to investigate the role of CT radiomics for the preoperative distinction of intestinal-type
gastric adenocarcinomas.
Materials andmethods A total of 187 consecutive patients with preoperative contrast CTexamination and pathologically proven
gastric adenocarcinoma were retrospectively collected. Patients were divided into a training set (n = 150) and a test set (n = 37).
Arterial phase (AP), portal phase (PP), and delay phase (DP) images were retrieved for analysis. A dedicated postprocessing
software was used to segment the lesions and extract radiomics features. Random forest (RF) algorithm was applied to construct
the classifier models. A nomogram was developed by incorporating multiphase radiomics scores. Receiver operating character-
istic (ROC) curves were used to evaluate the performance of the radiomics model and nomogram in both sets.
Results The radiomics model showed a favorable capability in the distinction of intestinal-type gastric adenocarcinomas. The
areas under curves (AUCs) of the AP, PP, and DP radiomics models were 0.754 (95% CI: 0.676, 0.820), 0.815 (95% CI: 0.744,
0.874), and 0.764 (95% CI: 0.688, 0.829) in the training set, respectively, which were confirmed in the test set with AUCs of
0.742 (95% CI: 0.572, 0.872), 0.775 (95% CI: 0.608, 0.895), and 0.857 (95% CI: 0.703, 0.950), respectively. The nomogram
yielded excellent performance for distinguishing intestinal-type adenocarcinomas in both sets, with AUCs of 0.928 (95%: 0.875,
0.964) and 0.904 (95% CI: 0.761, 0.976).
Conclusions The multiphase CT radiomics nomogram holds promise for the individual preoperative discrimination of intestinal-
type gastric adenocarcinoma.
Key Points
• CT radiomics has a potential role in the distinction of intestinal-type gastric adenocarcinomas.
• Single-phase enhanced CT-based radiomics showed favorable capability in distinguishing intestinal-type tumors.
• The nomogram which incorporates the multiphase radiomics scores could facilitate the individual prediction of intestinal-type
lesions.
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CI Confidence interval
CT Computed tomography
DCA Decision curve analysis
DICOM Digital Imaging and Communications in Medicine
DP Delay phase
HER2 Human epidermal growth factor 2
ICC Interclass intraclass correlation coefficient
IHC Immunohistochemistry
NAC Neoadjuvant chemotherapy
PP Portal phase
RF Random forest
ROC Receiver operative characteristics
SD Standard deviation
VOI Volume of interest

Introduction

Gastric cancer is the fifth most commonmalignant disease and
ranks as the third leading cause of cancer death worldwide [1].
One of the most widely used histopathological classifications
of gastric adenocarcinoma is Lauren’s classification, which
divides lesions into intestinal, diffuse, and mixed types [2].
Intestinal-type lesions show a definite glandular structure,
sometimes with papillary or solid components. The diffuse
type is composed of separated single cells or small clusters
of cells that diffusely infiltrate the layers of the gastric wall.
Tumors comprising non-homogenous mixtures of intestinal-
type and diffuse-type features are regarded as mixed type [3].
Although Lauren’s classification was introduced in 1965, it is
still widely accepted and currently employed [2–4]. Tumors
with different histological types have distinguished molecular
features and clinical behaviors [4–8]. Patients with intestinal-
type lesions have higher rates of positive human epidermal
growth factor 2 (HER2) [6]. More importantly, recent studies
revealed that better overall survival and progression-free sur-
vival were limited to cases of intestinal-type lesions after neo-
adjuvant chemotherapy (NAC) [7, 8]. Thus, accurate distinc-
tion of the intestinal-type adenocarcinomas may improve the
prognostic system and facilitate more personalized treatment.

The invasive gastroscopic biopsy is routinely used for pre-
operative establishment of Lauren’s classification. Recently,
there is increasing interest in identification of valuable imag-
ing markers to noninvasively predict the biological behavior
of tumors [9]. The European Society of Radiology and
Radiological Society of North America also underlined the
value of imaging tools in oncology [10, 11]. Radiomics is a
newly emerged technique which allows automatically
extracting a large number of quantitative features from medi-
cal images using data-characterization algorithms and
assessing the features to improve decision support [12–14].
The dominant advantage of radiomics is that it would uncover
characteristics which are difficult to identify by human visual

examination or conventional imaging tools [15, 16]. The nov-
el radiomics technique has exhibited excellent performance in
differential diagnosis, prediction of lymph node metastasis,
occult peritoneal metastasis, response to therapy, and progno-
sis in gastric cancer [17–22]. Thus, we hypothesized that CT
radiomics might add valuable information in the distinction of
histological types of gastric adenocarcinomas. The aim of the
current study was to investigate whether there is a role of CT
radiomics for distinguishing intestinal-type gastric adenocar-
cinomas, which to the best of our knowledge, has not yet been
reported in any published radiological studies.

Materials and methods

Patients

The institutional review board approved the retrospective
study and waived written informed consent. A total of 187
subjects (122 males and 65 females; mean age, 60.8 ±
11.7 years; age range, 22–86 years) who were treated at our
institution between July 2014 and October 2018 were consec-
utively included. Inclusion criteria were as follows: patholog-
ically confirmed gastric adenocarcinoma, definite Lauren’s
classification based on surgically gained specimens, did not
receive any anticancer therapy before operation, as well as
performed preoperative contrast-enhanced CT examination
in our institution. The following exclusion criteria were ap-
plied: received preoperative anticancer therapy, poor image
quality due to artifacts or poor distention, lack of definite
information of Lauren’s classification, small lesions which
were difficult to locate on CT images, and linitis plastica,
which can be easily established as diffuse type by the naked
human eye. All eligible patients were divided into training and
test sets with a ratio of 8:2 by using computer-generated ran-
dom numbers [23]. Finally, 150 patients (mean age, 60.7 ±
11.9 years) were allocated into the training set and 37 patients
(mean age, 61.2 ± 10.3 years) were allocated into the test set.
Clinical characteristics were recorded by reviewing the elec-
tronic medical charts.

CT examination

All patients were required to fast for at least 6 h before the CT
examination to empty the gastrointestinal tract and drank ap-
proximately 1000 ml water to distend the stomach prior to the
examination. CT examination was performed using 64-
channel (Discovery CT750, GE Medical Systems or IQon-
Spectral, Philips) or dual-source CT (SOMOTOM Definition
Flash, Siemens) scanners. A dose of 1.5 ml/kg of ionic con-
trast material (Ultravist 370, Bayer Schering Pharma) was
infused to patients with a pump injector at a rate of 3.0 ml/s
into the antecubital vein to acquire contrast-enhanced images.
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Arterial phase (AP), portal phase (PP), and delay phase (DP)
images were acquired with 25–30-s, 65–70-s, and 110–120-s
delays after the injection of contrast material, respectively.
The scanning, which covers the entire abdominal region,
was acquired with the patient supine in all phases. The images
were acquired under the tube voltage of 80 kVp for 13 pa-
tients, and 100 or 120 kVP for the rest. Other acquisition
parameters were as follows: tube current, 120 to 640 mA;
detector collimation of 0.625 or 0.6 mm; image matrix of
512 × 512; reconstruction slice thickness, 0.625 mm or
1 mm. Filtered back projection algorithm (120-kVP
protocol) or advanced modeled iterative reconstruction algo-
rithm (80-kVP protocol) was used to reconstruct images [24].

Image segmentation and feature extraction

AP, PP, and DP contrast-enhanced CT images with Digital
Imaging and Communications in Medicine (DICOM) format

were retrieved for further analysis. A dedicated semi-
processing “Radiomics” (syngo.via Frontier, Version 1.0.0,
Siemens) prototype software was used to segment the volume
of interest (VOI) and extract radiomics features. One radiolo-
gist with 6-year experience in abdominal radiology segmented
the lesions of all subjects. A senior radiologist (15-year
experience in abdominal radiology) segmented 35 cases (15
cases, intestinal type; 15 cases, diffuse type; 5 cases, mixed
type) randomly selected from all patients to evaluate the inter-
operator variability. The radiologists were blinded to clinical
information and pathologic results except for the surgically
proven locations of the lesions. The entire tumor was seg-
mented, and intraluminal fluid and gas were carefully exclud-
ed. Coronal and sagittal planes were referenced when
performing the segmentation. Altogether, 844 radiomics fea-
tures were extracted from each VOI on each phase. The fea-
tures can be divided into four categories: 16 shape and size
features that describe the three-dimensional geometric

Fig. 1 An example of the tumor segmentation on PP image and
subsequent feature extraction. (a–c) The tumor is detected on axial (a),
coronal (b), and sagittal (c) PP images. (d–f) Segmentation of the entire

tumor. Coronal and sagittal planes were referenced when performing the
segmentation. The yellow area represents the selected region on the slice.
(g–j) Extraction of four categories of radiomics features
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character of the tumor lesion; 18 first-order statistics features
that demonstrate the distribution of voxel-based CT intensities
within the image through commonmetrics; 74 texture features
that indicate the relative position of the various gray levels
over the image; and 736 wavelet features that were derived
from a wavelet transformation of the first-order statistics and
texture features. An example of tumor segmentation on PP
image and subsequent feature extraction is shown in Fig. 1.

Construction of radiomics model

Radiomics models were built with our in-house software pro-
grammed with the Python Scikit-learn package (Python

version 3.7, Scikit-learn version 0.21, http://scikit-learn.
org/). A random forest (RF) method was used for classifica-
tion of the lesions. Features with intraclass correlation coeffi-
cient (ICC) value higher than 0.8 were considered reliable and
selected for subsequent analysis. Further feature selection was
skipped as it helped increasing efficiency more than improv-
ing the accuracy of the model when utilizing the RF algorithm
[25]. Five general features (scanning kilo-voltage, tube
current, voxel number, patient age and sex) were also included
for model construction to take into consideration of the scan-
ning parameters and patient variance. RF algorithm is an en-
semble learning method that constructs a number of decision
trees from the randomly selected subsets of the training set

Table 1 Clinical characteristics in
the training and test sets Clinical characteristics Training set (n = 150) Test set (n = 37) p value

Pathologic Lauren type, n (%) Intestinal type 65 (43.3) 15 (40.5) 0.844

Mixed type 30 (20) 9 (24.4)

Diffuse type 55 (36.7) 13 (35.1)

Age (y), mean ± SD 60.7 ± 11.9 61.2 ± 10.3 0.786

Sex, n (%) Female 54 (36) 11 (29.7) 0.474

Male 96 (64) 26 (70.3)

Tumor location, n (%) Fundus 18 (12) 5 (13.5) 0.080

Body 36 (24) 14 (37.8)

Antrum 96 (64) 18 (48.7)

Tumor morphology, n (%) flat 123 (82) 31 (83.8) 0.799

Ulceration 27 (18) 6 (16.2)

Pattern of enhancement, n (%) homogeneous 89 (59.3) 19 (51.4) 0.380

heterogeneous 61 (40.7) 18 (48.6)

Data in parenthesis are percentages. Patients' age between the two sets were analyzed with t test. The other
variables between the two sets were analyzed with Chi-square test.

SD, standard deviation

Table 2 Selected stable features
on each phase and comparison of
radiomics scores in patients with
intestinal- and diffuse-/mixed-
type lesions

Parameters AP PP DP

No. of selected stable radiomics features 141 134 145

Shape and size features 7 5 6

First-order statistics 13 14 13

Texture-based features 43 44 37

Wavelet features 78 71 89

Radiomics scores in training set

Intestinal type 0.539 ± 0.154 0.524 ± 0.149 0.547 ± 0.162

Diffuse or mixed type 0.398 ± 0.139 0.326 ± 0.160 0.361 ± 0.190

ρ value < 0.001 0.001 < 0.001

Radiomics scores in test set

Intestinal type 0.528 ± 0.146 0.43 ± 0.161 0.627 ± 0.114

Diffuse or mixed type 0.412 ± 0.118 0.286 ± 0.120 0.348 ± 0.192

ρ value 0.012 0.003 < 0.001

Features with ICC > 0.8 were indicated as stable

AP, arterial phase; PP, portal phase; DP, delay phase
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[26]. Each classification and regression tree (CART) was
established by randomly drawing bootstrap samples and fea-
tures. Final prediction would be made with the bagging

method by voting or averaging. Gini impurity was used for
splitting the branches. Parameters such as the number of trees
in the forest and the minimum sample limitation for leaf node

Fig. 2 Mean values with error bars for AP-, PP-, and DP-based radiomics
scores in patients with intestinal-type and non-intestinal-type lesions.
Group A: patients with intestinal-type lesions. Group B: patients with

diffuse- or mixed-type lesions. The centers represent the mean values,
and the bars denote SD. ***p < 0.001; **p < 0.01; *p < 0.05

Fig. 3 ROC curves of multiphase radiomics models and nomogram in the training and test sets
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were optimized through a 5-fold cross-validation [23]. The RF
model was only trained in the training set. The best model was
selected and used to predict the radiomics score in the test set.
The calculated (in training set) or predicted (test set) radiomics
score of each patient was recorded. Radiomics score is defined
as the prediction probability of an input sample which was
computed as the mean predicted class probabilities of the trees
in the forest. The class probability of a single tree is the frac-
tion of samples of the same class in a leaf [26]. The RF algo-
rithm was applied to features extracted from AP, PP, and DP
images to construct the classifier models, respectively.

Statistical analysis

The continuous variables were tested for normality by using
the Kolmogorov–Smirnov test. Differences between normally
distributed variables were compared with t test. Differences
between qualitative variables were compared with Chi-square
test. Inter-operator variability of the radiomics features was
assessed with ICC. All available clinical variables including
age, sex, location of tumor, tumor morphology, and pattern of
enhancement as well as multiphase radiomics scores in the
training set were evaluated with univariate and multivariate
logistic regression analyses. In multivariate analysis, likeli-
hood ratio test based on the maximum partial likelihood esti-
mates was utilized to select the independent predictors. A
quantitative nomogram was built incorporating the selected
independent predictors to facilitate clinical use for prediction
of intestinal type lesions. The performance of the radiomics
model or nomogram in both sets was tested with receiver
operator characteristics (ROC) curves based on the radiomics
score or individual nomogram score, respectively. The area
under curve (AUC) and 95% confidence interval (CI) were
calculated [19]. The ROCs of the radiomics model between
the two sets were compared with the DeLong test to evaluate
whether overfitting occurred. The calibration of the

nomogram in both sets was assessed using calibration curves
and Hosmer-Lemeshow test. Decision curve analysis (DCA)
was conducted to evaluate the clinical usefulness of the no-
mogram by calculating the net benefits at different threshold
probabilities. Put simply, net benefit equals the net true posi-
tives divided by the sample size [27]. Statistical analysis was
analyzed with SPSS software (Version 19) and R software
package (version 3.5.2: http://www.Rproject.org).

Results

Clinical characteristics

Intestinal-type, mixed-type, and diffuse-type adenocarci-
nomas were identified in 80, 39, and 68 patients, respectively.
Table 1 summarized the clinical characteristics in training and
test sets. No significant differences were found between the
training and test sets regarding any clinical characteristics in-
cluding the distribution of Lauren type, age, sex, tumor loca-
tion, tumor morphology, or pattern of enhancement.
Additionally, HER2 status by immunohistochemistry (IHC)
was available for 143 out of the 187 patients. IHC3+, 2+, 1+,
and 0 were found in 15, 19, 58, and 51 patients, respectively.
None of the 19 patients with IHC 2+ received further fluores-
cence in situ hybridization test. About 86.7% (13/15) cases with
positive (IHC3+) and 52.6% (10/19) cases with border-
line (IHC 2+) HER2 showed intestinal-type lesions.

Construction and performance of radiomics model

There were 141, 134, and 145 reliable features selected from
AP, PP, and DP images, respectively. Details of the selected
stable features on each phase and comparison of radiomics
scores in patients with intestinal- and diffuse-/mixed-type le-
sions are summarized in Table 2. Significant differences were

Table 3 Univariate and multivariate regression analysis of clinical characteristics and multiphase radiomics scores in training set

Characteristics Univariate analysis Multivariate analysis

Odds ratio 95% CI p value Odds ratio 95% CI p value

Age 0.988 (0.961, 1.016) 0.389 - - -

Sex 1.695 (0.852, 3.369) 0.129 - - -

Tumor location 0.622 (0.226, 1.714) 0.313 - - -

Tumor morphology 1.825 (0.788, 4.228) 0.158 - - -

Pattern of enhancement 0.851 (0.440, 1.645) 0.630 - - -

AP-Radiomics scores 519.9 (43.4, 6226.3) < 0.001 777.9 (22.6, 26760.9) < 0.001

PP-Radiomics scores 2642.0 (172.6, 40461.2) < 0.001 8598.2 (257.5, 287050.0) < 0.001

DP-Radiomics scores 238.4 (30.2, 1893.2) < 0.001 1510.8 (68.2, 33444.5) < 0.001

Features with ICC > 0.8 were indicated as stable

AP, arterial phase, PP, portal phase, DP, delay phase

Eur Radiol (2020) 30:2934–2944 2939

http://www.rproject.org


identified in radiomics scores from each phase between pa-
tients with intestinal-type and diffuse-/mixed-type lesions in
both sets (Fig. 2). The radiomics models showed favorable
capability in the distinction of intestinal-type gastric adenocar-
cinoma (Fig. 3). The AUCs of the AP, PP, and DP radiomics
models were 0.754 (95% CI: 0.676, 0.820), 0.815 (95% CI:
0.744, 0.874), and 0.764 (95% CI: 0.688, 0.829) in the train-
ing set, respectively, which were confirmed in the test set with
AUCs of 0.742 (95% CI: 0.572, 0.872), 0.775 (95% CI:
0.608, 0.895), and 0.857 (95% CI: 0.703, 0.950), respectively.
No significant differences in ROCs between the two sets were

found in any model (DeLong test: AP, p = 0.9098; PP,
p = 0.6752; DP, p = 0.1988).

Development and clinical usefulness of radiomics
nomogram

None of clinical variables showed significant p values in
either univariate or multivariate analysis. All multiphase
radiomics scores showed p < 0.001 in both the univariate
and multivariate analyses. Details of the univariate and
multivariate analyses were presented in Table 3. A

Fig. 4 a Nomogram based on the multiphase radiomics scores for the
distinction of intestinal-type lesions in patients with gastric
adenocarcinoma. b, c Calibration curves of the nomogram in the
training set (b) and test set (c). The 45° solid line represents the perfect

prediction. The dotted red line represents the predictive performance of
the nomogram. The dotted line has a close fit with the solid line, which
suggests good predictive capability of the nomogram

Eur Radiol (2020) 30:2934–29442940



nomogram was built incorporating multiphase radiomics
scores based on the multivariate logistic regression anal-
ysis (Fig. 4 a). The Hosmer-Lemeshow test exhibited non-
significant p values of 0.732 in the training set and 0.516
in the test set suggesting that the nomogram was accept-
able. The calibration curves in the training and test sets
were presented in Fig. 4 b and c. The nomogram exhibited
excellent performance in distinguishing intestinal-type ad-
enocarcinoma, with AUCs of 0.928 (95% CI: 0.875,
0.964) in the training set and 0.904 (95% CI: 0.761,

0.976) in the test set (Fig. 3). Examples of using the no-
mogram for individual prediction of the probability of
them being intestinal-type tumor are displayed in Fig. 5.
Furthermore, DCA showed that when the predicted prob-
ability of being intestinal-type lesion was over 15%, the
nomogram would offer more net benefits than either the
default all-NAC (all patients were intestinal types) or
none-NAC (no patients were intestinal types) scheme in
the training cohort. DCA in the test set rendered similar
results (Fig. 6).

Fig. 5 Examples of using the nomogram for individual prediction of the
probability of intestinal-type adenocarcinoma by simply drawing several
lines: First, draw vertical lines for every variable of the patients
(Radiomics score-AP, green lines; Radiomics score-PP, yellow lines;
Radiomics score-DP, blue lines). Then, sum up the values intersected
by the lines on the “Points” scale to obtain total points. Lastly, draw a
vertical line (the red lines on b, e, and h) on the “Total points” scale to
read the “Probability” of being intestinal-type carcinoma. (a–c) CT image
(a) and nomogram (b) and microscopic pathological images (c, HE
staining, × 10) of a 66-year-old male. A thickened lesion (a, white
arrow) was observed in the less curvature of the stomach. The AP, PP,
and DP radiomics scores were 0.61, 0.69, and 0.47 respectively. Vertical
lines of each variable were drawn. The values on the “Points” scale
intersected by the lines were added to get “Total points” (37 + 76 +
33 = 146). The nomogram revealed that the probability of intestinal-
type tumor was 95% by drawing a vertical line on the “Total points”
scale (b). Microscopic pathological image of the surgical specimen (c)
proved the intestinal type. (d–f) CT image (d), and nomogram (e) and

microscopic pathological images (f, HE staining, × 4) of a 61-year-old
male. The tumor (d, white arrow) in the less curvature of the stomach was
identified. The multiphase radiomics scores were 0.40 (AP), 0.37 (PP),
and 0.28 (DP), respectively. “Total points” (20 + 41 + 16 = 77) were
obtained by calculating the sum of the values on “Points” scale
intersected by the lines of each variable. The nomogram displayed that
the possibility of intestinal type was 7% (e). Postoperative microscopic
pathology (f) found that the tumor was mixed-type adenocarcinoma. (g–i)
CT image (g) and nomogram (h) and microscopic pathological image (i,
HE staining, × 4) of a 58-year-old female with gastric cancer. A lesion in
the greater curvature was detected (g, white arrow). The AP, PP, and DP
radiomics scores were 0.29, 0.30, and 0.28, respectively. “Total points”
(12 + 33 + 16 = 61) were calculated by adding the values on “Points”
scale intersected by the lines. The nomogram showed that the
probability of intestinal type was only 3% by drawing a vertical line on
the “Total Points” scale (h). Microscopic pathological image (i) by
surgical specimen revealed that the tumor was diffuse type
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Discussion

Distinction of intestinal-type gastric adenocarcinoma carries
great clinical significance. This study investigated the value of
CT radiomics in the discrimination of intestinal-type gastric
adenocarcinomas for the first time. The key finding was that
CT-based radiomics may offer potential value for the distinc-
tion of intestinal-type gastric adenocarcinomas. Furthermore,
the nomogram based on the multiphase radiomics scores ex-
hibited excellent performance for individualized prediction of
intestinal-type lesions.

Tumors with disparate Lauren type have distinguished mo-
lecular characteristics. Previous studies suggested that HER2
positivity rate is higher in the intestinal-type adenocarcinoma
[28]. This study showed similar results with 86.7% HER2-
positive patients showing intestinal-type lesions. What’s
more, prognosis of NAC therapy varies significantly between
patients with different Lauren types; better patient outcomes
were found only in patients with intestinal-type adenocarci-
nomas [7, 8]. In these circumstances, accurate distinguishing
of the intestinal-type lesions may benefit patients by promot-
ing the prognostic system and optimizing management strat-
egy. Preoperative evaluation of the Lauren classification con-
ventionally relies on invasive gastroscope biopsy in routine
practice, while the role of biopsy may be restricted when the
specimens are taken from partially heterogeneous tumors. The
documented accuracy of biopsy was unsatisfactory in the ear-
lier studies, especially in distinguishing intestinal-type lesions.
Approximately 21–27% biopsy-suggested intestinal-type car-
cinomas were proved to be mixed or diffuse types [29, 30].

Although researches evaluating the capability of biopsy for
diagnosis of Lauren type were rare lately, the accuracy would
definitely be much higher with the booming of technology. Be
that as it may, any imaging-guided wise thought is always
beneficial and valuable in planning disease management [9].
Prior studies have evaluated the association between CT or
MRI parameters and Lauren classification. In the work con-
ducted by Liu et al [31], several CT texture features including
all percentiles and modes derived from PP CT images (r =
0.228–0.321) as well as standard deviation and entropy de-
rived from AP CT images (r = − 0.222) were found to be cor-
related with Lauren classification. Another study carried out
by Liu S et al [32] found that mean (r = − 0.493) andminimum
(r = − 0.481) apparent diffusion coefficients were correlated
with Lauren classification. Ma et al [33] reported that extra-
cellular extravascular volume fraction—one of the dynamic
contrast MRI parameters—was significantly differed between
intestinal- and diffuse-type lesions. This study investigated the
value of CT radiomics for distinction of intestinal-type lesions.
The single-phase CT radiomics models in this study showed
favorable capability for distinction of intestinal-type from
diffuse- or mixed-type gastric adenocarcinomas, with AUC
values ranging from 0.754 to 0.815 in the training set and from
0.742 to 0.857 in the test set. The results substantiate that the
radiomics approach may add potential value in enhancing
image interpretations and facilitating preoperative distinction
of intestinal-type adenocarcinomas.

Another pearl of this study was the construction of the
easy-to-use nomogram based on the multiphase radiomics
scores for clinical individual prediction of the probability of

Fig. 6 DCA for the nomogram in training (a) and test (b) sets. The net
benefits versus the threshold probability are plotted. The x-axis represents
the predicted threshold probability. The y-axis represents the net benefit.
The gray line represents the assumption that no patients have intestinal-
type lesions and without NAC therapy. The red curve represents the
assumption that all patients were intestinal-type lesions and receive

NAC strategy. The blue curve represents the nomogram. A model is
only clinically useful if it has higher net benefits than the default “all-
NAC” or “none-NAC” scheme. It is obvious from the diagram that the
nomogram can offer more net benefits than the default schemes across the
majority of the range of threshold probabilities in both sets
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intestinal-type lesions. Nomogram is a graphical calculating
device which enables approximate computation by simply
drawing several lines. The radiomics-based nomogram in the
current study yielded excellent performance with AUCs of
0.928 and 0.904 in the training and test sets for distinction
of intestinal-type lesions, respectively. Although NAC was
widely recommended for locally advanced gastric cancer, bet-
ter overall survival and progression-free survival were limited
to cases with intestinal-type lesions after NAC therapy [7, 8].
A major problem for those who do not benefit from the NAC
therapy may be the delay of the alteration of management
strategy. The nomogram holds the potential to assist in opti-
mizing the selection of appropriate candidates for NAC. DCA
revealed that the current nomogram could offer net benefits
over the “all-NAC” or “none-NAC” strategy across the ma-
jority of the range of threshold probabilities in both the train-
ing and test sets.

The study had several limitations. First, this was a single-
center analysis; external validation in a larger cohort is neces-
sary to confirm the performance of the radiomics nomogram.
Second, the results of Lauren classifications by gastroscopic
biopsy were not available for all patients due to the retrospec-
tive design of the study. Comparison of the discrepancy be-
tween the biopsy and definitive result was absent. The perfor-
mance of the radiomics model and biopsy was not compared
either. Third, the study mainly focused on the distinction of
intestinal-type lesions from other types, and differentiation be-
tween mixed and diffuse types was not performed. Finally, the
radiomics features in the current study were extracted from
entire tumors; exploration of radiomics models based on more
time-efficient region-based features merits further study.

In a nutshell, the study showed that the CT radiomics no-
mogram offers great potential in the preoperative individual-
ized distinction of intestinal-type gastric adenocarcinomas.
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