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Abstract
Objectives Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological
invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to
a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.
Methods We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs.
All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or
invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were
computed.We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features
were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built
combining the baseline model with CDF features. Three classifiers were tested for both models.
Results The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419
(training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in
AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support
vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was
achieved by the logistic classifier (validation AUC = 0.9825).
Conclusion Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS
and MIA on preoperative CT scans.
Key Points
• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in
lung adenocarcinoma.
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Abbreviations
AIS Adenocarcinoma in situ
AUC Area under the curve
CDF Cumulative distribution function
CT Computed tomography
DFS Disease-free survival
GGNs Ground-glass nodules
GLCM Gray-level co-occurrence matrix
HU Hounsfield unit
IA Invasive adenocarcinoma
ISZM Intensity size zone matrix
LASSO Least absolute shrinkage and selection operator
MIA Minimally invasive adenocarcinoma
MSE Mean squared error
RF Random forest
ROC Receiver operator characteristic
ROI Region of interest
SVM Support vector machine
VNC Virtual non-contrast-enhanced

Introduction

With respect to the degree of invasion, lung adenocarcinomas
are pathologically classified as adenocarcinoma in situ (AIS),
minimally invasive adenocarcinoma (MIA), or invasive ade-
nocarcinoma (IA) according to the 2011 Multidisciplinary
Classification of Lung Adenocarcinomas [1]. AIS and MIA
are associated with 5-year disease-free survival (DFS) rates of
nearly 100% after complete resection [2], compared with a
rate of 74.6% in patients with stage 1 IA [3]. Furthermore,
this survival rate decreases with the increasing invasive tumor
component. Some surgeons have suggested that AIS andMIA
are treatable by sublobar resection [4, 5] instead of lobectomy,
which is the current gold standard for resection of early-stage
lung cancers [6]. Therefore, it is important to distinguish IA
from AIS and MIA in a timely manner because treatment
options may vary according to preoperative radiologic
diagnosis.

Many radiologists have attempted to differentiate AIS,
MIA, and IA. In recent decades, qualitative measurements of
size, shape, and border definition have been used to distin-
guish ground-glass nodules (GGNs) [7]. However, these qual-
itative measures are usually binarized (i.e., spiculated or non-
spiculated), and there are concerns regarding inter- or intra-
observer agreement.Moreover, despite differences in the path-
ologic invasive component, AIS, MIA, and lepidic-
predominant IA are all usually observed as GGNs with or
without a small solid portion. There is considerable overlap
across the spectrum of lung adenocarcinomas, which makes
radiologic interpretation challenging for stratifying GGNs [8].

Radiomics analysis can provide high-dimensional quanti-
fication of the tumor and has the potential to overcome

ambiguities related to visual assessment of GGNs [9]. A large
number of quantitative imaging features that reflect morpho-
logic, intensity, and textural properties can be extracted from
medical imaging based on computational algorithms. New
features have been actively developed to better quantify tumor
characteristics in radiomics [10–13]. State-of-the-art
radiomics analysis has been extended to cover peritumoral
or tumor marginal properties to capture the microenvironment
and invasion factors in a given tumor [14, 15]. The present
study focused on marginal information based on the results of
prior studies emphasizing the importance of semantic margin-
al features in lung adenocarcinoma [7]. We proposed
reformulated tumor margin features based on the probability
theory to enhance the radiomics approach.

This study evaluated the performance of tumor margin fea-
tures to predict the degree of pathologic invasiveness in pre-
operative computed tomography (CT) scans. We built a base-
line radiomics model and another model that combined addi-
tional marginal features with the baseline model. The classifi-
cation performance of the two models was compared using
multicenter data.

Materials and methods

Patients

Institutional review board approval (#SMC 2017-09-045) was
obtained for this retrospective study, with the need for in-
formed consent waived. Patients who underwent complete
resection of GGNs between 2003 and 2013 were identified
from a lung cancer surgical registry database of the
Department of Thoracic Surgery at Samsung Medical Center
(Seoul, Korea). Patients underwent surgery if the GGN was
larger than 8 mm, persistent, and there was evidence of ma-
lignancy such as nodule growth or increasing solid portion
according to the Fleischner Society Guidelines for GGNs
[16]. We also considered patient preference for aggressive
surgery over conservative observation. Among the patients,
we excluded those with GGNs having solid components
≥ 5 mm in diameter because a solid component is usually
considered IA. Overall, 189 patients with pure GGNs or
part-solid nodules with limited solid components (< 5 mm)
on preoperative CT scans were included as the training group
in this study [17]. Our sample size of the cohort was deter-
mined based on the formula described by Fleiss et al [18] for
unequal sample size analysis. The estimated total number of
patients determined by the use of the chi-squared test for mul-
tiple proportions was 174 by using a power of 0.90, alpha of
0.05, and the above proportional settings. The study period
was determined to have a sufficient number of samples.
Consecutive patients from a lung cancer surgical registry da-
tabase of the Department of Thoracic Surgery at our institute
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were recruited. External validation of our study results was
performed using an independent dataset of 47 patients from
a different institution, Pusan National University Hospital
(Pusan, Korea). Institutional review board approval (#E-
2015084) was obtained and informed consent was waived.
As in the training group, patients with pure GGNs or part-
solid nodules with a limited solid component (< 5 mm) were
included in the validation group. All GGNs were confirmed as
AIS, MIA, or IA. All patients underwent staging and surgery
according to the 7th edition of TNM for lung cancer staging
published by the IASLC [19].

CT imaging

All chest CT scans were performed before surgery. For all pa-
tients in the training group, CT images were obtained with the
following parameters: detector collimation, 1.25 or 0.625 mm;
120 kVp; 150–200 mA; and reconstruction interval 1–2.5 mm.
All patients in the validation group underwent a CT examina-
tion using a multidetector CTsystem with similar parameters as
the training group: 120 kVp; 150–200 mA; and section thick-
ness range of 0.625–2.5 mm for axial images. The CT imaging
parameters of both groups are shown in Supplementary Table 1.
Image data were reconstructed with a soft-tissue algorithm for
mediastinal window ranges and a bone algorithm for lung win-
dow images. Because the CT model has changed over the 11-
year research period, we excluded low-quality CT images. All
CT images used in this study were obtained from relatively
high-quality 16-channel multidetector CT scanners.

Region of interest specification

All CT images in both the training and validation groups were
displayed at standard mediastinal (window width, 400
Hounsfield units [HU]; window level, 20 HU) and lung (win-
dow width, 1500 HU; window level, − 700 HU) window
settings. On serial axial CT images displayed at a lung win-
dow setting, the region of interest (ROI) of the whole tumor
was segmented by two chest radiologists using a semi-
automated process [20]. ROIs were drawn on transverse CT
scans at reconstruction intervals of 1–2.5 mm from the top to
the bottom of the tumor, thus covering the whole tumor. The
whole tumor margin including the ground-glass component
was defined as the ROI.

Radiomics features

Radiomics features were computed using the largest represen-
tative ROI slice specified in the previous section. Feature
computation was performed using the open source software
PyRadiomics [21]. A total of 40 features were computed.
Tumor area, mass, density, 19 histogram-based features, 16
gray-level co-occurrence matrix (GLCM)–based features,

and two intensity size zone matrix (ISZM)–based features
were calculated for each ROI [22–27]. The histogram-based
features quantify the properties of the intratumoral intensity
distributions. The histogram-based features were computed
from 128-bin histograms calculated over the intratumoral in-
tensity range. The GLCM features quantify textural informa-
tion and reflect intratumoral heterogeneity using a 2D histo-
gram with 128 bins. A total of eight matrices corresponding to
eight two-dimensional (2D) directions with an offset of one
were computed and then averaged to yield a single matrix.
The averaged matrix was used to compute the GLCM fea-
tures. The ISZM features also quantify texture using blobs
of similar intensity and differing size. We constructed a 128
× 256matrix in which the first dimension was binned intensity
and the second dimension was the size of the blobs. The size
was not quantized and if a blob was larger than 256 voxels, it
was considered to have a size of 256 voxels. We considered
four neighbors to define the size of the blob. More details can
be found in Supplementary Table 2.

Tumor margin features using the cumulative
distribution function

Conventionally, the threshold applied to CT intensity has been
used to assess the definement of tumor margins. A tumor
region might be defined as a set of voxels with intensities
above the threshold. Awell-defined tumor is likely to exhibit
abrupt changes in intensity at the margin. If we apply various
threshold levels from low to high, we are likely to see abrupt
changes in the tumor region around the specific threshold
level. An ill-defined tumor is likely to have irregular changes
in intensity in the margin; thus, we are likely to see gradual
changes in the tumor region around various threshold levels.
We modeled such changes in tumor region with respect to
various thresholds using the cumulative distribution function
(CDF) in the probability theory, denoted as F(x), where x was
the threshold level. The CDF was built from the intensity
histogram and F(x) denotes the portion of voxels below a
threshold x. The CDF function is a non-decreasing function
starting from zero and ranging to one. For a well-defined
tumor, we are likely to observe the CDF curve staying rela-
tively flat and then suddenly increasing as with increasing
threshold. The variation in CDF slope would be large. For
an ill-defined tumor, we are likely to observe the CDF curve
increasing slowly with respect to an increasing threshold. The
variation in CDF slope would be small. Figure 1 shows the
CDF plots for well-defined and ill-defined tumors. Our model
was two-dimensional (2D).We computed the CDF curve from
the intensity histogram of a representative slice. The slope of
the CDF was measured from the full range (minimum to max-
imum) of intensities within the ROI and we computed the
mean, standard deviation (SD), skewness, and kurtosis of
the CDF slope as the tumor margin features.
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Reproducibility of ROIs and features

Two chest radiologists drew ROIs for all tumors. Cohen’s
kappa was used to measure ROI repeatability and the repro-
ducibility of imaging features was measured using intra-class
correlation coefficients (ICCs).

Building a baseline model for predicting invasiveness

We performed feature selection from 40 radiomics features
computed from the training cohort using a regression method
combined with L1-norm regularization (i.e., least absolute
shrinkage and selection operator [LASSO]) [28]. The

Fig. 1 Marginal features of the cumulative distribution function (CDF)
for representative well- and ill-defined tumors. The first and last two rows
illustrate ill- and well-defined tumors, respectively. Ill-defined tumor: a
Histolopathologic image of a 50-year-old female patient with an ill-
defined GGN in the lingular division of the left upper lobe.
Pathological diagnosis was confirmed as well-differentiated, lepidic-pre-
dominant, minimally invasive adenocarcinoma (MIA) with an invasive
component of less than 2 mm. b A corresponding computed tomography
(CT) image with the region of interest (ROI) overlaid in green. c The CDF
plot in which the x-axis is in Hounsfield units (HU). Intratumor intensity
range was divided into four intervals and the CDF plot has four vertical
red lines that correspond to the 5/100, 35/100, 65/100, and 95/100 points
of the intratumoral intensity range. d–g Correspond to applying the each

point of the range (= − 591, − 516, − 441, and – 366 HU) as the threshold,
with gradually changing 66, 54, 32, and 1 voxels left after the threshold.
Well-defined tumor: h Histolopathologic image of a 73-year-old female
patient with a well-defined GGN in the right upper lobe. Pathological
diagnosis was confirmed as moderately differentiated, papillary and aci-
nar pattern, invasive adenocarcinoma. iA corresponding CDF image with
the ROI overlaid in green. j The CDF plot with the x-axis in HU. The
CDF plot shows four vertical red lines that correspond to the 5/100, 35/
100, 65/100, and 95/100 points of the intratumoral intensity range. k–n
Correspond to applying each point of the range (= − 599, − 395, − 190,
and 14 HU) as the threshold, with 232, 223, 200, and 35 voxels left after
the threshold. With increasing threshold, the remaining voxels change
abruptly after specific point (between – 190 HU and 14 HU in this case)
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features’ values were z-score-normalized and the response
variable was set as to whether the tumor was IA or not (i.e.,
binary). For the optimization process, the lambda penalty was
determined by applying a grid search, and the beta coefficient
for each feature was decided using the gradient descent algo-
rithm. For each lambda candidate, the mean squared error
(MSE) was evaluated by tenfold cross-validation. We chose
the lambda with the minimum MSE. The classification
models included a logistic classifier, support vector machine
(SVM), and random forest (RF). The inputs to the classifiers
were the features selected by the LASSO. The logistic classi-
fier was trained using multivariate logistic regression and the
tumor class was decided by applying a threshold (0.5) to the
logistic regression score. The SVMwas trained with a second-
order polynomial kernel. The RF was trained using tree-
bagging with a 0.7 ratio of input data and 200 decision trees.
For performance measurement, IAwas defined as the positive
class in the confusion matrix, and the accuracy, sensitivity,
specificity, area under the curve (AUC) of the receiver opera-
tor characteristic (ROC) curve, adjusted R-squared value, and
p value were evaluated.

Improving the baseline model by adding marginal
features

To test whether the CDF-based marginal features could im-
prove the baseline model, we added these features to those of
the baseline model. The baseline model is referred to as model
1, while the improved model is referred to as model 2. The
same training and performance evaluation procedures were
used for both model 1 and model 2.

Applying the two models to the validation cohort

We applied the two models from the training data to an inde-
pendent validation cohort. The same features from the training
data were selected but the feature values were replaced with
those computed from the validation cohort. The features
values from the validation cohort were z-score-normalized
using the mean and standard deviation values from the train-
ing data. The performance of the two models was evaluated
with the same procedures described in the training data.

Statistical analysis

We used two-sample t tests to compare continuous-valued
demographic information between training and validation co-
horts. Chi-square tests were used to compare categorical var-
iables between training and validation cohorts. To evaluate the
statistical fitness of two proposed models, we adopted the F-
test between the ground truth label and the diagnostic score for
classification (e.g., logistic score of the logistic classifier). All

statistical evaluations were performed with Statistics and
Machine Learning Toolbox in MATLAB (The MathWorks).

Results

Table 1 shows the demographic difference between the train-
ing and validation groups. Considering T staging, all patients
in the training group were T1 status, whereas patients in the
validation group were mostly T1 status (37 patients, 78.7%),
with some T2 status (9 patients, 19.1%) or T3 status (1 patient,
2.1%). For N staging, only one patient in the training group
(0.54%) was N1; all others were negative (N0) for lymph node
status.

Feature selection identified five significant radiomics fea-
tures. Table 2 shows the selected features and their corre-
sponding beta coefficients, while Fig. 2 shows the MSE of
the LASSO procedure. Three features (density, mass, and size
zone variability) were also reported to be positively correlated
with the extent of invasion on pathology in our previous study
[29]. The classifier performance of the training and validation
cohorts is shown in Table 3. Classification performance was
improved by adding CDF features compared with the baseline
model for all three classifiers in terms of AUC in the training
cohort. The RF classifier yielded an AUC of 1 for both
models, which could be due to overfitting. The same improve-
ment in model 2 was observed in terms of AUC in the valida-
tion cohort. The highest performance improvement in the val-
idation cohort was observed when we used the SVM classifier
(i.e., AUC increase of 0.0790). The logistic classifier yielded
the best performance (AUC 0.9825) in the validation cohort.
On average, the AUC of the validation cohort was larger than
that of the training cohort. This is partly due to the fact that the
validation cohort had many extreme IA and AIS/MIA cases.

Regarding the reproducibility of ROIs and features, ROI
repeatability in terms of Cohen’s kappa was a mean (SD) of
0.8916 (0.0416), while the ICC of all features was a mean
(SD) of 0.9311 (0.0760). The ICC of the nine features (i.e.,
five radiomics features and four CDF features) used in final
modeling was a mean 0.9160 with SD 0.0617. (More details
can be found in Supplementary Table 3.)

Discussion

Although lobectomy remains the standard treatment for lung
cancers, there has been increasing evidence supporting limited
surgery for lesions such as AIS andMIA. Nakayama et al [30]
studied sublobar resections for 63 cT1N0M0 adenocarci-
nomas ≤ 2 cm in size. Overall survival was 95% for GGN
and 69% for solid lesions, while recurrence-free survival
was 100% in the former versus 57% in the latter. Another
study by Fang et al [31], including 173 segmentectomy

Eur Radiol (2020) 30:2984–29942988



patients and 181 patients with wedge resection from three
institutions, also showed similar results of GGN as an inde-
pendent prognostic factor with no impact on survival accord-
ing to the extent of resection. In other words, stratification of
patients for limited surgery is a very important issue.
However, there are substantial visual overlaps of imaging
across the spectrum of lung adenocarcinomas, which makes
it challenging to distinguish among GGNs. Therefore, this
study proposed novel CDF-based marginal features based on
the probability theory that reflected the degree of pathological
invasion. The addition of marginal features enhanced the
baseline radiomics approach and enabled differentiation of
IA from AIS and MIA.

The baseline model included five features, many of which
were previously reported to be correlated with degree of inva-
sion [29]. The baseline model was improved by adding our
CDF features. All three classifiers showed significant perfor-
mance improvement in terms of AUC and accuracy. In the
validation cohort, the SVM classifier showed the best perfor-
mance improvement of 0.0790 (AUC). The best performance
(AUC = 0.9825) was achieved by the logistic classifier.

Focusing on the tumor periphery, tumor cells, various stro-
mal cells, extracellular matrix, and an extensive vascular net-
work surrounding the tumor cells all make up the tumor mi-
croenvironment [32, 33]. This microenvironment is a dynam-
ic area with continuous interactions between tumor cells and
surrounding environment that plays a critical role in tumor
metastasis and prognosis [32, 34]. Therefore, an understand-
ing of the tumor microenvironment at the tumor periphery and
its correlation with radiologic and pathologic features is essen-
tial. Although its underlying biology remains unclear, we in-
vestigated the influence of the tumor microenvironment by
applying radiomics analysis and correlating the findings with
pathologic invasiveness. The tumor microenvironment is

Table 1 Demographic information of training and validation cohorts

Characteristics (%) Training (n = 186) Validation (n = 47) p value

Sex 0.665

Male 85 (45.70%) 20 (42.55%)

Female 101 (54.30%) 27 (57.45%)

Age (years) 57.17 (9.50, 34–84)* 63.23 (8.84, 41–82)* < 0.001

Tumor size (cm) < 0.001

≤ 1 31 (16.67%) 5 (10.64%)

1 < ≤ 2 108 (58.06%) 22 (46.81%)

2 < ≤ 3 41 (22.04%) 13 (27.66%)

> 3 6 (3.23%) 7 (14.89%)

Histopathology < 0.001

AIS 37 (19.89%) 3 (6.38%)

MIA 61 (32.80%) 6 (12.77%)

IA 88 (47.31%) 38 (80.85%)

AIS adenocarcinoma in situ; MIA minimally invasive adenocarcinoma; IA invasive adenocarcinoma

*Data in parentheses indicate standard deviation and range

Fig. 2 MSE of the LASSO procedure. The green line indicates the
minimum MSE point. Five significant features are selected at the
minimum MSE point (Table 2)

Table 2 Selected features and beta coefficients of the baseline model

Selected feature LASSO coefficient

Range 0.0611

GLCM entropy − 0.0095

ISZM size zone variability 0.0305

Density 0.0177

Mass 0.0750

LASSO least absolute shrinkage and selection operator;GLCM gray-level
co-occurrence matrix; ISZM intensity size zone matrix
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partly manifested in tumor margin information in terms of
imaging. An ill-defined tumor is likely to have irregular
changes in tumor margin as various threshold levels are tested.
Our CDF-based feature is a useful approach for modeling
such changes in the margin with respect to different threshold
levels. Several features were computed from the CDF model,
and we showed that these additional marginal features im-
proved the baseline radiomics model for predicting the degree
of pathological invasiveness.

Five radiomics features were selected in the baseline mod-
el. Our previous study identified the density, mass, and size
zone variability of virtual non-contrast-enhanced (VNC) im-
aging as significant features to distinguish the degree of inva-
sion of lung cancers [29]. We found that two additional fea-
tures, the range and entropy of GLCM, were related to the
degree of invasion. GLCM features are traditional texture
measures that reflect spatial heterogeneity. GLCM textures
have been identified as important features related to diagnosis,
survival, and therapy response in many radiomics studies
[35–37]. The entropy of GLCM measures the irregularity of
intensity texture patterns. Regarding the histopathology, AIS
and MIA are localized adenocarcinomas that exhibit a homo-
geneous lepidic growth pattern of tumor cells along the alve-
olar structures with an invasive component of less than 5 mm

[38]. In contrast, IAs harbor an invasive component measur-
ing 5 mm or larger and are usually composed of multiple
tumor subtypes of lepidic, acinar, papillary, solid, and
micropapillary patterns. In other words, IAs might consist of
different sub-compartments; thus, range and entropy of
GLCM features could reflect such components of tumor com-
pound [39, 40]. In addition, the high-intensity portion of the
full intensity range is reportedly correlated with pathological
microscopic invasion [41].

Recent radiomics studies have incorporated shape-based
features into tumor characterization [9, 42]. However, many
of them quantify the overall tumoral shape and do not focus
exclusively on tumor margin. Recent studies reported that the
quantification of the peritumoral microenvironment could
lead to better modeling of the tumor [14, 15, 43, 44]. In a
recent article, Beig et al suggested that densely packed
tumor-infiltrating lymphocytes and tumor-associated stromal
macrophages located at the margin of the tumor were associ-
ated with peritumoral radiomics features [45]. Our CDF fea-
ture was developed specifically for tumor margins and might
be analogous to the internal thought process of human experts.
An expert would apply this thought process to various thresh-
old levels to assess tumor margins. Our CDF features were
devised to mimic this process.

Table 3 Classifier performance of the two models

Accuracy Sensitivity Specificity AUC Adjusted R-squared p value

Training

Classifier

Logistic

Model 1 0.6613 0.5909 0.7245 0.7490 0.1757 1.5725E-09

Model 2 0.6828 0.6250 0.7347 0.7507 0.1781 1.1879E-09

SVM

Model 1 0.6935 0.7159 0.6735 0.7767 0.2201 4.8897E-11

Model 2 0.7419 0.7841 0.7041 0.8291 0.3085 8.1370E-16

RF

Model 1 1.0000 1.0000 1.0000 1.0000 0.9326 6.3055E-110

Model 2 1.0000 1.0000 1.0000 1.0000 0.9366 2.2911E-112

Validation

Classifier

Logistic

Model 1 0.8936 0.8947 0.8889 0.9766 0.2806 7.6634E-05

Model 2 0.9149 0.8947 1.0000 0.9825 0.2700 1.0832E-04

SVM

Model 1 0.8085 0.7895 0.8889 0.8450 0.1907 3.5768E-03

Model 2 0.8511 0.8421 0.8889 0.9240 0.3323 5.1925E-05

RF

Model 1 0.8298 0.8158 0.8889 0.9211 0.4264 3.9296E-07

Model 2 0.8723 0.8684 0.8889 0.9678 0.6078 6.4906E-11

AUC area under the curve; SVM support vector machine; RF random forest
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Inspired by the qualitative method to measure the degree of
definement of a tumor margin in a clinical routine, our new
features were designed to reflect the degree of definement in a
quantitative manner. Our new features were mainly focused
on the tumor margin, unlike the conventional radiomics fea-
tures. Thus, the new features might be considered as comple-
mentary features to the existing conventional ones. We sought
to add objective features reflecting the degree of definement.
Our results showed the improved model with the new margin-
al features enhanced the prediction of invasiveness compared
with the baseline model using conventional features that in-
cluded morphological information. The baseline model per-
formed well (AUC of 0.91 from validation) still, the added
features improved the performance (AUC of 0.96 from vali-
dation). The gain in performance was rather incremental

(difference in AUC of 0.05). As implied in previous studies,
we confirmed that the tumor margin contained important in-
formation, as shown with our new features, to explain the
degree of invasion. In sum, the new marginal features might
have a complementary and incremental impact to better pre-
dict the degree of invasion in lung adenocarcinoma.

The classifier performance was higher in the validation
cohort compared with that in the training cohort. The inverted
performance trend is unexpected but has also been shown in
other radiomics studies [46, 47]. This inverted trend might be
partly due to differences in demographic information between
the two cohorts. As shown in Table 1, there was a significant
difference in age, tumor size, and histopathology between the
two groups. The validation cohort contained more cases of
larger tumors (> 3 cm) and IA compared with those in the

Fig. 3 Logistic regression classifier results from two cohorts. The red and
blue dots indicate negative (MIA or AIS) and positive (IA) cases, respec-
tively. a, b The classification results using the baseline model in two
cohorts. a The results of the logistic regression classifier of the training
cohort where blue and red dots overlap and, thus, lead to degraded clas-
sification performance. b From the test cohort, which shows less overlap
between the blue and red dots and, thus, has better classification perfor-
mance. c, d The classification results using the improved model. Similar

trends of more (c, training cohort) and less (d, test cohort) overlap are
observed. There is an improvement from the baseline model (model 1) to
the improvedmodel (model 2), but the improvement is rather small (AUC
0.7490→0.7507 for the training cohort; 0.9766→0.9825 for the test co-
hort). Thus, the degree of overlap between colored dots is more difficult
to observe when we compare regression plots in a column-wise fashion
(i.e., a, c and b, d)
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training cohort. The training cohort included many patholog-
ically borderline cases of AIS and MIA, while the validation
cohort had many pathologically extreme cases, as shown in
Table 1. In other words, the validation group had more defin-
itive cases of invasive adenocarcinoma. This makes classifi-
cation easier, as there were fewer ambiguous samples. This
was also confirmed on the logistic map of the two classes, as
shown in Fig. 3. There was more overlap between the two
classes in the training cohort compared with that in the vali-
dation cohort. Our results in the validation cohort could be
inflated by bias in the validation cohort; thus, further valida-
tion is necessary. Another reason for the difference in the
number of extreme cases may be the variability between the
two institutions.

As the validation cohort was from a smaller hospital, it is
possible that the surgeon from this hospital performed surgery
only for GGNs that clearly showed invasiveness, while the
surgeon from the larger hospital (training group) resected all
GGNs regardless of invasiveness, thus including more AIS
and MIA cases. In the same context, the validation cohort
included tumors of larger size, in other words, more advanced
tumors than were observed in the training cohort. This differ-
ence may reflect real-world medical practice because disease
prevalence varies among different institutions.

Our study has several limitations. First, although ROIs
were defined semi-automatically, intra- and inter-observer
variability was possible. Development of an automatic meth-
od of ROI specification is planned in future research. Second,
our sample size was relatively small; thus, further validation
with a larger population is necessary. Third, our CDF features
were two-dimensional models; a three-dimensional extension
of the CDF features should be explored to determine if this
model could better reflect tumor margins. Fourth, the training
cohort included many pathologically borderline cases of AIS
andMIA, while the validation cohort hadmany pathologically
extreme cases. To minimize subjective variability, we used
digital pathology. All tumor slides were scanned to produce
a high-resolution digital image (0.25 lm/pixel at 40•) using the
Aperio Slide Scanning System (ScanScope T3; Aperio
Technologies Inc.). Two experienced lung pathologists jointly
interpreted all tissue sections by virtual slides using the
ImageScope viewing software (Aperio Technologies, Inc.)
and a high-resolution monitor.

Our baseline radiomics model, which included range,
GLCM entropy, ISZM size zone variability, density, and mass
features, could distinguish IA from MIA and AIS.
Furthermore, these reformulated marginal features improved
the baseline radiomics model. Additional tumor margin fea-
tures that reflect the degree of pathological invasion may con-
tribute to accurate treatment planning.
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