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Abstract
Objective A new computer tool is proposed to distinguish between focal nodular hyperplasia (FNH) and an inflammatory
hepatocellular adenoma (I-HCA) using contrast-enhanced ultrasound (CEUS). The new method was compared with the usual
qualitative analysis.
Methods The proposed tool embeds an “optical flow” algorithm, designed to mimic the human visual perception of object
transport in image series, to quantitatively analyse apparent microbubble transport parameters visible on CEUS. Qualitative
(visual) and quantitative (computer-assisted) CEUS data were compared in a cohort of adult patients with either FNH or I-HCA
based on pathological and radiological results. For quantitative analysis, several computer-assisted classification models were
tested and subjected to cross-validation. The accuracies, area under the receiver-operating characteristic curve (AUROC),
sensitivity and specificity, positive predictive values (PPVs), negative predictive values (NPVs), false predictive rate (FPRs)
and false negative rate (FNRs) were recorded.
Results Forty-six patients with FNH (n = 29) or I-HCA (n = 17) with 47 tumours (one patient with 2 I-HCA) were analysed. The
qualitative diagnostic parameters were accuracy = 93.6%, AUROC = 0.94, sensitivity = 94.4%, specificity = 93.1%, PPV =
89.5%, NPV = 96.4%, FPR = 6.9% and FNR = 5.6%. The quantitative diagnostic parameters were accuracy = 95.9%, AUROC =
0.97, sensitivity = 93.4%, specificity = 97.6%, PPV = 95.3%, NPV = 96.7%, FPR = 2.4% and FNR = 6.6%.
Conclusions Microbubble transport patterns evident on CEUS are valuable diagnostic indicators. Machine-learning algorithms
analysing such data facilitate the diagnosis of FNH and I-HCA tumours.
Key Points
• Distinguishing between focal nodular hyperplasia and an inflammatory hepatocellular adenoma using dynamic contrast-
enhanced ultrasound is sometimes difficult.

• Microbubble transport patterns evident on contrast-enhanced sonography are valuable diagnostic indicators.
• Machine-learning algorithms analysing microbubble transport patterns facilitate the diagnosis of FNH and I-HCA.
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Abbreviations
AUC Area under the curve
CEUS Contrast-enhanced ultrasound
CNIL National Commission on Informatics and Liberty
CT Computed tomography
FNH Focal nodular hyperplasias
GB Gigabit
HCA Hepatocellular adenomas
I-HCA Inflammatory hepatocellular adenoma
KNN k-nearest neighbour
LR Logistic regression
MRI Magnetic resonance imaging
NPV Negative predictive value
PPV Positive predictive value
RAM Random access memory
RF Random forest
ROC Receiver-operating characteristic
SVM Support vector machine
T Tesla
US Ultrasound

Introduction

Benign hepatocellular tumours are rare, constituting 10%
of all hepatic tumours [1]. Two large groups of benign
hepatocellular tumours can be distinguished: reactive re-
generative lesions (focal nodular hyperplasias [FNHs])
and tumoural lesions (hepatocellular adenomas [HCAs]).
Both lesions are most common in young females [1].
Diagnostic imaging is essential to guide treatment deci-
sions, which range from no treatment to surgical resection
or confirmatory biopsy. Traditionally, multiphase comput-
ed tomography (CT) or magnetic resonance imaging (MRI)
has been used for detailed evaluation of hepatic lesions.
However, the high-level radiation associated with multi-
phase CT and the limited accessibility of MRI have ren-
dered dynamic contrast agent-enhanced ultrasound
(CEUS) an attractive, safe, non-invasive, accurate, and
economic tool for evaluating hepatic lesions [2–6].
Although the appearance is not always typical in some
cases, both FNH and HCA demonstrate typical, reproduc-
ible, arterial-phase enhancement patterns on CEUS in most
cases. The diagnostic criteria for FNH are a hyper-
enhancing lesion in the arterial phase with rapid centrifugal
filling from a central vessel, and radial vascular branches
(the “spoke and wheel” sign) [2, 5] and also sustained
enhancement in portal and late phase [7]. HCAs constitute
a heterogeneous group of tumours exhibiting multiple his-
tological subtypes (inflammatory, with FNH1A or catenin
gene mutations, or unclassified) [8]. On CEUS, HCAs are
hyper-enhancing in the arterial phase; the enhancement
pattern commences peripherally and exhibits rapid

centripetal filling; this pattern is characteristic of 86–90%
of all inflammatory HCAs (I-HCAs). Other HCA subtypes
exhibit iso-vascularity or moderate hyper-vascularity, with
mixed filling patterns in the arterial phase [2, 9]. In clinical
practice, it is essential to distinguish FNH from adenoma to
ensure appropriate management. Confirmed FNHs are
managed conservatively (with regular follow-up); HCAs
require cessation of oral contraceptive use, (commonly)
biopsy, and either surgery or (at least) follow-up imaging.
I-HCA show the most important hyper-vascularity, and
10–15% of I-HCA are also found to be β-catenin activated
with a risk for malignant transformation. Distinguishing
between FNH and I-HCA using CEUS is sometimes diffi-
cult because both lesions evidence hyper-enhancement
during the arterial phase and it can be challenging to qual-
itatively differentiate centrifugal from centripetal tumour
filling, particularly for larger nodules. Computer-assisted
methods are thus required for quantitative spatiotemporal
assessment of organ perfusion. Such techniques must be
faster and more reproducible than visual analysis, and must
lack learning curves. Efforts have been made to quantify
enhancement parameters in vascular compartments as in-
dicators of several pathological conditions [10–14]. In par-
ticular, transport equations have been recently derived to
estimate microbubble velocity at the time of bolus contrast
arrival [15]. In practice, an “optical flow” algorithm is
employed to mimic the human visual perception of
microbubble transport in CEUS [16–18]. Here, we use this
approach to quantitatively distinguish between FNH and I-
HCA. We quantify divergence (sources and sinks), curling
(shearing), amplitudes, and convergence towards the cen-
tre of tumour (centrifugal/centripetal nature) in dense
transport fields [16]; these are very simple indicators of
displacement vector directions, orientations, and magni-
tudes. In turn, these serve as inputs to a binary FNH/I-
HCA classifier.

The purpose was to compare, as a preliminary study, the
original concept of computer-assisted method with the usual
qualitative analysis for the diagnosis of two benign hepatocel-
lular tumours (FNH and I-HCA) with hyper-vascularity dur-
ing the arterial phase of the CEUS.

Materials and methods

Study design and population

In this retrospective single-centre study conducted from
July 2005 to July 2018, we identified images from patients
who underwent CEUS and were (otherwise) definitively di-
agnosed with FNH or I-HCA. We included I-HCA patients
who had been histologically diagnosed [6] and FNH patients
diagnosed based on commonly accepted MRI criteria [3],
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Table 1 Demographic characteristics.Median values of age and tumour
size are shown with standard deviations and minimum–maximum inter-
vals in parentheses. Statistical comparison of age and tumour size

between FNH and I-HCA groups was performed using an unpaired
Mann–Whitney U test (last column), a p value < 0.025 was considered
to reflect statistical significance

Characteristic FNH I-HCA Total Statistical significance (p value)

Age 44 ± 11 (21–61) 40.5 ± 11 (21–66) 42 ± 11 (21–66) No (0.16)

Gender (F/M) 23/6 16/1 39/7 –

Tumour size 29 ± 16 (13–100) 60.5 ± 29 (34–126) 36 ± 28 (13–126) Yes (10−6)

Histological data (available/not available) 7/22 16/1 23/23 –

Table 2 Diagnostic performances of the various classifiers. Qualitative
(i.e. visual) and quantitative scores are given; the latter were derived via
evaluation of divergence δ, curl ρ, amplitude γ, and centripetal indicator τ
(after 10-fold cross-validation) by various machine-learning algorithms.

Accuracies, sensitivities, specificities, PPVs, and NPVs are shown in
percentages. Quantitative indicators are shown with standard deviations
and 95% confidence intervals in parentheses. Best scores of each indica-
tor are emphasised by italic font

Classifier Accuracy AUROC Sensitivity Specificity PPV NPV

Qualitative analysis 93.6 0.94 94.4 93.1 89.5 96.4

Divergence (δ)

Logistic regression 86.6 ± 14.9
(85.6–87.5)

0.82 ± 0.23
(0.80–0.83)

74.1 ± 35.1
(71.8–76.3)

94.3 ± 16.5
(93.3–95.4)

81.7 ± 34.7
(79.5–83.9)

87.9 ± 16.5
(86.8–88.9)

Support vector machine 86.9 ± 14.6
(86.0–87.8)

0.82 ± 0.21
(0.81–0.84)

75.5 ± 33.8
(73.4–77.7)

94.1 ± 16.4
(93.0–95.1)

83.1 ± 33.0
(81.0–85.2)

88.6 ± 15.7
(87.6–89.6)

Naive Bayes 86.6 ± 14.8
(85.7–87.6)

0.81 ± 0.23
(0.80–0.83)

74.9 ± 34.6
(72.7–77.1)

94.1 ± 16.2
(93.0–95.1)

82.0 ± 34.0
(79.8–84.1)

88.1 ± 16.5
(87.0–89.1)

Random forest 85.4 ± 14.5
(84.5–86.3)

0.75 ± 0.25
(0.74–0.77)

67.5 ± 33.9
(65.4–69.7)

96.6 ± 15.0
(95.6–97.5)

84.5 ± 34.1
(82.4–86.7)

83.9 ± 17.4
(82.8–85.0)

Curl (ρ)

Logistic regression 77.2 ± 16.0
(76.2–78.3)

0.68 ± 0.25
(0.66–0.69)

60.1 ± 40.3
(57.5–62.6)

87.9 ± 24.5
(86.4–89.5)

64.4 ± 41.7
(61.8–67.1)

80.1 ± 20.8
(78.8–81.4)

Support vector machine 67.4 ± 15.0
(66.5–68.4)

0.52 ± 0.28
(0.50–0.53)

42.0 ± 43.9
(39.2–44.8)

84.3 ± 31.0
(82.4–86.3)

39.6 ± 42.7
(36.9–42.3)

68.0 ± 25.2
(66.4–69.7)

Naive Bayes 76.7 ± 16.3
(75.6–77.7)

0.69 ± 0.25
(0.67–0.71)

60.2 ± 41.5
(57.6–62.9)

87.0 ± 24.8
(85.4–88.6)

61.7 ± 41.9
(59.0–64.4)

80.4 ± 21.0
(79.1–81.8)

Random forest 64.6 ± 12.9
(63.8–65.4)

0.40 ± 0.26
(0.39–0.42)

33.9 ± 41.6
(31.3–36.6)

84.2 ± 31.5
(82.2–86.2)

31.8 ± 40.0
(29.2–34.3)

64.3 ± 23.8
(62.8–65.8)

Amplitude (γ)

Logistic regression 72.2 ± 15.9
(71.2–73.3)

0.56 ± 0.28
(0.55–0.58)

48.8 ± 42.4
(46.1–51.5)

86.9 ± 27.4
(85.1–88.6)

52.5 ± 44.4
(49.7–55.3)

74.1 ± 22.7
(72.7–75.6)

Support vector machines 67.2 ± 14.7
(66.3–68.2)

0.52 ± 0.27
(0.50–0.53)

40.6 ± 44.1
(37.8–43.4)

83.9 ± 31.0
(81.9–85.9)

37.8 ± 41.9
(35.2–40.5)

68.5 ± 25.0
(66.9–70.1)

Naive Bayes 70.3 ± 15.4
(69.3–71.2)

0.54 ± 0.28
(0.52–0.55)

48.6 ± 43.3
(45.8–51.4)

83.8 ± 29.8
(81.9–85.7)

49.0 ± 43.3
(46.2–51.7)

73.5 ± 23.9
(71.9–75.0)

Random forest 80.2 ± 16.2
(79.2–81.3)

0.70 ± 0.28
(0.69–0.72)

61.6 ± 38.6
(59.1–64.0)

91.9 ± 20.9
(90.6–93.3)

71.4 ± 40.7
(68.8–74.0)

80.8 ± 20.0
(79.5–82.1)

Centripetal indicator (γ)

Logistic regression 95.7 ± 10.1
(95.1–96.3)

0.97 ± 0.09
(0.96–0.97)

93.5 ± 19.6
(92.3–94.8)

97.1 ± 11.2
(96.4–97.8)

94.9 ± 17.7
(93.8–96.0)

96.8 ± 10.3
(96.1–97.4)

Support vector machines 95.8 ± 10.0
(95.1–96.4)

0.97 ± 0.09
(0.96–0.97)

92.8 ± 21.3
(91.4–94.1)

97.5 ± 9.4
(97.0–98.1)

94.6 ± 19.1
(93.4–95.8)

96.7 ± 9.9
(96.1–97.3)

Naive Bayes 95.9 ± 9.8
(95.3–96.5)

0.97 ± 0.08
(0.96–0.97)

93.4 ± 19.8
(92.1–94.6)

97.6 ± 10.0
(97.0–98.2)

95.3 ± 17.5
(94.2–96.4)

96.7 ± 10.4
(96.0–97.3)

Random forest 91.8 ± 11.9
(91.0–92.5)

0.92 ± 0.13
(0.91–0.92)

83.4 ± 28.0
(81.6–85.2)

97.0 ± 10.5
(96.3–97.7)

91.5 ± 24.3
(89.9–93.0)

92.4 ± 12.6
(91.6–93.2)

AUROC area under the ROC curve, PPV positive predictive value, NPV negative predictive value
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imaging follow-up, or histology. All MRIs were performed
using a 1.5-T machine running a published imaging protocol
[19, 20]. The study adhered to all local regulations and data
protection agency recommendations (the National
Commission on Informatics and Liberty (CNIL) dictates).
Patients have been informed of the use of their data
anonymously.

Demographic characteristics

We enrolled 46 patients (Table 1) with the inclusion criteria;
29 had FNH and 17 I-HCA (18 I-HCA tumours were analysed
because one patient had two tumours). Of 29 FNH patients, 23
(79%) were female and the median age was 44 (21–61) years;
of 17 I-HCA patients, 16 (94%) were female and the median
age was 40.5 (21–66) years. The median diameters of FNH
and I-HCA lesions were, respectively, 2.9 (3–10) and 6.9
(3.4–12) cm. Histological data of the 18 I-HCA tumours were
available for 15 surgical specimens and 3 percutaneous biop-
sies Histological data on 7/29 FNH tumours (24%) were avail-
able (percutaneous biopsy, six samples; one surgical sample);
imaging follow-up data were available for 15/22 patients with-
out histological diagnosis (68%) with a median follow-up of

12 (4–84) months ; CEUS was performed using Sequoia (n =
37), S2000 (n = 4), and S3000 (n = 5) instruments.

Histological analysis

Histological samples were obtained by biopsy or during sur-
gical resection; for ethical reasons, no samples were taken
purely for the purpose of this study; clinical indications were
required. All analyses were performed as previously described
[8, 9, 19], in the same laboratory.

CEUS protocol

CEUS was performed by abdominal radiologists who had 5–
10 years of experience. Each patient received a bolus injection
of ultrasound contrast agent (SonoVue, Bracco). Contrast-
enhanced sequences were obtained using dedicated, low me-
chanical index (MI) contrast-imaging software (MI < 0.2)
employing one of three US machines (Sequoia, S2000 and
S3000; a Siemens Medical Solution instrument featuring
Cadence Contrast Pulse Sequencing [CPS]; and a Convex
Array 4C1-S probe). Standard pre-settings were used, but it
was possible to adjust settings for individual patients.

Fig. 1 Typical results obtained when evaluating an FNH lesion. Data
obtained at different CEUS timepoints are shown: 0.5 s (left column),
1 s (middle column), and 1.5 s (right column) after bolus arrival. The
manually drawn mask encompassing the lesion is shown in a. a–c
Contrast images. d–f Estimated, apparent transport vector fields. The

flow field exhibits fast centrifugal filling of the lesion from a central
vessel and radial vascular branches. The pixelwise centripetal indicator
is shown in the insets of the bottom row (note the large negative values,
attributable to centrifugal filling of the lesion, and the small positive
values attributable to the tumour feeding arterial)

Eur Radiol (2020) 30:2995–33032998



SonoVuewas injected intravenously as a bolus of 2.4 mL via a
20-gauge cannula into the antecubital vein, followed by flush-
ing with 5 mL normal saline. Digital cine clips showing dy-
namic contrast enhancement within the lesion and surround-
ing liver tissue were continuously recorded, commencing 5 s
before SonoVue injection and covering the arterial (10–45 s
post-injection), portal (60–90 s), and late (120–150 s) phases.
Injection was repeated using the same dose (2.4 mL SonoVue)
if the data were of poor quality. All sequences were digitally
stored. Intra-tumoural vascular geometry and lesional en-
hancement patterns were evaluated.

CEUS analysis of lesional type

Qualitative visual analysis

Data were reviewed in consensus by two abdominal radiolo-
gists blinded to pathological and MRI diagnoses. Each lesion
was classified using pre-defined criteria for FNH and I-HCA.
For FNH, these were hyper-enhancement in the arterial phase,
with rapid centrifugal filling; (usually) an obvious central vessel
and radial vascular branches (especially in larger lesions; the
“spoke and wheel” sign); and iso- or hyper-enhancement in the

portal and venous phases, without washout. For I-HCA, the
criteria were hyper-enhancement in the arterial phase, frequent-
ly accompanied by rapid centripetal filling; no radial vascular
structure; and iso- or hyper-enhancement in the portal and ve-
nous phases, without washout [3, 9, 21].

Computer-assisted quantitative analysis using a transport
equation model

Microbubble transport fields in lesions were estimated (using
a transport equation) on a pixel-by-pixel basis employing the
“optical flow” process [15]. The “optical flow” problem has
long been studied by vision scientists in efforts to analyse
general visual motion in images of a moving target [16, 17].
For each lesion, the absolute changes in four image-based
displacement indicators were calculated: (i) the divergence δ
(reflecting the presence of sources and sinks); (ii) the curl
ρ (reflecting local vortices); (iii) the amplitude γ (reflecting
the magnitude of apparent displacement); and (iv) the centrip-
etal nature τ (reflecting the flow field convergence towards the
centre of the tumour). The analysis was restricted to a region
of interest, manually drawn on a high-contrast CEUS image,
encompassing the tumour. The analytical window size was

Fig. 2 Typical results from a patient with an I-HCA lesion. The manually
drawn mask encompassing the lesion is shown in a. Data obtained at
different times during CEUS are shown: 0.5 s (left column), 1 s (middle
column), and 1.5 s (right column) after bolus arrival. a–cContrast images.
d–f Estimated, apparent vector transport fields. The flow field is hyper-

enhanced in the arterial phase (enhancement commences peripherally)
and exhibits rapid centripetal filling. The pixel-wise centripetal indicator
is shown as insets in the bottom row (note the large positive values,
attributable to centripetal filling of the lesion)

Eur Radiol (2020) 30:2995–3303 2999



fixed at 2 s commencing at the bolus arrival time, and thus
covered the filling phase. The reader is referred to the
Appendix for additional information on numerical resolution
and implementation. All computer-assisted analyses were
blinded to pathological data.

Statistical analysis

The accuracies, area under the ROC curve (AUROC), sensi-
tivity, specificity, positive predictive values (PPVs), negative
predictive values (NPVs), false predictive rates (FPRs), and
false negative rates (FNRs) of qualitative and quantitative
analyses were recorded (we considered the diagnostic of an
adenoma as a “positive case” in the scope of this study).

For quantitative analyses, using one of the four
microbubble displacement indicators (δ, ρ, γ, or τ) as an input
feature, we developed machine-learning models to differenti-
ate between FNH and I-HCA. For this binary classification
task, the following four machine-learning algorithms were
applied using the commercial software Matlab (©1994–2019
The MathWorks, Inc.)/“Statistics and Machine Learning”
toolbox: random forest (RF), k-nearest neighbour (KNN), sup-
port vector machine (SVM), and logistic regression (LR).

Default hyperparameters in Matlab implementations were
employed. We refer the interested reader to [22, 23] for addi-
tional information about above-mentioned computer-assisted
classification algorithms. We evaluated the diagnostic per-
formances through self-validation (the complete 47-
tumour set was used for both train and test samples) and
through 10-fold-stratified cross-validation (the 47-tumour
set was randomly partitioned into complementary 90%-
training and 10%-test subsets). The cross-validation steps
were repeated 100 times with shuffling of the folds and test
metric averages calculated. We also compared the medians
and interquartile ranges of all four indicators using the
unpaired Mann–Whitney U test. A p value < 0.025 was
considered to reflect statistical significance.

Results

Qualitative CEUS analysis

FNH and I-HCA were correctly identified via qualitative
CEUS in 27/29 and 17/18 tumours, respectively (accuracy =
93.6%, AUROC = 0.94, sensitivity = 94.4%, specificity =

Fig. 3 Boxplots of indicators of
the four dense transport fields
(divergence δ (a), curl ρ (b),
amplitude γ (c), and centripetal
indicator τ (d)) for both patient
populations (FNH vs. I-HCA self-
validations). The medians are
shown by the central marks, the
first and third quartiles are the
edges of the boxes, the whiskers
extend to the most extreme
timepoints not considered to be
outliers, and the outliers are indi-
vidually marked in red
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93.1%, PPV = 89.5%, NPV = 96.4%, FPR = 6.9%, FNR =
5.6%; Table 2, first row).

Quantitative CEUS analysis

Figures 1 and 2 show typical microbubble transport fields as
revealed by dynamic contrast imaging; one clip (Fig. 1) is
from an FNH patient and the other (Fig. 2) from an I-HCA
patient. Of the four tested transport indicators, divergence and
centripetal indicators differed most significantly between the
two populations (Mann–Whitney test, p value = 2 × 10−4 for
divergence and 1 × 10−7 for the centripetal indicator) (Figs. 3
and 4). The centripetal indicator served as a valuable binary
classifier in all tested machine-learning systems (Table 2). In
particular, using the naïve Bayes classifier applied on the cen-
tripetal indicator, the diagnostic parameters were accuracy =
95.9%, AUROC = 0.97, sensitivity = 93.4%, specificity =
97.6%, PPV = 95.3%, NPV = 96.7%, FPR = 2.4%, and
FNR = 6.6% (in average over the 100 cross-validation steps,
FNH and I-HCAwere thus correctly identified in 28.3/29 and
16.8/18 tumours, respectively).

Discussion

We show that the dense transport fields provide valuable kinetic
information in CEUS time series; the results are more accurate
than those of qualitative visual analysis. Using the qualitative
analysis, one false-negative case and two false-positive cases
were to deplore. Concerning the false-negative case, the filling
direction was difficult to determine visually. Concerning the two
false-positive cases, one tumour (44 mm) presented two feeding
pedicles, and one (22 mm) underwent a too-fast filling. For both
FNH tumours, it was also difficult to appreciate visually the
centrifugal filling. A quantitative approach delivers reproducible
results and minimises operator dependency, as visual interpreta-
tion of CEUS images lacks a learning curve when the process is
automated. Our method deals with the intrinsic variations in
spatiotemporal greys that are inevitable during dynamic imag-
ing. This allows numerical access to visual perceptions of
microbubble trajectories. We used four simple indicators (δ, ρ,
γ, and τ) of transport field direction/orientation and amplitude.
The amplitude and curl indicators were not useful (Fig. 4b, c),
whereas the divergence and centripetal indicators were (Fig.

Fig. 4 ROC curves obtained
using the four quantitative
indicators (divergence δ (a), curl
ρ (b), amplitude γ (c), and
centripetal indicator τ (d)) as
binary classifiers (naive Bayes)
for the two populations (i.e. FNH
vs. I-HCA) after 10-fold cross-
validation

Eur Radiol (2020) 30:2995–3303 3001



4a, d). The best results were obtained using the indicator τwhich
best fits the initial centrifugal/centripetal tumour filling hypoth-
esis (Fig. 4d). For its part, the divergence operator gave decent
results. In theory, the divergence of any vector field is positive
for sources (centrifugal trajectories) and negative for sinks (cen-
tripetal trajectories). The divergence operators were positive for
both FNH and I-HCA data; bolus arrival manifested as one or
several sources of microbubbles. However, for I-HCA lesions,
the divergence operator was modulated by centripetal filling,
whereas the divergence operator was enhanced by centrifugal
filling in FNH patients.

Using our quantitative method, diagnosis is near instanta-
neous once the region of interest (encompassing the tumour) is
delineated. Although the duration of the temporal window for
the analysis must be sufficient to cover the filling phase, 2 s
was adequate; this is a great advantage, eliminating all long-
term bias imparted by probe motion, and respiratory and other
motion artefacts [24, 25].

Several limitations of our work must be mentioned, partic-
ularly the small sample size. This was a single-centre retro-
spective study lacking an external validation cohort.
Considering that only two categories of focal liver lesions were
examined (FNH and I-HCA), an inherent overestimation of
both qualitative and quantitative analyses has to be taken into
account. Also, the mean tumour diameter was significantly
smaller in the FNH group, associated with recruitment bias:
only patients with histological diagnoses obtained after surgi-
cal resection or via percutaneous biopsy were included in the I-
HCA group. However, in our centre, when an I-HCA tumour is
identified using MRI [26] or CEUS, a pathological analysis is
performed only when the tumour diameter is > 3 cm. Thus, the
I-HCA group featured only tumours that met this criterion,
unlike the FNH group, for which tumours of all diameters
(including small tumours) were evaluated. Also, the fact that
any US artefacts can intrinsically be interpreted as “false” mo-
tions by the transport equation constitutes a major source of
uncertainty. This may bias the microbubble estimations in
transport fields, in turn affecting all four image-based indica-
tors. This is also of concern when brief US “shadow” artefacts
develop in obese patients (one of our cohort was obese and was
constantly misclassified by our quantitative approach due to
poor image quality). Similarly, in-plane and/or out-of-plane
organ motion within the image field of view must be no more
than moderate. Please note that when organ motions are large
or complex, it is possible to “pop” microbubbles on-line to
virtually repeat the imaging session. Alternatively, image
post-processing strategies may be valuable [24, 27–29]
(Appendix). Finally, manually drawn masks encompassing le-
sions must exclude adjacent feeding arterials; otherwise, the
estimated displacement is likely to be calculated from the bor-
der to the centre of the tumour, compromising FNH diagnosis.

In conclusion, this proof-of-concept study indicates that
microbubble displacements evident on CEUS can be used to

efficiently diagnose FNH/I-HCA lesions. Machine learning
allows for computer-assisted diagnoses. In the future, we will
optimise the model [27], enrol larger patient cohorts, include
other lesional features, and study other pathologies.
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