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for patients with hepatocellular carcinoma by using artificial
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Abstract
Objectives We aimed to establish and validate an artificial intelligence–based radiomics strategy for predicting personalized
responses of hepatocellular carcinoma (HCC) to first transarterial chemoembolization (TACE) session by quantitatively analyz-
ing contrast-enhanced ultrasound (CEUS) cines.
Methods One hundred and thirty HCC patients (89 for training, 41 for validation), who received ultrasound examination (CEUS
and B-mode) within 1 week before the first TACE session, were retrospectively enrolled. Ultrasonographic data was used for
building and validating deep learning radiomics-based CEUS model (R-DLCEUS), machine learning radiomics-based time-
intensity curve of CEUS model (R-TIC), and machine learning radiomics-based B-Mode images model (R-BMode), respective-
ly, to predict responses (objective-response and non-response) to TACEwith reference to modified response evaluation criteria in
solid tumor. The performance of models was compared by areas under the receiver operating characteristic curve (AUC) and the
DeLong test was used to compare different AUCs. The prediction robustness was assessed for each model.
Results AUCs of R-DLCEUS, R-TIC, and R-BMode were 0.93 (95% CI, 0.80–0.98), 0.80 (95% CI, 0.64–0.90), and 0.81 (95%
CI, 0.67–0.95) in the validation cohort, respectively. AUC of R-DLCEUS shows significant difference compared with that of R-
TIC (p = 0.034) and R-BMode (p = 0.039), whereas R-TIC was not significantly different from R-BMode. The performance was
highly reproducible with different training and validation cohorts.
Conclusions DL-based radiomics method can effectively utilize CEUS cines to achieve accurate and personalized prediction. It is
easy to operate and holds good potential for benefiting TACE candidates in clinical practice.
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Key Points
•Deep learning (DL) radiomics-based CEUSmodel can accurately predict responses of HCC patients to their first TACE session
by quantitatively analyzing their pre-operative CEUS cines.

• The visualization of the 3D CNN analysis adopted in CEUS model provided direct insight into what computers “see” on CEUS
cines, which can help people understand the interpretation of CEUS data.

• The proposed prediction method is easy to operate and labor-saving for clinical practice, facilitating the clinical treatment
decision of HCCs with very few time costs.
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Abbreviations
AFP Alpha-fetoprotein
AI Artificial intelligence
AUC Area under the receiver operating

characteristic curve
BCLC Barcelona Clinical Liver Cancer
C3D Convolutional 3D
CECT Contrast-enhanced CT
CEMRI Contrast-enhanced MRI
CEUS Contrast-enhanced ultrasound
CNN Convolutional neural network
CR Complete response
CT Computed tomography
DL Deep learning
FC Fully connected layer
GBRT Gradient Boosted Regression Trees
HBV Hepatitis B virus
HCC Hepatocellular carcinoma
HCV Hepatitis C virus
ML Machine learning
mRECIST Modified Response Evaluation Criteria

in Solid Tumors
MRI Magnetic resonance imaging
NPV Negative predictive value
PD Progression disease
PPV Positive predictive value
PR Partial response
RBF Radial based function
ROI Region of interest
SD Stable disease
SVM Support vector machine
T Training cohort
TACE Transarterial chemoembolization
TIC Time-intensity curve
V Validation cohort

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
malignancy and the second leading cause of cancer-related
death globally [1]. Although curative therapeutic modalities,

such as transplantation, resection, and ablation, are recom-
mended for early-stage HCC, a significant proportion of
HCC patients are diagnosed at intermediate stage, in which
transarterial chemoembolization (TACE) is the most widely
used first-line therapy [2].

Conv en t i o n a l TACE emp l oy s t h e l i p i o do l -
chemotherapeutic agent suspension and gelatin sponge parti-
cles for interventional treatment, which is currently the most
common TACEmodality worldwide [3]. However, local HCC
responses to this therapy are highly diverse. Even at the same
Barcelona Clinical Liver Cancer (BCLC) stage B, different
HCC patients generally exhibit different treatment outcomes
after their first TACE session [3]. Extensive randomized clin-
ical trials have been conducted to find out the best subsequent
treatment strategies after TACE regarding different response
behaviors [4–6]. Despite various kinds of therapeutic strate-
gies that were proposed, they all reached an agreement that the
local HCC response to the first TACE session is significantly
correlated with its following response to subsequent therapies
and also the patients’ overall survival [7, 8]. Therefore, the
accurate and personalized prediction of local tumor responses
to the first TACE session holds critical clinical impact on the
overall management of HCC patients [9].

Current approaches for the prediction of HCC responses to
TACE mainly based on serological biomarkers and magnetic
resonance imaging (MRI) [10–12]. Besides, some score sys-
tems based on clinical, radiological, and biological data, such
as HAP-score (the hepatoma arterial embolization prognos-
tic), STATE-score (the selection for TACE treatment), and
ART-score (the Assessment for Retreatment with TACE),
were proposed to predict outcomes in patients with HCCs
undergoing TACE and help optimize the selection for TACE
[13–15]. However, these attempts only offered very limited
precision of prediction, or with a limited number of enrolled
patients. Different from these studies, we hypothesized that
the contrast-enhanced ultrasound (CEUS) imaging may
achieve better prediction efficacy, because dynamic CEUS
cines can offer outstanding temporal resolution in tracing the
microcirculation perfusion of tumors [16], which is consid-
ered vital in tumor responses to TACE [17].

To better interpret CEUS, we employed artificial intelli-
gence (AI)–based radiomics strategies [18–20]. As an
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emerging technology, radiomics can provide comprehensive
quantifications of large amounts of image features from med-
ical images, which has the potential to uncover disease char-
acteristics that fail to be appreciated by human eyes [21].
These features can be user-defined and selected by machine
learning (ML) methods [22], or be computer-defined and se-
lected by deep learning (DL) methods [19]. Comparing with
the amount of radiomics studies on computed tomography
(CT) or MRI, ultrasound imaging–based radiomics investiga-
tions are still few reported. In this study, we enrolled 130 HCC
patients at BCLC stage B who received TACE as their first-
session treatment. DL- and ML-based radiomics models were
specially designed and trained by dynamic CEUS cines and
static B-mode images, respectively, in order to predict indi-
vidualized tumor response to TACE.

Materials and methods

Patient eligibility

For this retrospective study, ethical approval was conformed,
and the requirement for informed consent was waived off.
From December 2012 to December 2017, 138 consecutive
patients with HCC who underwent CEUS examination before
TACEwere recruited. HCCs were diagnosed with reference to
EASL guidelines [9]. Inclusion criteria were aged 18–80 years

old, BCLC stage B, first-session TACE for target tumor with-
out previous local-regional treatment, platelet count ≥ 50 ×
109/L, and prothrombin time < 21 s. Eight patients were ex-
cluded due to poor imaging quality (n = 3) or excessive respi-
ratory motion (n = 5) during CEUS. Finally, B-mode images
and CEUS cines of 130 patients acquired pre-TACE were
retrospectively analyzed (Fig. 1).

CEUS data acquisition

CEUS examinations were performed within the week be-
fore TACE because of a project using CEUS to assess the
treatment response to TACE of HCC using Modified
Response Evalua t ion Cr i te r ia in Sol id Tumors
(mRECIST) [23]. Examinations were performed by two
radiologists who had over 10 years’ experience in liver
CEUS. There were three different ultrasound instruments
used in this study (Philips iU22, Toshiba Aplio, e-saote).
Before CEUS, B-mode images of lesions were acquired.
One-minute minimum continuous cine was acquired after
injecting 2.4 mL of the second-generation contrast agent
(SonoVue, Bracco Imaging) via the elbow followed by a
5-mL saline flush. For multiple tumors, patients received
additional administrations of SonoVue (range, 2–3 injec-
tions; median, 3 injections) to make sure each tumor was
observed.

Fig. 1 Patient enrollments and
radiomics model building
flowchart. DL-based R-DLCEUS
model was built from dynamic
CEUS cines. Pre-defined TIC
feature–based R-TIC model was
built from dynamic CEUS cines.
Pre-defined radiomics feature–
based R-BMode model was built
from static B-mode images.
CEUS, contrast-enhanced
ultrasound; DL, deep learning;
ML, machine learning; ROI,
region of interest; TIC, time-
intensity curve; T, training cohort;
V, validation cohort
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TACE and tumor response assessment

TACE was performed by a radiologist with over 10 years’ expe-
rience in interventional cancer therapy. Using a transfemoral ap-
proach, 5-Fr Yashiro catheters (Terumo) and microcatheters were
used to superselectively catheterize the relevant arteries.
Fluoroscopic guidance was used to slowly inject a mixture of
liquefied lipiodol (Guerbet Laboratories) and epirubicin (Pfizer
Inc.) before the embolization performed by using gelatin sponge
particles (Bi-Trumed Biotech Co., Ltd.). The quantity of lipiodol
(maximum volume, 20 mL), epirubicin (range, 40–80 mg), and
gelatin sponge particles was selected based on patients’ liver func-
tion, tumor size, and diameter of the relevant arteries. The endpoint
of embolization was defined as the contrast of feeding artery had
not been cleaned up after 5 heartbeats [24]. Contrast-enhanced CT
(CECT) or contrast-enhanced MRI (CEMRI) performed 1 month
after TACEwas used to assess tumor response. The lesionwith the
largest diameter was selected as the target tumor. Local tumor
response of this target tumor was assessed using the mRECIST
guidelines [25]. Objective-response was defined as the sum of
complete response (CR) and partial response (PR). Non-response
was defined as the sum of stable disease (SD) and progression
disease (PD) [26]. Tumor responses were interpreted in consensus
by two radiologists beforeAI analysis, both of whomhad 10 years
of experience with abdominal CT/MRI interpretation.

Tumor segmentation and preprocessing

We retrospectively reviewed the TACE procedure records and
CEUS documents; the largest tumor that has received TACEwas
selected as the target tumor. Then, the target tumor was manually
segmented. Using ITK-SNAP software [27], tumor segmenta-
tion was performed by an ultrasound practitioner with work ex-
perience of 5 years, who was blinded to the result of tumor
response during segmentation process. Previous studies revealed
that the parameters of CEUS during wash-in were significant in
assessing responses to TACE for HCC [17]; therefore, we
adopted 1-min continuous CEUS for analysis [28].

In this study, three radiomics models were established (Fig. 1),
which were the DL model (named R-DLCEUS) and the ML
model (named R-TIC) trained by dynamic CEUS cines and an-
other ML model (named R-BMode) trained by static B-mode
images. For building R-DLCEUS model, a bounding box (Fig.
2a, the yellow box) was delineated as a region of interest (ROI) on
a CEUS frame with a clear tumor margin. Following motion cor-
rection [29], the CEUS cines were cropped to keep only the
bounding box ROI region for DL analysis. For the R-TIC model,
two ROIs were manually delineated on all CEUS frames over the
whole cine. One ROI delineated the tumor border accurately (Fig.
2a, the red contour), and the other was defined inside the normal
liver parenchyma close to the tumor, warding off major blood
vessels (> 3 mm diameter) and ribs (Fig. 2a, the green contour).
For the R-BMode model, tumors were segmented manually

around the border on three B-mode images acquired before the
injection of ultrasound contrast agent (Fig. 2b, the blue contour).

Radiomics feature extraction and model building

Before data analysis, we randomly select two-thirds of the 130
enrolled patients (n = 89) as the training cohort for model
training and the rest (n = 41) as the validation cohort to eval-
uate the predictive performance of radiomics models. This
randomization was repeated several times until no significant
difference in baseline characteristics (Table 1) was found be-
tween training and validation cohorts. Flow charts of the DL
model design (R-DLCEUS) and ML models design (R-TIC
and R-BMode) are illustrated in Fig. 2c and Supplementary
Figure S2, respectively.

R-DLCEUSwas built to analyze dynamic CEUS cines by a
variant of convolutional 3D (C3D) neural network (CNN)
method (Fig. 2c) [30], which was specially designed to ana-
lyze dynamic CEUS cines automatically. The reason why we
preferred 3D CNN to 2D CNN was that C3D is simpler and
more efficient in learning spatiotemporal features specific for
predicting responses to TACE. Compared with C3D, 2DCNN
can only analyze the spatial features from one frame of CEUS
cines. We have to add more modules to modify 2D CNN in
order to analyze temporal features fromCEUS [31–33], which
inevitably generates more parameters and hinders its overall
learning performance. Our CNN model consisted of five con-
volution blocks for feature extraction and one perceptron for
classification. The model was trained by stochastic gradient
descent (SGD) solver [34] with a cross-entropy loss function
[34]. For reducing overfitting, depthwise convolution [35] and
global pooling [36] were used to reduce learning parameters,
and video frame sampling and data augmentation [34] were
conducted to improve its generalization ability. More detailed
mathematical definitions and discerptions are provided in the
SupplementaryMethod. After the automatic quantitative anal-
ysis, probabilities for each category (objective-response and
non-response) were obtained for each CEUS cine.

R-TIC was established based on time-intensity curve (TIC)
features extracted from dynamic CEUS cines. We defined and
extracted 18 TIC features from manually segmented CEUS tu-
mor ROIs and normal liver parenchyma ROIs of 1-min CEUS
cines. Detailed definitions and calculation method were de-
scribed in Supplementary method and Supplementary
Table S3. The predictive contribution of each feature was mea-
sured by a preliminary model built by applying the Gradient
Boosted Regression Trees (GBRT) algorithm [37]. TIC features
with larger contribution were selected as key features. Based on
those selected key features, a classifier for predicting TACE re-
sponse was built by using the support vector machine (SVM)
model with radial based function (RBF) kernel [38]. Cross-
validation was applied to determine the number of key features
and the basic structure parameters of GBRTand SVM [39]. The
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violin plot was drawn to show the distribution of selected key
features in different categories. In a violin plot, the more obvious

distribution difference of two categories reveals the more signif-
icant classification ability of a particular feature.

Fig. 2 The ROI segmentation and the design of R-DLCEUS. a An
example of different ROIs in CEUS cines. Before segmentation, the
cines and images were converted from color maps to gray scales for
loading in ITK-SNAP. The yellow bounding box ROI contained the
whole tumor, which defined the input of R-DLCEUS model. The red
ROI was the manual delineation of tumor. The green ROI was a
delineation of surrounding normal liver parenchyma. They were used to
extract TIC features for R-TIC model. b An example of ROI in B-mode
image. The blue ROI was the manual delineation of tumor for R-BMode

model. c The overall topology structure of R-DLCEUS model. A CEUS
cine was inputted into the CNN, and after applying five times auto-
learning transformation of DL layers, the resulted feature maps are used
to calculate the prediction probability. At each CNN layer, the inputted
feature maps were computed to another set of more discriminating feature
maps by automatically learning the way of transformation. ROI, region of
interest; DL, deep learning; CEUS, contrast-enhanced ultrasound; TIC,
time-intensity curve; CNN, convolutional neural network; GP layer,
global average pooling layer; FC layer, fully connected layer
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R-BMode was constructed based on radiomics features ex-
tracted from static B-mode images (Fig. 1). We averaged B-
mode images and blurred in order to reduce speckle [40]. In
total, we extracted 934 user-defined radiomics features, i.e.,
181 statistics features, 13 tumor shape features, and 740 tex-
ture features. The key feature selection and model building
method were the same as R-TIC. Due to the limited numbers
of B-mode images and their lack of hemodynamic perfusion
information compared with CEUS cines, it was unsuitable to
analyze B-mode images by using the DLmethod in this study.
Therefore, we did not include DL analysis of the B-mode
image.

Radiomics model accuracy and robustness
assessment

Using the dataset split strategy as described above, the en-
rolled 130 patients were randomly split into three different
training cohorts and validation cohorts (89 vs. 41, 85 vs. 45,
and 86 vs. 44) [19]. Three validation cohorts were not over-
lapped. Each of the three radiomics models was trained three
times, and the corresponding prediction accuracy was

assessed separately in three validation cohorts. The variation
of prediction accuracy indicated the robustness of each model.

HAP-score assessment and comparison with AI
models

The STATE-score could not be calculated since C-reactive
protein was not a routine test in our center. ART-score was
calculated prior to the second TACE session [15], which was
inconsistent with the design of this study. Therefore, we
assessed the prediction accuracy of the HAP-scores based on
albumin, bilirubin, α-fetoprotein, and the size of dominant
tumor [13]. AUCs of HAP-score were compared with those
of our proposed models in the training and validation cohorts,
respectively.

DL model visualization and its acceptability of human
readers

For a better understanding of how the DL model predicts
different treatment responses, we converted DL feature maps
into pseudo-colored maps using Selvaraju R.’s method [41].
To validate the value of DL feature maps in clinical practice,

Table 1 Baseline characteristics of patients

Characteristic All patients Training cohort Validation cohort p value

Patient number (%) 130 89 (68.5%) 41 (31.5%) -
Age, years 55.0 ± 12.3 (18–80) 55.6 ± 12.2 (18–80) 53.9 ± 12.7 (18–72) 0.467
Sex 0.812
Male 106 (81.5%) 73 (82.0%) 33 (80.5%)
Female 24 (18.5%) 16 (18.0%) 8 (19.5%)

Etiology 0.301
HBV 109 (83.8%) 74 (83.1%) 35 (85.4%)
HCV 6 (4.6%) 4 (4.5%) 2 (4.9%)
Unknown/other 15 (11.6%) 11 (12.4%) 4 (9.7%)

Performance status 0.546
0 117 (90.0%) 81 (91.0%) 36 (87.8%)
1 13 (10%) 8 (9.0%) 5 (12.2%)

Child-Pugh class 0.677
A 123 (94.6%) 85 (95.5%) 38 (92.7%)
B 7 (5.4%) 4 (4.5%) 3 (7.3%)

AFP, ng/mL 0.109
< 20 37 (28.5%) 25 (28.1%) 12 (29.2%)
20–200 37 (28.5%) 23 (25.8%) 14 (34.1%)
≥ 200 56 (43.0%) 41 (46.1%) 15 (36.7%)

Tumor number 0.648
Unifocal 28 (21.5%) 18 (20.2%) 10 (24.4%)
Multifocal 102 (78.5%) 71 (79.8%) 31 (75.6%)

Tumor size, cm 4.2 ± 3.2 (1.0–15.8) 4.3 ± 3.2 (1.0–15.8) 4.1 ± 3.3 (1.0–14.2) 0.496
Tumor location 0.321
Right lobe 90 (69.2%) 65 (73.0%) 25 (60.9%)
Left lobe 32 (24.6%) 20 (22.5%) 12 (29.2%)
Bilobar 8 (6.2%) 4 (4.5%) 4 (9.9%)

Tumor response 0.846
Objective-response 46 (35.4%) 31 (34.8%) 15 (36.6%)
Non-response 84 (64.6%) 58 (65.2%) 26 (63.4%)

Data are shown as means ± standard deviation (range) or number (%). Student’s t test was used to compare continuous variables. The χ2 test was used to
compare categorical variables. HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, alpha-fetoprotein
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firstly we concluded the general criteria of the corresponding
relation between the characteristics of DL feature maps and
responses to TACE. Then, two doctors (a PhD student and a
radiologist with more than 10 years of experience) were told
the criteria and asked to predict the responses to TACE based
on the criteria. Finally, we computed two doctors’ prediction
accuracy and their statistical significance using NRI test [42].
We also compared the prediction accuracy of two doctors with
the three AI models in area under the receiver operating char-
acteristic curves (AUC).

Statistical analysis

Student’s t test or the Mann-Whitney test, as appropriate, was
used to compare continuous variables. The χ2 test was used to
compare categorical variables. AUC was used to estimate the
probability of correct prediction of objective-response and
non-response to TACE. Differences between AUCs were cal-
culated using the DeLong test. Data analysis was performed
using GraphPad Prism (version 5.0; GraphPad Software).
Model building and evaluation were conducted using python
2.7, pytorch (version 0.4.0), pyradiomics (version 2.0.0) [43],
scipy, lmfit, and scikit-sklearn package. All statistical tests
were two-sided. Differences were considered significant at
p < 0.05.

Results

Baseline characteristics

Three different ultrasound instruments were used to examine
the patients: Philips iU22 (n = 37), Toshiba Aplio (n = 70) and
e-saote (n = 23). Tumor response was assessed using CECT in
80 (61.5%) patients and CEMRI in 50 (38.5%) patients. The
numbers of objective-response and non-response HCC pa-
tients to TACE were 46 (35.4%) and 84 (64.6%), respectively.
The objective-response rate to TACE in our study was in
accordance with previous report [44]. There were no signifi-
cant differences in the variables between the training and val-
idation cohorts (Table 1).

Prediction accuracy and robustness

In the training cohort, AUCs of R-DLCEUS, R-TIC, and R-
BMode reached 0.98, 0.84, and 0.82, respectively. DL-based
radiomics model using dynamic CEUS cines (R-DLCEUS)
achieved the best prediction performance compared with
twoMLmodels (R-TIC and R-BMode) (Fig. 3a, b). The same
results were confirmed in the validation cohort; AUCs of R-
DLCEUS, R-TIC and R-BMode were 0.93, 0.80, and 0.81,
respectively (Fig. 3c, d). Table 2 summarizes the quantitative
analysis of all three models. R-DLCEUS offered significantly

higher AUCs in comparison with R-TIC and R-BMode in
both the training (p = 0.002, p = 0.001) and validation cohorts
(p = 0.034, p = 0.039). However, there is no significant dif-
ference of AUCs between R-TIC and R-BMode in either the
training or validation cohort (p = 0.461, p = 0.592). (Please
find detailed results and analysis about key features selection
for R-TIC and R-BMode in supplementary results.)

The robustness experiment was performed three times with
randomized patient compositions in training and validation co-
horts. The predictive accuracy was highly reproducible in all
three kinds of radiomics models (Supplementary Figure S3 and
Supplementary Table S4). No significant variation was found in
any cases (Supplementary Table S5), which indicated the re-
markable robustness of both DL and ML radiomics strategies.

Comparison of HAP-score with AI models.

AUCs of HAP-score were 0.623 and 0.617 in training and
validation cohorts (Supplementary Figure S6), which were
consistent with the previous study [13]. There were significant
differences between AUCs of HAP-score and three AI models
in both cohorts (Supplementary Table S6).

DL model visualization and prediction accuracy
of human readers

Because R-DLCEUS demonstrated the outstanding ability in
predicting responses to TACE, we further investigated how it
worked. After converting the CNN-based DL feature maps
into pseudo-colored maps [41], the CEUS cines were
interpreted and re-visualized in the eyes of DL. By reading
feature map images, we preliminarily concluded two general
criteria for human readers to predict responses to TACE based
on the characteristics of DL feature maps. Firstly, if there were
feeding arteries marked by red color, the corresponding case
belonged to objective-response with high probability
(Figure 4a). Secondly, if the red/warm color regions occurred
in arterial phase and last for a long time, the probability of
objective-response was high (Fig. 4b). On the contrary, if the
red/warm color regions occurred late until the portal phase, the
probability of non-response was high (Fig. 4c). Finally, if
there was contradiction between the first and second criteria,
we made a prediction based on the first criteria.

Based on the concluded criteria, two doctors conducted
prediction-based CEUS cines and corresponding DL feature
map images. The prediction accuracy of two doctors was sum-
marized in Supplementary Table S7. There was no significant
difference between two doctors’ predictions (p = 0.474, 0.444
in training and validation cohorts, respectively). The ROC
curves showed that the prediction performances of doctors
based on DL feature map were better than on R-TIC and R-
BMode, but still inferior to R-DLCEUS (Supplementary
Figure S7).
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Fig. 3 The predictive performance of R-DLCEUS, R-TIC, and R-BMode
in training and validation cohorts. a The ROC curves of three radiomics
models in the training cohort. b The predictive probability for each HCC
patient in the training cohort based on three models, respectively. Positive
and negative probability indicate non- and objective-response to TACE
considered by models. Red and green represent the ground truth of non-

and objective-response obtained after 1-month follow-up. c, d The
corresponding ROC curves and individualized predictive probability of
three radiomics models in the validation cohort. In (b, d), the probabilities
were the output of models subtracted by cutoff values. ROC curve,
receiver operating characteristic curve; HCC, hepatocellular carcinoma;
TACE, transarterial chemoembolization
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Discussion

In this study, thevalueofCEUScines andB-modeultrasound
images in predicting HCC responses to TACE was investi-
gated usingAI radiomics strategies. Our results revealed that
the local response to TACE is a highly predictable pre-
operation for HCC patients by R-DLCEUS, R-TIC, and R-
BMode. R-DLCEUS offered significantly higher AUCs in
comparison with R-TIC and R-BMode in both the training
(p = 0.002, p = 0.001) and validation cohorts (p = 0.034, p =
0.039), which demonstrated CEUS plus DL analysis was
capable of offering accurate prediction of HCC responses
to TACE. To the best of our knowledge, there were no non-
invasive imaging radiomics approaches or any other
methods reported before offering comparable performance
for personalized local responseprediction toTACE.AUCsof
previous studies typically ranged from 0.70 to 0.81 [10–12].
Besides, the number of enrolled patients in previous studies
was much smaller compared with our study. The detailed
comparison between these studies and ours was summarized
in Supplementary Table S8. Moreover, our results showed
that the AI analysis tool was much more efficient than the
existing HAP-score in predicting prognosis of TACE. HAP-
score was established based on only three indexes regarding
liver function and tumor load, which might limit its predic-
tion performance [13]. By utilizing DL technology, sophis-
ticated radiomics model can be established for quantitative
analysis of CEUS cines and providing personalized predic-
tion of TACE efficacy with high accuracy. This holds great
potential for the improved selection of BCLC stage B candi-
dates to receive TACE and for better optimization of the
treatment planning and follow-up monitoring in the HCC
management process [9].

In the robustness experiment, all three models showed ex-
cellent robustness, with no significant variation of the predic-
tion accuracy in three training-validation cohort sets. It is
worth noting that all ultrasound data were acquired across
three different scanning systems, indicating the superior uni-
versal application ability of our radiomics models over various
manufacturers.

Compared with the ML analysis method, the DL method
has a great advantage in that numerous discriminating features
are automatically learned fromCEUS cines directly, instead of
using human-defined features limited by human experiences
[45]. In addition, it is time- and labor-consuming for clinical
doctors in daily work to precisely delineate the border of tu-
mors in numerous frames for R-TIC and R-BMode methods.
In contrast, for R-DLCEUS, manually delineating a bounding
box in only one CEUS frame to contain the whole tumor is an
easy-to-operate and practical job. Besides, R-DLCEUS made
full use of all the spatiotemporal features in the whole CEUS
cines, thus, offered a more thorough and comprehensive as-
sessment. Therefore, we strongly believe that R-DLCEUS
based on DL analysis method and dynamic CEUS cines is
the best choice in clinical practice for its effectiveness and
convenience in quantitatively predicting responses to TACE
for HCCs. For the similarity of spatiotemporal structure and
CT/MRI’s 3D space structure, our DL model is not limited to
CEUS data and can potentially be applied to analyze CT and
MRI with a necessary modification in parameters.

The visualization of the CNN analysis [41] adopted in R-
DLCEUS provided direct insight into what computers “see”
on CEUS cines. After training, the DL model intelligently
recognized feeding arteries at early arterial phase of CEUS
and considered them to be positively related to objective-
response HCCs. These findings are essentially consistent with

Table 2 Comparison of the predictive performance of R-DLCEUS, R-TIC, and R-BMode in training and validation cohorts

Patient number AUC Sensitivity, % Specificity, % Accuracy PPV, % NPV, %

R-DLCEUS

T 89 (68.5%) 0.98 (0.92–0.99) 98.2 (90.8–100.0) 96.7 (83.1–99.9) 0.98 (0.92–0.99) 98.3 (90.9–100.0) 96.8 (83.3–99.9)

V 41 (31.5%) 0.93 (0.80–0.98) 89.3 (70.0–97.6) 92.3 (68.0–98.3) 0.90 (0.77–0.97) 92.0 (74.0–99.0) 81.2 (54.4–96.0)

R-TIC

T 89 (68.5%) 0.84** (0.74–0.90) 78.6 (66.1–88.6) 81.8 (62.5–92.5) 0.80 (0.69–0.87) 88.2 (76.1–95.6) 67.6 (50.2–82.0)

V 41 (31.5%) 0.80* (0.64–0.90) 82.1 (60.6–93.4) 76.9 (55.0–92.2) 0.81 (0.65–0.91) 84.0 (63.9–95.5) 68.7 (41.3–89.0)

R-BMode

T 89 (68.5%) 0.82** (0.73–0.91) 79.3 (66.6–88.8) 74.2 (55.4–88.1) 0.78 (0.67–0.86) 85.2 (75.7–91.4) 65.7 (52.6–76.8)

V 41 (31.5%) 0.81* (0.67–0.95) 84.6 (65.1–95.6) 73.3 (44.9–92.2) 0.80 (0.62–0.89) 84.6 (70.0–92.8) 73.3 (51.5–87.7)

95% confidence intervals for quantitative data are shown in brackets, when applicable

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; T, training cohort; V,
validation cohort

AUCs of three models were statistically compared with each other in training and validation cohorts. Statistical significance was assessed with the
DeLong test. Differences were significant when AUCs (both training and validation) of R-DLCEUS were compared to R-TIC or R-BMode (*p < 0.05,
**p < 0.01) Differences between R-TIC and R-BMode were not significant (p > 0.05)

Eur Radiol (2020) 30:2365–2376 2373



previous studies [46, 47] indicating that the imaging-
based presence of feeding arteries is favorable for identi-
fying the correct tumor feeding vessels and is associated
with good response to TACE. Furthermore, the DL model
highlighted large portion of positive contribution pixels at
the arterial phase in objective-response HCCs, whereas
such dominant highlighting appeared at the portal venous
phase in non-response HCCs. The prediction results of
two doctors based on the above findings showed that it
was possible for human readers to predict the responses to

TACE accurately based on the DL feature map images.
Moreover, such a prediction was reproducible for readers
with different clinical experiences. Therefore, this re-
visualization strategy converted conventional CEUS cines
into distinctive pseudo-color videos perceptible to human
eyes for TACE response classification. The entire phe-
nomenon demonstrated by this re-visualization strategy
also suggested the dynamic enhancing process during
CEUS examination is extraordinarily valuable for achiev-
ing the personalized prediction.

Fig. 4 Visualization of the DL
analysis on CEUS cines.
Monochrome CEUS cines were
converted into pseudo-colored
maps frame-by-frame based on
the DL model. Red and warm
color represent stronger
contribution to the predictive
classification, whereas blue and
cold color represent weaker
contribution. a Feeding artery
(red arrow) was coded with red
color (black arrow) for HCC with
objective-response to TACE. b, c
Red and blue areas dominated the
ROI in different time intervals and
patterns for HCCs with objective-
and non-responses to TACE. DL,
deep learning; CEUS, contrast-
enhanced ultrasound; HCC,
hepatocellular carcinoma; TACE,
transarterial chemoembolization;
ROI, region of interest
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There were several major limitations of this study, including
the limited population size, the disadvantages of the single-center
retrospective data, and the lack of patients from different ethnic
populations. Therefore, the results in the current stage are initial,
and multi-center prospective studies with a larger HCC patient
population are necessary to further verify the performance of
proposed radiomics models. Their accuracy across different eth-
nics is also worth of investigation. Moreover, long-term follow-
up studies are desired to truly reveal its clinical impact for benefit-
ing the overall survival of HCC patients. Prediction system in-
corporating high-level medical knowledge is also a potential di-
rection to improve our models in the future [45].

In conclusion, pre-operative CEUS examinations are of
great value in predicting HCC responses to TACE. Artificial
intelligence–based radiomics method can effectively utilize
CEUS cines to achieve accurate and personalized prediction.
The radiomics models exhibited excellent robustness with dif-
ferent training cohorts, even though the data were acquired by
various ultrasound systems. All these findings suggest that the
proposedDL-based radiomics model combining CEUS exam-
ination holds good potential for benefiting TACE candidates
in the clinical practice.
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