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Abstract
Objective To investigate the feasibility of a deep learning–based detection (DLD) system for multiclass lesions on chest radio-
graph, in comparison with observers.
Methods A total of 15,809 chest radiographs were collected from two tertiary hospitals (7204 normal and 8605 abnormal with
nodule/mass, interstitial opacity, pleural effusion, or pneumothorax). Except for the test set (100 normal and 100 abnormal
(nodule/mass, 70; interstitial opacity, 10; pleural effusion, 10; pneumothorax, 10)), radiographs were used to develop a DLD
system for detecting multiclass lesions. The diagnostic performance of the developed model and that of nine observers with
varying experiences were evaluated and compared using area under the receiver operating characteristic curve (AUROC), on a
per-image basis, and jackknife alternative free-response receiver operating characteristic figure of merit (FOM) on a per-lesion
basis. The false-positive fraction was also calculated.
Results Compared with the group-averaged observations, the DLD system demonstrated significantly higher performances on
image-wise normal/abnormal classification and lesion-wise detection with pattern classification (AUROC, 0.985 vs. 0.958;
p = 0.001; FOM, 0.962 vs. 0.886; p < 0.001). In lesion-wise detection, the DLD system outperformed all nine observers. In
the subgroup analysis, the DLD system exhibited consistently better performance for both nodule/mass (FOM, 0.913 vs. 0.847;
p < 0.001) and the other three abnormal classes (FOM, 0.995 vs. 0.843; p < 0.001). The false-positive fraction of all abnormalities
was 0.11 for the DLD system and 0.19 for the observers.
Conclusions The DLD system showed the potential for detection of lesions and pattern classification on chest radiographs,
performing normal/abnormal classifications and achieving high diagnostic performance.
Key Points
• The DLD system was feasible for detection with pattern classification of multiclass lesions on chest radiograph.
• The DLD system had high performance of image-wise classification as normal or abnormal chest radiographs (AUROC,
0.985) and showed especially high specificity (99.0%).

• In lesion-wise detection of multiclass lesions, the DLD system outperformed all 9 observers (FOM, 0.962 vs. 0.886; p < 0.001).
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Abbreviations
AUC Area under the curve
AUROC Area under the receiver operating characteristic

curve
CAD Computer-aided detection
DLD Deep learning–based detection
FOM Figure of merit
FP False positive
JAFROC Jackknife alternative free-response receiver

operating characteristic curve
ROC Receiver operating characteristic
TP True positive

Introduction

Chest radiograph is the most common chest imaging modality
and is readily available and affordable, with short examination
time and low radiation exposure. Because the chest radiograph
presents the thorax on a two-dimensional image, overlapping
of structures with each other, and sometimes with abnormal
lesions, is inevitable. This inherent limitation makes it chal-
lenging to detect subtle abnormalities on chest radiograph,
even by experienced radiologists [1, 2]. In fact, the sensitivity
of chest radiographs for malignant pulmonary nodules had
been reported to be 36% to 84% [3–6]. Moreover, the tremen-
dous number of chest radiographs can make timely reading
difficult.

In this regard, there had been large efforts to develop and
apply computer-aided detection (CAD) on chest radiograph.
Several previous studies have shown the good performance of
CAD [7–10]. Most recently, Nam et al [10] reported that their
deep learning–based algorithm, as a second reader, signifi-
cantly enhanced all 18 physicians’ performance for nodule
detection on chest radiograph; in fact, its stand-alone perfor-
mance was superior to that of 15 of 18 physicians.

However, in addition to nodules, various disease patterns
need to be evaluated on chest radiograph. Recent studies have
addressed the benefit of automatic detection systems for such
purposes [11–15]. Cicero et al [11] showed that with the use of
a training dataset that was based on chest radiograph reports,
their deep learning–based model diagnosed five categories of
abnormalities (i.e., pulmonary edema, effusion, pneumotho-
rax, cardiomegaly, and consolidation) (area under the curve
(AUC), 0.85–0.96). Dunnmon et al [12] and Annarumma et al
[13] showed a clinically acceptable performance of automated
classification and triaging of chest radiographs, in terms of the
presence of abnormalities and based on the detection and clas-
sification of multiple patterns. Hwang et al [14] also demon-
strated that a deep learning–based algorithm outperformed
readers in the discrimination of chest radiographs that showed
major thoracic diseases and assisted the readers in improving
their performance. However, despite the consistent good

performance of such algorithm, the accuracy of disease diag-
nosis remains insufficient (AUC, 0.686), probably because of
overlaps in the radiologic findings of major thoracic diseases.
Given that the abnormal patterns detected by automatic detec-
tion systems are reviewed by radiologists, a more practical
approach might be learning abnormal image patterns rather
than diseases.

On this premise, in our study, we selected four classes (i.e.,
nodule/mass, pleural effusion, pneumothorax, and interstitial
opacity) that are clinically important and common and do not
overlap with each other.We aimed to investigate the feasibility
of a deep learning–based detection (DLD) system for
multiclass lesions on chest radiograph, in comparison with
observers’ performance.

Materials and methods

This retrospective study was approved by the institutional
review board, which waived the requirement for patients’ in-
formed consent. All images were deidentified of patient
information.

Dataset for development of the DLD system

We retrospectively collected and anonymized 15,809 chest
radiographs from two institutions (Asan Medical Center (in-
stitution A) and Seoul National University Bundang Hospital
(institution B)). The images from institution A comprised
6119 normal chest radiographs and 4151 chest radiographs
with the abnormalities of interest (i.e., nodule/mass, pleural
effusion, interstitial opacity, and pneumothorax), whereas the
images from institution B comprised 1085 normal chest radio-
graphs and 4454 chest radiographs with the same abnormali-
ties of interest (Table 1).

To build ground truth, two radiologists at institution A
outlined the lesions on each half of the abnormal radiographs
with reference to computed tomography (CT); in cases with-
out CT for reference, lesions were evaluated and outlined by
two radiologists in consensus. In institution A, all cases of
nodule/mass and interstitial opacity had reference CT avail-
able, and 368 of 1287 pleural effusion cases and 101 of 263
pneumothorax cases had reference CT. In institution B, one
radiologist outlined the lesions on all of the abnormal chest
radiographs with reference to CT.

Except for 200 radiographs that comprised the test set, all
radiographs were randomly split by the frequency of abnor-
malities into a 9:1 ratio of the training dataset (normal, 6394;
abnormal, 7654) to the validation dataset (normal, 710; abnor-
mal, 851) using a stratified sampling that reflected the
institutions.
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Development of the DLD system

We designed and trained a multitask convolutional neural net-
work (CNN), in which the input comprised the chest radio-
graph and the outputs were the generated binary classifica-
tions (normal/abnormal) and lesion segmentation (Fig. 1).
The chest radiographs were resized to a 1024 × 1024 resolu-
tion. Then, this image was converted to four images with 512
× 512 resolution; this input passed through the CNN to gen-
erate a binary normal/abnormal classification output; the fea-
ture maps were used to generate a multiclass lesion segmen-
tation mask, which was a five-channel two-dimensional im-
age, with each channel corresponding to the predicted proba-
bility of each pixel being normal or as one of the four abnor-
malities of interest. We trained the network for 100 epochs,
with a learning rate starting from 0.001, divided by 10 upon
training loss saturation. After the development of our DLD

system, it could analyze one chest radiograph for less than 1
s. Further details are provided in the Supplementary Material.

Performance test

The performance test was applied on 200 chest radiographs
(100 normal and 100 abnormal). The number of lesions/
patients was 83/70 for nodule/mass, 19/10 for interstitial opac-
ity, 11/10 for pleural effusion, and 10/10 for pneumothorax
(Table 2). To prepare the test set, chest radiographs were ran-
domly selected from each category, in equal numbers from
each hospital. The sizes of the nodules/masses in the test set
were measured on chest radiograph by one radiologist who
did not participate in the observer test.

At first, the DLD performance was assessed. The DLD
classified each lesion detected on chest radiograph and rated
the probability of it being a true lesion, which was presented as
a continuous value between 0 and 1. DLD-generated annota-
tions were considered true positive (TP) when the centers of
the marks that matched the classification were within the
ground truth region of interest (ROI).

For the observer performance test, nine readers with vary-
ing levels of experience participated. They consisted of seven
board-certified radiologists with 2–19 years of experience on
chest radiology (observers 1–7) and two radiology residents
(observers 8 and 9). The images were evaluated using in-
house software that had available options for magnification
and adjustment of window settings. The observers were re-
quested to report the detected lesions on chest radiographs,
based on the four classes of abnormal findings. Other opacities
(e.g., calcified nodule, fibrotic sequelae) that were not

Fig. 1 The multitask learning architecture of the deep convolutional
neural network used to generate DLD outputs. We designed and trained
a multitask convolutional neural network, which includes chest
radiograph as the input and generates both binary classifications
(normal/abnormal) and lesion segmentation outputs. The chest
radiographs are resized to 1024 × 1024 resolution before the image is

converted to four images with 512 × 512 resolution. After the 512 × 512 ×
4 input passes through multiple convolution blocks, the feature maps
generate a binary normal/abnormal classification output and predict the
probability of each pixel being either normal or as one of the four abnor-
malities of interest

Table 1 Number of chest radiographs and normal/abnormal cases for
each institution

Institution A Institution B

No. of chest radiographs (no. of lesions)

Normal 6119 1085

Abnormal 4151 4454

Nodule/mass 2388 (2775) 1909 (3003)

Pleural effusion 1287 (1586) 862 (1142)

Interstitial opacity 213 (404) 875 (1834)

Pneumothorax 263 (285) 808 (845)

The numbers in parentheses are the number of lesions for each
abnormality
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included in these categories were indicated to be ignored. The
observers placed a 1 cm × 1 cmmark on each perceived lesion
on the radiograph and rated the confidence level on a five-
point scale: grade 1 (indeterminate) to grade 5 (definite). The
readers’ marks were considered TP when the centers of the
marks that matched the classification were within the ground
truth ROI. Radiographs were defined as normal, when the
observers did not report any abnormal finding. Observers
were not time limited in the interpretation of chest
radiographs.

Statistical analysis

The performances of the developed DLD system and the
observers in classifying chest radiographs as normal or
abnormal and in detecting multiclass lesions were evaluat-
ed by the area under the receiver operating characteristic
(ROC) curve (AUROC) analysis on a per-image basis and
by jackknife alternative free-response ROC curve
(JAFROC, version 4.2.1; http://www.devchakraborty.
com) analysis on a per-lesion basis. The AUROC and the
figure of merit (FOM), which was defined as the probabil-
ity that a lesion was rated higher than the highest-rated
non-lesion on normal images [16], were calculated for all
classes of abnormalities together and for each individual

class of abnormality. In the subgroup analysis, the perfor-
mance of the DLD was calculated separately for nodule/
mass and for the other three abnormal classes (interstitial
opacity, pleural effusion, and pneumothorax) combined.
The performance of the DLD was compared with that of
the pooled observers and each individual observer using
pairwise comparison of the ROC curve analysis and
JAFROC FOMs. The random-case fixed-reader method
was used for each observer and experience-based
grouped-observer comparison, and the random-case ran-
dom-reader method was used for averaged comparisons
among all nine observers.

Sensitivity was calculated at a lesion level as the num-
ber of TP markings divided by the total number of ground
truth lesions. The method of generalized estimating equa-
tions was used to compare the sensitivities between the
DLD system and the observers. The false-positive (FP)
fraction was calculated as the number of FP markings,
in which the classification or localization did not match,
divided by the total number of chest radiographs.
Specificity was calculated at an image level as the number
of true negative cases divided by the total number of
normal chest radiographs.

ROC analysis was performed using R software (version
3.3.0; http://www.Rproject.org). To account for within-
patient correlation, the Dorfman–Berbaum–Metz significance
test with Hillis’ improvements was applied using JAFROC,
version 4.2.1. Data are presented as mean ± standard devia-
tion. A p value < 0.05 was considered to indicate statistical
significance. A p value correction was performed using the
Bonferroni method for comparison of the DLD with
experience-based observer subgroups by multiplying p values
by 2 and for comparison of the DLD with each observer by
multiplying p values by 9 [17].

Results

Performance of the DLD system

For the task of classifying chest radiographs as normal or
abnormal, the DLD achieved an AUROC of 0.985 and a
specificity of 99.0% (99/100). The AUROC of the DLD
was 0.971 for nodule/mass and 0.995 for the other three
abnormal classes. For the detection and pattern classifica-
tion tasks for all abnormalities, the DLD achieved an FOM
of 0.943 and a sensitivity of 88.6% (109/123), with 0.11 FP
fractions. In the subgroup analysis, the DLD showed an
FOM of 0.913 with 0.07 FP fractions for nodule/mass
and an FOM of 0.995 with 0.05 FP fractions for the other
three abnormal classes. The sensitivities were 84.3% (70/
83) and 100.0% (40/40) for nodule/mass and the other
three abnormal classes, respectively. Among the other

Table 2 Baseline characteristics of the test set

Characteristics Institution A Institution B

No. of chest radiographs (no. of lesions)

Normal 50 50

Nodules/mass 35 (42) 35 (41)

Interstitial opacity 5 (10) 5 (9)

Pleural effusion 5 (5) 5 (6)

Pneumothorax 5 (5) 5 (5)

Patients with normal chest radiograph

Age, years, mean ± SD 48.1 ± 8.7 49.3 ± 7.7

Sex, n (%)

Male 29 (58.0) 45 (90.0)

Female 21 (42.0) 5 (10.0)

Patients with abnormal chest radiograph

Age, years, mean ± SD 56.9 ± 18.8 62.5 ± 15.1

Sex, n (%)

Male 34 (68.0) 20 (40.0)

Female 16 (32.0) 30 (60.0)

Patients with nodule/mass

Age, years, mean ± SD 60.2 ± 12.7 67.4 ± 9.8

Sex, n (%)

Male 19 (63.3) 10 (33.3)

Female 11 (36.7) 20 (66.7)

Nodule/mass size (cm), mean ± SD 4.1 ± 2.6 3.4 ± 1.8

1362 Eur Radiol (2020) 30:1359–1368

http://www.devchakraborty.com
http://www.devchakraborty.com
http://www.rproject.org


three abnormal classes, the DLD detected and accurately
classified all pneumothorax lesions without generating any
FP annotation (FOM = 1.000). The DLD showed similar
high performances for interstitial opacity (FOM 0.997 with
a FP fraction of 0.02) and pleural effusion (FOM of 0.998
with a FP fraction of 0.03).

Comparison of performances between the DLD
and the observers

For the task of classifying chest radiographs as normal and ab-
normal, the nine observers had a pooled AUROC of 0.958
(range, 0.915–0.976) and pooled specificity of 90.7% (816/
900). There was no significant difference in pooled performance
between the seven radiologists and the two radiology residents
(AUROC, 0.958 vs. 0.957, respectively; p= 0.939). Performance
was significantly better with the DLD than with the pooled ob-
servers (AUROC, 0.985 vs. 0.958, p = 0.001) (Fig. 2).

The superiority of performance of the DLD to that of the
pooled observers was consistent for the detection of both
nodule/mass (AUROC, 0.971 vs. 0.925, p < 0.001) and the
other three abnormal classes (AUROC, 0.995 vs. 0.969,
p = 0.001) (Table 3).

For the tasks of detection and pattern classification for all
abnormalities, the pooled FOM of the nine observers was
0.849, with an average FP fraction of 0.19. There was no
significant difference in performance between the seven

radiologists and the two radiology residents (FOM, 0.851 vs.
0.839, respectively, p = 0.661). The performance was signif-
icantly better with the DLD than with the pooled observers
(FOM, 0.943 vs. 0.849, p < 0.001). The DLD showed better
performance than all nine observers (FOM range, 0.817–
0.880; p < 0.001 to 0.006) (Fig. 3).

The DLD consistently outperformed the pooled observers
in the detection of both nodule/mass (FOM, 0.913 vs. 0.847,
p < 0.001) and the other three abnormal classes (FOM, 0.995
vs. 0.843, p < 0.001). The DLD showed significantly better
performance than 6 of 9 observers in nodule/mass detection
(FOM range, 0.804–0.873; p < 0.001 to 0.282) (Figs. 4 and 5).
For the detection of each class of the other three abnormal
classes, the pooled observers had FOMs of 0.983 for pneumo-
thorax, 0.756 for interstitial opacity, and 0.883 for pleural
effusion (Table 4).

In terms of sensitivity and FP fraction, the pooled sensitiv-
ities of observers were 73.2% (810/1107) for all abnormalities,
75.4% (563/747) for nodule/mass, and 70.8% (255/360) for
the other three abnormal classes. Compared with the ob-
servers, the DLD exhibited significantly higher sensitivities
for the detection of all abnormalities (p < 0.001), nodule/
mass (p = 0.003), and the other three abnormal classes
(p < 0.001) (Fig. 6). The average FP fractions for the observers
were 0.19 (range, 0.09–0.28) for all abnormalities, 0.11
(range, 0.05–0.28) for nodule/mass, and 0.08 (range, 0.03–
0.15) for the other three abnormal classes.

Fig. 2 ROC curves of the DLD
and pooled observer
performances for all
abnormalities on a per-image ba-
sis. AUROC analysis showed that
the DLD performance for classi-
fication as normal or abnormal
chest radiograph is significantly
higher than the pooled observer
performance (AUROC, 0.985 vs.
0.958; p = 0.001)
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Table 3 AUROC of the DLD and
observers on a per-image basis All abnormalities Nodule/mass Other three abnormal classes

AUROC p (vs. DLD) AUROC p (vs. DLD) AUROC p (vs. DLD)

DLD 0.985 0.971 0.995

Chest radiologists

Observer 1 0.976 3.825‡ 0.942 1.193‡ 0.980 4.990‡

Observer 2 0.950 0.235‡ 0.928 0.341‡ 0.945 0.535‡

Observer 3 0.972 2.875‡ 0.917 0.064‡ 0.970 0.894‡

Observer 4 0.969 0.836‡ 0.932 0.102‡ 0.929 0.147‡

Observer 5 0.950 0.097‡ 0.918 0.124‡ 0.999 0.883‡

Observer 6 0.972 2.428‡ 0.955 3.268‡ 0.991 3.390‡

Observer 7 0.915 < 0.001*‡ 0.860 < 0.001*‡ 0.973 1.221‡

Group 0.958 0.002*† 0.922 < 0.001*† 0.970 0.004*†

Radiology residents

Observer 8 0.951 0.249‡ 0.934 0.760‡ 0.952 0.853‡

Observer 9 0.963 0.321‡ 0.940 0.498‡ 0.981 2.881‡

Group 0.957 0.016*† 0.937 0.056† 0.967 0.100†

All observers 0.958 0.001* 0.925 < 0.001* 0.969 0.001*

*A significant difference between all observers compared with the DLD, p ≤ 0.005
† For the group-averaged comparison, corrected p values multiplied by 2 are shown
‡ For the comparison with each observer, corrected p values multiplied by 9 are shown

Fig. 3 JAFROC curves of the
DLD and pooled observers for all
abnormalities on a per-lesion ba-
sis. JAFROC analysis showed
that the DLD performance for
detecting multiclass lesions was
significantly higher than the
pooled observer performance
(FOM, 0.943 vs. 0849; p < 0.001)
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Discussion

In our study, we demonstrated that the DLD system accurately
classified chest radiographs with four abnormal classes as nor-
mal or abnormal. Furthermore, our system detected lesions with
correct pattern classification, outperforming 9 of 9 observers.

Except for the system described by Hwang et al [14], previ-
ous CAD systems mainly focused on nodule or mass detection
and, therefore, had limitations in utility for clinical practice. The
main challenge for the detection of multiclass lesions on chest
radiographs is the varying sizes and extents of lesions; a wide
view is needed for large lesions, such as pleural effusion and
pneumothorax, while preserving a high resolution for subtle
lesions, such as nodule or opacity. To handle this conflicting

requirement, our deep learning–based model exploited inverse
pixel shuffling, which effectively expanded the field of view of
the model without loss of resolution. Another challenge in the
development of a DLD is reducing FP lesion detections. We
used two types of loss for training (i.e., lesion segmentation and
binary normal/abnormal classification) and effectively facilitat-
ed the suppression of FP lesion detection.

In terms of nodule/mass detection, the FOM of our DLD
system (0.913) showed better performance than that by the ob-
servers (average FOM, 0.847 (0.804–0.873)). Compared with
the observers, our system achieved higher sensitivity (84.3%
vs. 75.4%) and smaller FP fractions (0.07 vs. 0.11). Our results
are similar with those of Nam et al [10], who indicated that the
deep learning–based automatic detection (DLAD) algorithm

Fig. 4 A 27-mm adenocarcinoma in the right lower lobe in a 56-year-old
woman. a The nodule in the right lower lung zone (arrow) is faintly
visible and overlaps with a rib shadow on the original chest radiograph.

None of the observers detected the lesion. b The corresponding computed
tomography (CT) image reveals a 27-mm nodule in the right lower lobe. c
The DLD generates a true-positive mark on the lesion

Fig. 5 A 16-mm biopsy-proven benign nodule in the left lower lobe in a
62-year-old woman. a The well-defined nodule overlaps with a left car-
diac border (arrow) on the original chest radiograph. b The corresponding

CT image reveals a 16-mm nodule in the left lower lobe. c The DLD
system and all of the observers except one failed to detect the nodule. The
lesion was confused with vessels and heart border

Eur Radiol (2020) 30:1359–1368 1365



outperformed physicians. Notably, in that study, the FOMs of the
DLAD algorithm and the board-certified radiologists (0.870 and

0.821, respectively) were slightly lower, compared with ours.
This difference can be explained by the fact that the mean size

Table 4 JAFROC FOM of the
DLD and observers on a per-
lesion basis

All abnormalities Nodule/mass Other three abnormal classes

FOM p (vs. DLD) FOM p (vs. DLD) FOM p (vs. DLD)

DLD 0.943 0.913 0.995

Chest radiologists

Observer 1 0.880 0.006*‡ 0.873 0.471‡ 0.867 < 0.001*‡

Observer 2 0.844 < 0.001*‡ 0.846 0.016*‡ 0.845 < 0.001*‡

Observer 3 0.836 < 0.001*‡ 0.829 0.003*‡ 0.855 < 0.001*‡

Observer 4 0.851 < 0.001*‡ 0.848 0.009*‡ 0.819 < 0.001*‡

Observer 5 0.867 < 0.001*‡ 0.848 0.027*‡ 0.883 0.009*‡

Observer 6 0.856 < 0.001*‡ 0.871 0.282‡ 0.824 < 0.001*‡

Observer 7 0.825 < 0.001*‡ 0.804 < 0.001*‡ 0.847 < 0.001*‡

Group 0.851 < 0.001*† 0.846 < 0.001*† 0.848 < 0.001*†

Radiology residents

Observer 8 0.817 < 0.001*‡ 0.832 0.008*‡ 0.815 0.004*‡

Observer 9 0.861 < 0.001*‡ 0.873 0.143‡ 0.832 < 0.001*‡

Group 0.839 < 0.001*† 0.853 < 0.001*† 0.823 < 0.001*†

All observers 0.849 < 0.001* 0.847 < 0.001* 0.843 < 0.001*

*Indicates a significant difference between all observers compared with the DLD, p ≤ 0.005
† For the group-averaged comparison, corrected p values multiplied by 2 are shown
‡ For the comparison with each observer, corrected p values multiplied by 9 are shown

Fig. 6 Biopsy-proven usual
interstitial pneumonia in a 52-
year-old man. a Bilateral fine re-
ticular opacities in basal lung
zones on the original chest radio-
graph. Only two of the observers
annotated true-positive marks on
the bilateral lesions. b, c The cor-
responding CT images reveal
pleura-based reticular opacities
associated with traction bronchi-
ectasis in both lower lobes. d
Although the left-side mark has a
somewhat wider range, the DLD
generated true-positive marks on
the bilateral lesions
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of the lesions was greater in our study than in their study (3.7 cm
vs. 2.6 cm), because our test set included masses, in addition to
nodules.

In the study by Nam et al [10], one of the main strengths of
their model was the markedly decreased FP fraction, com-
pared with that of the previously reported conventional image
processing–based CAD (0.02–0.34 vs. 0.9–3.3) [18–21].
Similarly, our model showed a reduced FP fraction (0.07)
for nodule/mass detection, which was even lower than that
in observers (0.11). Considering that high FP fraction of
CAD may result in additional observer’s FP fractions and
increase reading time, FP reduction in our study could show
a technical advance of CAD and the possibility of its applica-
tion to real practice. We believed that our system has the
potential to help radiologists in clinical practice. To confirm
our results, external validation or a prospective study is
warranted.

Our DLD system had a significantly better performance,
compared with that of the observers, and the difference in the
FOM between the two was larger for the other three abnormal
classes than for nodule/mass (0.152 vs. 0.066). This result was
contrary to our expectation that the detection of the other three
abnormal classes was easier than that of nodule/mass lesions
and would be less different between the DLD and the radiol-
ogists. In the per-class analysis, there was no significant dif-
ference (p = 0.245) for pneumothorax, but there were signif-
icant differences for interstitial opacity (p < 0.001) and pleural
effusion (p = 0.001). We assumed that readers were well
trained and experienced to detect pneumothorax, which is a
clinically important disease that requires attention, but were
relatively less sensitive to report interstitial opacity and pleural
effusion, unless these lesions were definite or severe. In this
respect, our system may encourage readers to scrutinize less
noticeable lesions by providing marks for suspicious lesions.

On the basis of accurate detection of multiclass lesions, our
system showed high performance on the binary classification
as normal or abnormal chest radiographs (AUROC, 0.985).
These results suggested that the DLD can automatically pri-
oritize abnormal chest radiographs, thereby improving the
workflow and efficiency in the radiology department.
Moreover, the feasibility of our system in detecting multiclass
lesions can promote broader application of CAD on chest
radiograph, which could be accelerated by covering additional
disease patterns such as rib fractures, pulmonary tuberculosis,
and cardiomegaly.

Our study had several limitations. First, it did not include
temporal or external validation. However, we obtained
datasets from two medical centers, using different reconstruc-
tion methods; therefore, the limitations of a single-center
study may have been overcome to some extent. Further vali-
dation, such as external or a prospective study, is warranted
before our model can be used more generally. Second, as our
study was a feasibility study, we did not determine whether

our system can be an effective CAD; our future work will
expound on this. Nevertheless, we successfully demonstrated
that our DLD systemwas feasible and had better performance,
compared with that of the radiologists. Third, because our data
were collected separately from disease-positive and disease-
negative subjects on the basis of radiologic reports in a case-
controlled manner, which is referred to as convenience sam-
pling [22], spectrum bias may have been introduced.
Therefore, we tried to include a wide spectrum of disease
severity in the training set, which is expected to offset the
spectrum bias to some extent. Fourth, the test set had a much
higher prevalence of disease pattern than that in real clinical
practice. Furthermore, the study condition, in which the
readers were focused on only few and fixed disease patterns,
may not have reflected the actual clinical situation. However,
the disease patterns addressed in our study are clinically im-
portant and common. Therefore, we believe that our study
closely resembled routine practice, compared with the other
studies that dealt with nodules alone.

In conclusion, the DLD system showed the potential for
detection of lesions and pattern classification on chest radio-
graphs, performing normal/abnormal classifications and
achieving high diagnostic performance.

Funding information This study has received funding from the Industrial
Strategic Technology Development Program (10072064, Development
of Novel Artificial Intelligence Technologies To Assist Imaging
Diagnosis of Pulmonary, Hepatic, and Cardiac Diseases and Their
Integration into Commercial Clinical PACS Platforms), which is funded
by the Ministry of Trade Industry and Energy (MI, South Korea).

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Sang Min Lee.

Conflict of interest The authors declare that they have no conflict of
interest.

Statistics and biometry The statistician of our institution (Seon Ok
Kim) kindly provided statistical advice for this manuscript.

Informed consent Written informed consent was waived by the institu-
tional review board.

Ethical approval Institutional review board approval was obtained.

Methodology
• retrospective
• diagnostic or prognostic study
• multicenter study

References

1. de Hoop B, Schaefer-Prokop C, Gietema HA et al (2010) Screening
for lung cancer with digital chest radiography: sensitivity and

Eur Radiol (2020) 30:1359–1368 1367



number of secondary work-up CT examinations. Radiology 255:
629–637

2. Kundel HL (1981) Predictive value and threshold detectability of
lung tumors. Radiology 139:25–29

3. Quekel LG, Kessels AG, Goei R, van Engelshoven JMA (2001)
Detection of lung cancer on the chest radiograph: a study on ob-
server performance. Eur J Radiol 39:111–116

4. Toyoda Y, Nakayama T, Kusunoki Y, Iso H, Suzuki T (2008)
Sensitivity and specificity of lung cancer screening using chest
low-dose computed tomography. Br J Cancer 98:1602–1607

5. Li F, Arimura H, Suzuki K et al (2005) Computer-aided detection of
peripheral lung cancers missed at CT: ROC analyses without and
with localization. Radiology 237:684–690

6. Gavelli G, Giampalma E (2000) Sensitivity and specificity of chest
X-ray screening for lung cancer: review article. Cancer 89:2453–
2456

7. Bley TA, Baumann T, Saueressig U et al (2008) Comparison of
radiologist and CAD performance in the detection of CT-
confirmed subtle pulmonary nodules on digital chest radiographs.
Invest Radiol 43:343–348

8. Kasai S, Li F, Shiraishi J, Doi K (2008) Usefulness of computer-
aided diagnosis schemes for vertebral fractures and lung nodules on
chest radiographs. AJR Am J Roentgenol 191:260–265

9. Li F, Hara T, Shiraishi J, Engelmann R, MacMahon H, Doi K
(2011) Improved detection of subtle lung nodules by use of chest
radiographs with bone suppression imaging: receiver operating
characteristic analysis with and without localization. AJR Am J
Roentgenol 196:W535–W541

10. Nam JG, Park S, Hwang EJ et al (2019) Development and valida-
tion of deep learning-based automatic detection algorithm for ma-
lignant pulmonary nodules on chest radiographs. Radiology 290:
218–228

11. Cicero M, Bilbily A, Colak E et al (2017) Training and validating a
deep convolutional neural network for computer-aided detection
and classification of abnormalities on frontal chest radiographs.
Invest Radiol 52:281–287

12. Dunnmon JA, Yi D, Langlotz CP, Re C, Rubin DL, Lungren MP
(2019) Assessment of convolutional neural networks for automated
classification of chest radiographs. Radiology 290:537–544

13. AnnarummaM,Withey SJ, Bakewell RJ, Pesce E, Goh V,Montana
G (2019) Automated triaging of adult chest radiographs with deep
artificial neural networks. Radiology. https://doi.org/10.1148/
radiol.2018180921:180921

14. Hwang EJ, Park S, Jin KN et al (2019) Development and validation
of a deep learning-based automated detection algorithm for major
thoracic diseases on chest radiographs. JAMA Netw Open 2:
e191095

15. Park S, Lee SM, Kim N et al (2019) Application of deep learning-
based computer-aided detection system: detecting pneumothorax
on chest radiograph after biopsy. Eur Radiol. https://doi.org/10.
1007/s00330-019-06130-x

16. Chakraborty DP (2006) Analysis of location specific observer per-
formance data: validated extensions of the jackknife free-response
(JAFROC) method. Acad Radiol 13:1187–1193

17. Bender R, Lange S (2001) Adjusting for multiple testing—when
and how? J Clin Epidemiol 54:343–349

18. Schalekamp S, van Ginneken B, Koedam E et al (2014) Computer-
aided detection improves detection of pulmonary nodules in chest
radiographs beyond the support by bone-suppressed images.
Radiology 272:252–261

19. Novak RD, Novak NJ, Gilkeson R,Mansoori B, Aandal GE (2013)
A comparison of computer-aided detection (CAD) effectiveness in
pulmonary nodule identification using different methods of bone
suppression in chest radiographs. J Digit Imaging 26:651–656

20. Dellios N, Teichgraeber U, Chelaru R, Malich A, Papageorgiou IE
(2017) Computer-aided detection fidelity of pulmonary nodules in
chest radiograph. J Clin Imaging Sci 7:8–8

21. Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-Prokop
CM (2014) Chest radiography: new technological developments
and their applications. Semin Respir Crit Care Med 35:3–16

22. Park SH, Han K (2018) Methodologic guide for evaluating clinical
performance and effect of artificial intelligence technology for med-
ical diagnosis and prediction. Radiology 286:800–809

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1368 Eur Radiol (2020) 30:1359–1368

https://doi.org/10.1148/radiol.2018180921:180921
https://doi.org/10.1148/radiol.2018180921:180921
https://doi.org/10.1007/s00330-019-06130-x
https://doi.org/10.1007/s00330-019-06130-x

	Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Dataset for development of the DLD system
	Development of the DLD system
	Performance test
	Statistical analysis

	Results
	Performance of the DLD system
	Comparison of performances between the DLD and the observers

	Discussion
	References


