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Combining DWI radiomics features with transurethral resection
promotes the differentiation between muscle-invasive bladder
cancer and non-muscle-invasive bladder cancer
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Abstract
Purpose To investigate the value of radiomics features from diffusion-weighted imaging (DWI) in differentiating muscle-
invasive bladder cancer (MIBC) from non-muscle-invasive bladder cancer (NMIBC).
Methods This retrospective study included 218 pathologically confirmed bladder cancer patients (training set: 131 patients, 86
MIBC; validation set: 87 patients, 55 MIBC) who underwent DWI before biopsy through transurethral resection (TUR) between
July 2014 and December 2018. Radiomics models based on DWI for discriminating state of muscle-invasive were built using
random forest (RF) and all-relevant (AR) methods on the training set and were tested on validation set. Combination models
based on TUR data were also built. Discrimination performances were evaluated with the area under the receiver operating
characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, and F1 and F2 scores. Qualitative MRI evaluation based on
morphology was performed for comparison.
Results No significant difference was found between RF and AR models. RF model was more sensitive than TUR (0.873 vs
0.655, p = 0.019) for discriminating muscle-invasive bladder cancer. When combining RF with TUR, the sensitivity increased to
0.964, significantly higher than TUR (0.655, p < 0.001), MRI evaluation (0.764, p = 0.006), and the combination of TUR and
MRI (0.836, p = 0.046). Combining RF and TUR achieved the highest accuracy of 0.897 and F2 score of 0.946.
Conclusion Combining DWI radiomics features with TUR could improve the sensitivity and accuracy in discriminating the
presence of muscle invasion in bladder cancer for clinical practice. Multicenter, prospective studies are needed to confirm our
results.
Key Points
• Twenty-seven to 51% of superficial bladder cancers diagnosed by transurethral resection are upstaged to muscle-invasive at
radical cystectomy, suggesting its poor sensitivity for discriminating muscle-invasive bladder cancer.

• A small subset of selected all-relevant radiomics features exhibited an equivalent performance compared to that of all the
extracted features, confirming that radiomics data contained redundant or irrelevant features and that feature selection should
be performed in building radiomics models.

• Combining DWI radiomics features with transurethral resection could improve in clinical practice the sensitivity and accuracy
for the detection of muscle invasion in bladder cancer.
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Abbreviations
ACC Accuracy
AR All-relevant
AUC Area under the receiver operating characteristic

curve
BC Bladder cancer
CIS Carcinoma in situ
DKI Diffusion kurtosis imaging
DTI Diffusion tensor imaging
DWI Diffusion-weighted imaging
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run length matrix
GLSZM Gray-level size zone matrix
ICC Intraclass correlation coefficient
MDGini Mean Decrease in Gini index
MIBC Muscle-invasive bladder cancer
NGTDM Neighborhood gray-tone difference matrix
NMIBC Non-muscle-invasive bladder cancer
PPV Positive predictive value
RC Radical cystectomy
RF Random forest
ROC Receiver operating characteristic
SEN Sensitivity
SPE Specificity
TUR Transurethral resection
VOI Volume of interest

Introduction

Preoperative differentiation between muscle-invasive bladder
cancer (MIBC) and non-muscle-invasive bladder cancer
(NMIBC) is crucial for subsequent treatment options.
Transurethral resection (TUR) is usually chosen as the initial
treatment for superficial tumors, whereas muscle-invasive tu-
mors are treated with radical cystectomy (RC) or with adju-
vant chemotherapy [1, 2]. However, 27–51% of NMIBC di-
agnosed by TUR are upstaged to MIBC at RC [1, 3–5], indi-
cating its relatively low sensitivity for discriminating muscle-
invasive tumors. Despite the advances in endoscopic [2] and
the availability of sophisticated predicting tools [3, 6–8], ac-
curate assessment of the clinical stage of bladder cancer (BC)
is still challenging.

Magnetic resonance imaging (MRI) allows for differentia-
tion of the bladder wall layers [9, 10]. Multiparametric MRI,
including diffusion-weighted imaging (DWI), has shown
promise for assessing depth of invasion in BC [11–13].
Radiomics converts medical images into mineable high-
dimensional data by means of feature engineering and ma-
chine learning techniques [14–15]. Radiomics has been used
to facilitate clinical decision-making in glioblastoma, lung
cancer, and other solid tumors [16–18], and has shown its
ability for preoperative prediction of tumor grading and lymph

node metastasis in BC [19–21]. Recently, radiomics signature
derived from T2WI and DWI showed potential for the differ-
entiation of muscle invasion in BC [22, 23]. However, the
sample size was relatively small and the result of TUR was
not included or compared with the radiomics approach.

Thus, with a larger sample set and the result of TUR, this
study aimed to develop and validate a more sensitive
radiomics model from DWI for discriminating muscle-
invasive bladder cancer.

Materials and methods

This study had institutional review board approval, and in-
formed consent was waived due to its retrospective nature.

Patient population

Consecutive BC patients treated between July 2014 and
December 2018 were included, according to the following
criteria: (1) underwent both TUR and RC at our institute and
were confirmed to have high-grade urothelial carcinoma, as
almost all muscle-invasive tumors are high grade [2]; (2) delay
between TUR and RC was less than 12 weeks, and absence of
neoadjuvant chemotherapy or radiotherapy before RC; (3)
available MRI before biopsy through cystoscopy or TUR,
meaning MRI for an intact tumor. Patients were randomly
divided into training set and validation set.

TUR followed by pathology investigation of the obtained
specimen was a diagnostic procedure and initial treatment
step. For small papillary tumors (< 1 cm), resection was per-
formed in one piece including the part from the underlying
bladder wall. For tumors > 1 cm in diameter, resection was
performed in fractions including the exophytic part of the
tumor, the underlying bladder wall with the detrusor muscle,
and the edges of the resection area. Cauterisation was avoided
as much as possible during TUR to avoid tissue deterioration.
The specimen obtained by TUR was investigated by close
cooperation between urologists and pathologists. The pathol-
ogy report should specify tumor grade, depth of tumor inva-
sion, presence of carcinoma in situ (CIS) or histological var-
iant, and whether the detrusor muscle is present in the speci-
men. Papillary tumors confined to mucosa (Ta) or invading
the lamina propria (submucosa) (T1) were classified as
NMIBC. MIBC was confirmed when tumor invaded the
detrusor muscle, including irregular nests, single cell infiltra-
tion, or tentacular finger-like projections.

At our institute, indications for RC included clinical MIBC
and highest-risk NMIBC. Clinical highest-risk NMIBC was
defined as T1HG (high grade) with any one of the following
conditions or TaHG with any two: multifocal, large (> 3 cm),
recurrent, associated with concurrent CIS, mixed histological
variant, and BCG failure.
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MR imaging

MRI including DWI for bladder was performed using a 3.0-T
MR scanner (Ingenia; Philips Healthcare) with a Torso 32-
channel phased array coil and without breath-holding.
Parameters of DWI with single-shot EPI (echo-planar
imaging) sequence were as follows: FOV, 260 × 284 × 105
mm; matrix, 132 × 170 × 32 slices; slice thickness/gap, 3/0.3
mm; TR/TE, 8216/67 ms; flip angle, 90°; number of excita-
tions, 2; EPI factor, 71; bandwidth, 16.6 Hz; two b values (b =
0, and 1000 s/mm2); directions of motion-probing gradients,
2; fat suppression, spectral attenuated inversion recovery; and
total scan duration, approximately 2 min 50 s. Corresponding
ADCmaps were then automatically calculated voxel by voxel
by solving the following equation:

S b1000ð Þ=S b0ð Þ ¼ exp −b1000� ADCð Þ
where S(b1000) and S(b0) represent the signal intensity of a
certain voxel in the presence and absence of diffusion sensiti-
zation, respectively.

Qualitative MRI evaluation

Invasion of muscular layer was evaluated on DWI together
with T2-weighted images independently by two radiologists,
according to the criteria described in [9]. Briefly, a high signal
intensity tumor with a low signal intensity submucosal stalk or
a thickened submucosa on DWI (b = 1000 s/mm2), or an intact
low signal intensity muscle layer on T2-weighted images in-
dicated the absence of muscle invasion. For patients with mul-
tiple tumors, the one with the highest stage was documented.

Tumor segmentation

One radiologist manually segmented the entire tumor area on
DWI (b = 1000 s/mm2) using an open-source software pack-
age (ITK-SNAP, version 3.4.0; http://itk-snap.org) to yield
volume of interest (VOI). The VOI was copied to
corresponding ADC map for computer-based analysis. After
3 days, the segmentation was repeated on 40 patients by the
same radiologist and by another radiologist for assessing intra-
and inter-observer repeatability.

Feature extraction

The first-order intensity features, high-order texture features,
and shape features were extracted within the VOIs using an in-
house Matlab program (R2016a, Mathworks Inc.). The high-
order texture features were extracted using several different
methods, including the gray-level co-occurrence matrix
(GLCM), gray-level run length matrix (GLRLM), gray-level
size zone matrix (GLSZM) and neighborhood gray-tone

difference matrix (NGTDM)methods. Finally, for each tumor,
156 quantitative features were extracted. Each feature was
normalized into its Z-score.

Feature selection, and radiomics model development

Feature selection was assumed to serve as a dimension-
reduction tool and discover features that may provide deeper
insight to the classification task. First, intra- and inter-observer
repeatability for each imaging feature was measured by
intraclass correlation coefficient (ICC). Features with ICC of
more than 0.85 were selected to build a classification model
using random forest (RandomForest model, RF) for discrim-
inating muscle-invasive bladder cancers. The tree number of
the random forest classifier was set to 400. Mean Decrease in
Gini index (MDGini) was used as variable importance
measure.

For comparison, we used a random-forest based wrapper
algorithm, Boruta, to select all-relevant imaging features. It
evaluates feature relevance by comparing the importance of
original features with that achieved by artificially added ran-
dom features. Random forest is performed iteratively to mea-
sure feature importance, while irrelevant features are
discarded progressively. To reach statistical significance, the
algorithm repeatedly calculates all possible feature combina-
tions, generating an all-relevant subset of features. Based on
the selected all-relevant features, another random forest model
(all-relevant model, AR) was built.

Combination model development

Three combination models were built. First, the result of TUR
was combined with RF model and AR model, respectively,
yielding two combined models. When muscle invasion was
confirmed at TUR, the case was recognized as muscle-
invasive regardless of the result of radiomics model.
Meanwhile, if the bladder cancer was identified as non-
muscle-invasive at TUR, the final result was determined based
on radiomics model. For comparison, another model combin-
ing the results of TUR and qualitative MRI evaluation was
also built according to the rules mentioned above.

Statistical analysis

All statistical analyses were performed using R-3.4.4 (https://
www.r-project.org). All predictive models were trained on the
training data set and tested on the independent validation data
set. Discrimination performances were evaluated with area
under the receiver operating characteristic (ROC) curve
(AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE)
, and F1 and F2 scores (F1 score is the harmonic average of the
precision and recall, F2 score weighs recall higher than preci-
sion). In all tests, muscle invasion was regarded as the positive
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result. Delong’s test was used for comparing AUC, and
McNemar’s test for comparing ACC, SEN, and SPE between
the two models. Inter-observer repeatability for qualitative
MRI evaluation was measured by Kappa value. The R pack-
ages RandomForest and Boruta were used for model building
and feature selection. All p values were two-sided. A p value
< 0.05 was considered significant.

Results

Patient population

Two hundred and forty-five patients were included. After
excluding 37 patients in whom radiomics features could
not be extracted due to the small volume of lesions or the
limited visibility of images, 218 (169 males; mean age,
66.1 years [range, 37–93]; 141 muscle-invasive tumors)
were left for further analyses. In this patient group, TUR
only confirmed 87 muscle-invasive tumors, and 38.3%
(54/141) of RC-confirmed muscle-invasive tumors were
misdiagnosed as non-muscle-invasive tumors at TUR
(Table 1, Fig. 1).

Patients were randomly divided into training set (131 pa-
tients; 104 males; mean age, 65.8 years [range, 38–86]; 86
muscle-invasive tumors) and validation set (87 patients; 65
males; mean age, 66.5 years [range, 37–93]; 55 muscle-
invasive tumors) (Fig. 2). No significant difference was ob-
served in age (p = 0.696, Wilcoxon rank sum test), gender
(p = 0.519, chi-square test), or muscle invasion (p = 0.824,
chi-square test) between the two sets (Table 1).

Table 1 Baseline characteristics of the patients

Total (%) Tra set (%) Val set (%) p value

Number 218 131 87

Age, year Mean 66.1 65.8 66.5 0.696

Range 37–93 38–86 37–93

Gender Male 169 (77.5) 104 (79.4) 65 (74.7) 0.519

Female 49 (22.5) 27 (20.6) 22 (25.3)

C stage Non 131 80 51 0.826

Mus 87 51 36

P stage Non 77 45 32 0.824

Mus 141 86 55

MRI Non 101 62 39 0.823

Mus 117 69 48

Tra set: training set; Val set: validation set; C stage: clinical stage; Non:
non-muscle-invasive bladder cancer; Mus: muscle-invasive bladder can-
cer; P stage: pathological stage

Fig. 1 Bladder MRI demonstrate a mass on the right wall of the bladder
in a 79-year-old man with painless hematuria. The detrusor muscle layer
seems to be intact on T2WI (a), and a low signal intensity thickened
submucosa is observed on DWI (b, b value = 1000 s/mm2), indicating
the absence of muscle invasion. High-grade urothelial carcinoma staged
T1 associated with concurrent carcinoma in situ is diagnosed at
transurethral resection, and stratified as highest-risk non-muscle-
invasive bladder cancer. Subsequently performed radical cystectomy
confirmed the presence of muscle invasion
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Radiomics and combination model development

Seventy-three features with ICC of more than 0.85 were ex-
tracted by different methods, including first order, shape,
GLCM, GLRLM, GLSZM, and NGTDM features. After
Boruta selection, 21 all-relevant features were obtained
(Table 2) (Figs. 3 and 4). Internal validation showed no sig-
nificant difference in AUC (0.907 vs 0.904, p = 0.673,
Delong’s test), ACC (0.839 vs 0.816, p = 0.480, McNemar’s
test), SEN (0.873 vs 0.855, p = 1.000), or SPE (0.781 vs
0.750, p = 1.000) between RandomForest model and all-
relevant model for discriminating muscle-invasive BC
(Table 3) (Fig. 5).

RandomForest model was more sensitive than TUR (0.873
vs 0.655, p = 0.019, McNemar’s test), and MRI (0.873 vs
0.764, p = 0.181) for discriminating MIBC, but the difference
did not reach statistical significance. When combining the
RandomForest model with TUR, the sensitivity increased to
0.964, significantly higher than TUR (0.655, p < 0.001), MRI
(0.764, p = 0.006), and the combination of TUR and MRI
(0.836, p = 0.046). Notably, the combination model
(RandomForest model and TUR) had the highest accuracy
of 0.897 and F2 score of 0.946 for discriminating MIBC
(Table 3).

Discussion

In this study, 38.3% (54/141) of RC-confirmed muscle-inva-
sive tumors were misdiagnosed as non-muscle-invasive tu-
mors at TUR, which is consistent with previous reports [1,
3–5]. Many reasons account for the poor sensitivity of TUR
for discriminating muscle-invasive tumors, such as sampling

Fig. 2 Study flowchart
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error due to incompleteness of TUR, delay in the interval from
TUR to RC, and poor sensitivity of preoperative staging tools
[1, 3]. Besides, qualitativeMRI evaluation only showed a good
inter-observer repeatability (Kappa value = 0.605) and a poor
sensitivity comparable to that of TUR (0.764 vs 0.873, p =
0.181), although substantial advances in DWI have been re-
ported to make multiparametric MRI a feasible and reasonably
accurate technique to optimize the treatment of BC [9, 24].

The discrepancy between previous studies [9] and ours
may be explained by the following reasons: (1) in previous
report, the sample size was relatively small and the distribu-
tion of superficial and muscle-invasive tumors was uneven,
leading to potential miscalculation of ACC, an imperfect eval-
uation index for classification performance; (2) as the authors
mentioned, in cases that had underwent management before
MRI, inflammatory changes due to prior treatment or biopsy
may affect the results of MRI evaluation; (3) in previous re-
port, not all patients underwent RC, and clinical stage cannot
be regarded as the reference standard in the radiologic-
pathologic correlation analyses due to its poor sensitivity;
(4) muscle layer is usually depicted as a thin line with low
signal intensity and difficult to distinguish from surrounding
fat tissue on DWI. Muscle invasion can only be definitely
excluded when an obvious submucosal stalk or thickened
submucosa is present; otherwise, subjective judgment may
lead to substantial misdiagnosis rate and poor inter-observer
repeatability.

New post-processing and functional multiparametric MRI
have shown promise for assessing depth of invasion in BC
[11–13]. However, it is challenging to acquire images with

satisfactory spatial resolution using diffusion tensor imaging
(DTI) or diffusion kurtosis imaging (DKI), and these novel
imaging techniques are not routinely performed in clinical
practice.

Generally, there are two types of imaging features, the se-
mantic features and the radiomics features. Semantic features
are more familiar to radiologists and are commonly used to
describe lesions like signal intensity or enhancement charac-
teristics. Radiomics features are mathematically extracted
quantitative descriptors, which are generally not part of the
radiologists’ lexicon. These features capture microscale infor-
mation embedded within images, but not visible by the naked
human eye [14–15]. Our radiomics model exhibited favorable
discrimination performance in internal validation, with an
AUC of 0.907 on the test set. The obvious advantage of
TUR is its specificity of 100%, as muscle invasion is con-
firmed once observed at TUR specimen without considering
the pathological result at RC. But for detecting highly malig-
nant muscle-invasive BC, what physicians most importantly
need is a more sensitive staging tool with a false negative rate
as low as possible altogether with a relatively high positive
predictive value (PPV). Recall (sensitivity) is more important
than precision (PPV). Considering that F1 score is the har-
monic average of the precision and recall, and that F2 score
weighs recall higher than precision by placing more emphasis
on false negatives, our radiomics model and combination

Fig. 3 Radiomics workflow

�Fig. 4 Heatmap for normalized feature value distribution of the extracted
73 features (above) and the 21 all-relevant features (below) between
superficial and muscle-invasive bladder cancers
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model showed improved performance for discriminating
muscle-invasive BC compared with TUR and qualitative
MRI evaluation as seen on Table 3.

Another major finding of this study was that a small subset
of all-relevant radiomics features selected by Boruta exhibited
an equivalent performance compared to that of all the extract-
ed features, although the classification performance using the
selected optimal feature subset outperformed that using the
candidate feature set in a previous report [19]. Feature selec-
tion is an important and necessary step, as it makes the model
simpler and easier to interpret. When acquiring enormous
amount of data (“high-dimensional”), there is an exponential-
ly increasing risk of sparsity and loss of efficacy of traditional
clustering algorithms. Feature selection addresses this issue
and enhances generalization by reducing overfitting. The

central premise when using a feature selection technique is
that the data contains some features that are either redundant
or irrelevant, and can thus be removed without incurring much
loss of information [25]. Our finding suggested that radiomics
data contained redundant or irrelevant features and that feature
selection should be performed in building radiomics models.

Our study had several limitations. For cases with multiple
tumors, we only documented the one with the highest stage for
radiologic-pathologic correlation analyses. Although each tu-
mor was respectively analyzed in previous report [9], our
method was closer to clinical practice. Incorrect manual seg-
mentation, because either of the small volume of the lesions or
of the limited visibility of the images, may lead to poor repeat-
ability of feature extraction. So some ineligible cases were
excluded. Moreover, external validation for the radiomics
model was not performed. In the future, multicenter validation
with a larger sample size is needed to acquire high-level
evidences.

In conclusion, a radiomics model from DWI was more
sensitive and accurate than TUR and could help for discrimi-
nating muscle-invasive bladder cancer in clinical practice.
Multicenter, prospective studies are needed to confirm our
results.
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Table 3 A summary of the
performances on validation set of
RandomForest model, all-
relevant model, transurethral
resection, MRI, and combination
models for discriminating
muscle-invasive bladder cancer

RF AR TUR MRI RF+TUR AR+TUR MRI+TUR

AUC 0.907 0.904 – – – – –

ACC 0.839 0.816 0.782 0.782 0.897 0.874 0.828

p value* – 0.480 0.458 0.404 0.074 0.450 1.000

p value** 0.074 0.023 0.066 0.055 – 0.480 0.239

SEN 0.873 0.855 0.655 0.764 0.964 0.946 0.836

p value* – 1.000 0.019 0.181 0.074 0.221 0.789

p value** 0.074 0.041 < 0.001 0.006 – 1.000 0.046

SPE 0.781 0.750 1.000 0.813 0.781 0.750 0.813

p value* – 1.000 0.023 1.000 NA 1.000 1.000

p value** NA 1.000 0.023 1.000 – 1.000 1.000

F1 score 0.873 0.855 0.791 0.816 0.922 0.904 0.860

F2 score 0.873 0.855 0.703 0.784 0.946 0.929 0.846

RF: RandomForest model; AR: all-relevant model; TUR: transurethral resection;MRI: qualitative MRI evaluation
on DWI and T2WI; AUC: area under curve; ACC: accuracy; SEN: sensitivity; SPE: specificity. p value*: dis-
crimination performances of different methods compared with RandomForest model; p value**: discrimination
performances of different methods compared with the combination of RandomForest model and transurethral
resection

Fig. 5 ROC curves of RandomForest and All-relavant models for
discriminating muscle-invasive bladder cancer on the validation set
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