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Abstract
Objectives A method named computed tomography angiography-derived fractional flow reserve (FFRCT) is an alternative
method for detecting hemodynamically significant coronary stenosis.We carried out a meta-analysis to derive reliable assessment
of the diagnostic performances of FFRCT and compare the diagnostic accuracy with CCTA using FFR as reference.
Methods We searched PubMed, EMBASE, The Cochrane Library, and Web of science for relevant articles published from
January 2008 until May 2019 using the following search terms: FFRCT, noninvasive FFR, non-invasive FFR,
noninvasive fractional flow reserve, non-invasive fractional flow reserve, and CCTA. Pooled estimates of sensitivity
and specificity with the corresponding 95% confidence intervals (CIs) and the summary receiver operating charac-
teristic curve (sROC) were determined.
Results Sixteen studies published between 2011 and 2019 were included with a total of 1852 patients and 2731
vessels. The pooled sensitivity and specificity for FFRCT at the per-patient level was 89% (95% CI, 85–92%) and
71% (95% CI, 61–80%), respectively, while on the per-vessel basis was 85% (95% CI, 82–88%) and 82% (95% CI,
75–87%), respectively. No apparent difference in the sensitivity at per-patient and per-vessel level between FFRCT

and CCTA was observed (0.89 versus 0.93 at per-patient; 0.85 versus 0.88 at per-vessel). However, the specificity of
FFRCT was higher than CCTA (0.71 versus 0.32 at per-patient analysis; 0.82 versus 0.46 at per-vessel analysis).
Conclusions FFRCTobtained a high diagnostic performance and is a viable alternative to FFR for detecting coronary ischemic lesions.
Key Points
• Noninvasive FFRCT has higher specificity for anatomical and physiological assessment of coronary artery stenosis compared with
CCTA.

• Noninvasive FFRCT is a viable alternative to invasive FFR for the detection and exclusion of coronary lesions that cause
ischemia.
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Abbreviations
AUC Area under the SROC
CAD Coronary artery disease
CCTA Coronary computed tomography angiography
CIs Confidence intervals
CMR Cardiovascular magnetic resonance
CTP Computed tomography perfusion
FFR Fractional flow reserve
FFRCT Computed tomography angiography-derived

fractional flow reserve
FN False negative
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FP False positive
I2 Inconsistency index
ICA Invasive coronary angiography
LR− Negative likelihood ratio
LR+ Positive likelihood ratio
NPV Negative predictive value
PPV Positive predictive value
SPECT Single-photon emission computed tomography
SROC Summary receiver operating characteristic curve
TN True negative
TP True positive

Introduction

Coronary artery disease (CAD) is responsible for 17% of all
death worldwide [1]. The prevalence of CAD is still increas-
ing worldwide making CAD the most common cause of car-
diovascular disease mortality [2]. Fractional flow reserve
(FFR), a pressure wire-based index that is used during coro-
nary angiography to assess the potential coronary stenosis, is
considered as the reference standard for evaluating the sever-
ity of stenosis in CAD and one of the key parameters for
revascularization therapy [3, 4]. Compared with the strategy
directed by angiography, FFR guided blood transport recon-
struction is capable of improving event-free survival in a cost-
saving and long-lived way [5, 6]. However, as an invasive
method, the implementation of FFR needs expensive devices
and has potential procedure-related complications such as
non-fatal myocardial infarction, cerebrovascular accidents,
and even death, which should not be ignored by clinicians.
Coronary computed tomography angiography (CCTA) as a
non-invasive method for detecting CAD is widely used in
patients with a low-to-intermediate pre-test risk [7].
Unfortunately, coronary stenosis assessed by CCTA is often
overestimated, and only a few proportions of severe stenosis
identified by CCTA could explain myocardial ischemia [8, 9].
Recently, computed tomography angiography-derived frac-
tional flow reserve (FFRCT) has been recommended for eval-
uating functional severity by utilizing computational fluid dy-
namics to calculate coronary blood pressure [10]. This method
can calculate the blood flow and pressure field of the coronary
artery according to the anatomical image data without inva-
sive operation or hyperemia process [11, 12]. In addition,
FFRCT has showed high diagnostic performance in the pres-
ence of coronary artery calcification [13]. However, the diag-
nostic accuracy of FFRCT in the assessment of lesion-specific
myocardial ischemia is not yet clear. The purpose of this meta-
analysis is to determine the diagnostic performance of FFRCT

to assess the functional significance of coronary stenosis in
patients with suspected or known CAD using invasive FFR as
the reference standard.

Methods

Data sources and searches

The analysis was performed according to the PRISMA guide-
lines [14]. We have performed a computerized literature
search of the PubMed, EMBASE, The Cochrane Library,
and Web of science for relevant articles published from
January 2008 until May 2019 using the following keyword
search terms: FFRCT, noninvasive FFR, non-invasive FFR,
noninvasive fractional flow reserve, non-invasive fractional
flow reserve, and CCTA. No restrictions were applied to the
language.

Study selection

We included a study if (1) study population comprised ≥ 30
patients with suspected or known CAD clinically; (2) data
were presented at patient- and/or vessel-level; (3) invasive
FFR was performed for coronary lesions in all patients; (4)
the FFR threshold to diagnose ischemia was ≤ 0.80; (5) either
the absolute number of true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN), or sensi-
tivity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV) could be retrieved from the pub-
lished full text.

Studies were excluded based on the following criteria: (1)
studies were not on humans (studies in vitro or animal sys-
tems); (2) studies did not report the diagnostic results associ-
ated with the determination of the results of interest (FFR
≤ 0.80); (3) the literature related to reviews, prognostic
studies, comments, and case reports.

The title and abstract were examined and the full text of
potentially qualified studies was double-checked by two inde-
pendent reviewers (BY Z and SLW). A third reviewer (MJ L)
was consulted to resolve any uncertainty regarding eligibility
if there was a discrepancy.

Data extraction and quality assessment

Two reviewers (BY Z and SLW) independently extracted the
data. Disagreements were resolved through discussion, and a
third reviewer (MJ L) was involved to achieve a consensus
when necessary. The quality of included studies was assessed
using the standards for reporting of diagnostic accuracy
(STARD) tool. The tool is structured as a list of 30 questions,
each should be answered Byes,^ Bno,^ or Bunclear,^ as previ-
ously described in detail by Bossuyt et al [15].

Data synthesis and analysis

The diagnostic performance analysis was carried out both at
the per-patient and per-vessel levels. The major calculated
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outcome data were sensitivity and specificity. The pooled cor-
responding 95% CIs of sensitivity and specificity were also
calculated.

According to whether there is statistical heterogeneity
exist, random effect or fixed effect model was used to
collect data using weighted averages based on the sam-
ple size of each study at a per-patient and per-vessel
level [16]. Data with heterogeneity were pooled using
a random effect model (DerSimonian-Laird model),
while data without heterogeneity were pooled using a
fixed effect model (Mantel-Haenszel model). Potential
heterogeneity, which means variation between studies,
was defined as an I2 statistic value of more than 50%
[17]. The summary receiver operating characteristic
curve (SROC) was fitted using estimates of sensitivity
and specificity from the studies included in the meta-
analysis and the pooled area under the curve (AUC)
was also calculated [18]. Theoretically, AUCs between
0.75 and 0.92 represent a good degree of diagnostic
accuracy, while AUCs of 0.93–0.96 are considered
much better [19].

Publication bias was assessed visually using a scatter plot
of the inverse of the square root of the effective sample size
(1/ESS1/2) versus the diagnostic log odds ratio (lnDOR),
which exhibits a symmetrical funnel shape when publication
bias is absent. Formal testing for publication bias was con-
ducted using a regression of lnDOR against 1/ESS1/2, and
weighting by ESS. A p < 0.05 for the slope coefficient indi-
cates significant asymmetry [20].

The sensitivity analysis was conducted by leaving out each
reference and reanalyzing the data to test if there are any
studies significantly influenced the results.

To compare test performance, probability modifying plots
of pre-test and post-test probabilities were synthesized.
Furthermore, the clinical or patient relevant utility of CCTA
and FFRCT was evaluated using the positive/negative likeli-
hood ratio (LR) to calculate the post-test probability based on
Bayes’ theorem [21]. When heterogeneity exits, meta-regress
analysis will be performed to identify possible sources of het-
erogeneity. The analysis was performed by using Stata14.0
(Cochrane collaboration) and Meta-Disc1.4.

Results

Literature search

The initial search obtained 248 potentially related publica-
tions. After exclusions based on title, abstract, and text, 16
studies were finally included in the present meta-analysis
[22–37]. The detailed progress of study selection is described
in the flow chart in Fig. 1.

Characteristics of the included studies

A total of 1852 patients and 2731 vessels were analyzed.
Studies were published between 2011 and 2019. The sample
size of each study ranged from 32 to 254 patients (32 to 484
vessels). Study populations were typical patients undergoing
evaluation for suspected or known CAD. Baseline character-
istics such as the study design, body mass index, number of
participants, and vessels are listed in Table 1 and relevant
parameters during the experiment such as stressor for FFR
and administration of β-blockers are listed in Table 2; charac-
teristics about intervention history, FFR threshold, equipment
parameters, and high dangerous elements are displayed in
Table 3.

Data synthesis

For a per-patient basis, seven studies reporting the relevant
values for evaluating diagnostic performance of FFRCT were
included in the analysis [24–27, 34–36]. The sensitivity and
specificity of FFRCT at patient-level ranged from 76 to 94%
and 54 to 84%with a pooled sensitivity and specificity of 89%
(95% CI 85–92%) and 71% (95% CI 61–80%) using a ran-
dom effect model (Fig. 2), respectively.

For a per-vessel basis, 13 studies reporting the necessary
values for evaluating diagnostic performance of FFRCT were
included in the analysis [23–30, 32–36], while 12 studies re-
ported the necessary values for evaluating diagnostic perfor-
mance of CCTA [22–24, 26–31, 33–35]. The sensitivity of
FFRCT for the included studies ranged from 76 to 100% and

Fig. 1 Flow chart of search and selection of eligible studies. Twelve
studies were ultimately identified. Abbreviations: n, number of studies;
FFRCT, fractional flow reserve derived from computed tomography
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specificity ranged from 73 to 96% with a pooled sensitivity of
85% (95% CI 82–88%) using a fixed-effects model and
pooled specificity of 82% (95% CI 75–87%) using a
random-effects model (Fig. 3).

Compared with CCTA alone, noninvasive FFRCT was
more specific and discriminative for detecting hemodynamic
coronary stenosis when invasive FFR was used as a reference
standard (Table 4). The pooled sensitivity of FFRCT and
CCTA were quite similar (0.89 versus 0.93 at per-patient,
p = 0.44; 0.85 versus 0.88 at per-vessel, p = 0.87). However,
the specificity of FFRCT was higher than that of CCTA (0.71
versus 0.32 at per-patient analysis, p < 0.001; 0.82 versus
0.46 at per-vessel analysis, p < 0.001).

The AUCs of FFRCT at the per-patient level and the per-
vessel level were 0.90 and 0.91, respectively, which are higher
than those of CCTA (0.76 at per-patient level and 0.73 at per-
vessel level) (Fig. 4).

Quality of the included studies

Our inter-rater reliability for assessing quality items was per-
fect (kappa = 0.89). Quality assessment using the Standards
for Reporting of Diagnostic Accuracy (STARD) tool (Suppl.
material 1) showed that 16 studies were recorded as BNOT^ in
item #20 and item #23. One study was recorded as BNOT^ in
item #17. All studies get BYes^ in the other items, indicating
the included studies have high quality.

Publication bias

The publication bias was assessed using Deek’s funnel plot
asymmetry test. Each of the four plots resembled a symmetri-
cal funnel shape. The p value for Deek’s funnel plot asymme-
try test was 0.05. Therefore, there is no significant publication
bias exist (Fig. 5).

Meta-regress analysis

Heterogeneity between studies were assessed using the incon-
sistency index (I2). Meta-regress analysis was applied when I2

≥ 50%. Multivariable meta-regress analysis at the per-patient
and per-vessel level showed that study design, sample size,
age, gender, proportion of diabetes, proportion of smoking,
hypertension, hyperlipidemia, heart rate, CT scanner type,
and time period between FFRCTand FFR were not the sources
of heterogeneity.

Sensitivity analysis and probability modifying plots

The sensitivity analysis, in order to investigate the influence of
each individual study on the overall meta-analysis summary
estimate conducted at both the patient and vessel levels,

demonstrated that no study significantly influenced the pooled
sensitivity and specificity (Suppl. material 2).

Probability modifying plots were plotted with pre-test ver-
sus post-test probabilities (Fig. 6). At both per-vessel and per-
patient levels, when the disease was estimated to be pre-test
positive, the higher value of post-test probability was obtained
with FFRCT strategy than CCTA. It indicated that FFRCT

showed better performance on identifying true positive pa-
tients. On the other hand, when pre-test estimate was negative,
FFRCT and CCTA produced similar value of post-test proba-
bility, indicating similar performance on identifying true neg-
ative patients.

To be precise, the per-patient analysis revealed a positive
LR of 3.08 and a negative LR of 0.16, when the per-vessel
analysis revealed a positive LR of 4.64 and a negative LR of
0.18 for FFRCT. As for CCTA, the per-patient analysis re-
vealed a positive LR of 1.37 and a negative LR of 0.23, when
the per-vessel analysis revealed a positive LR of 1.64 and a
negative LR of 0.26. Based on Bayes’ theorem, at per-patient
level, FFRCT could increase the post-test probability of CAD
> 64% with a pre-test probability of > 37% (CCTA is > 45%)
and can decrease post-test probability of CAD < 30% with a
pre-test probability of < 73% (CCTA is < 38%). At per-vessel
level, FFRCT could increase the post-test probability of CAD
> 73% with a pre-test probability of > 37% (CCTA is > 49%)
and can decrease post-test probability of CAD < 33% with a
pre-test probability of < 73% (CCTA is < 41%).

Discussion

We found that a noninvasive form of FFR derived fromCCTA
(FFRCT) exhibited high diagnostic accuracy for the detection
of hemodynamic relevance of stenoses in patients with known
or suspected CAD by using invasive FFR as a standard refer-
ence. These findings remained consistent regardless of wheth-
er it was examined at a per-patient or per-vessel level when
FFR cutoff value of 0.8 was used as reference standard.

The high sensitivities indicated that FFRCTand CCTA have
the ability to measure the proportion of actual myocardial
ischemia [38]. CCTA is a validated method for the patients
with low or mild pre-test probability and the long-term prog-
nostic value was confirmed [39]. However, the limitation of
CCTA remains the only anatomical assessment of coronary
stenoses in the absence of evaluation of their functional he-
modynamic significance, while functional hemodynamic for
those stenoses graded as an intermediate at the anatomical
assessment are rather important [40]. FFRCT, which found to
be better for the noninvasive screening of CAD patients with
diameter stenosis than CCTA [41], can noninvasively obtain
pressure and blood flow information by using vessel specific
fractional flow reserve data derived from CCTA. The calcula-
tion of FFR requires the knowledge of the pressure profile

Eur Radiol (2020) 30:712–725718



inside a coronary artery before and after the stenosis. This
makes FFRCTexhibits more accuracy than CCTA in detecting
coronary ischemic lesions. Besides, as mentioned above, the
low specificity of CCTA indicated that only a minority severe
stenosis identified by CCTA have been confirmed to cause
ischemia. The higher specificity of FFRCT overcomes the
shortcoming of CCTA that tends to overestimate coronary
stenosis. FFRCT served as a combined anatomic and function-
al assessment can accurately identify patients who have
lesion-causing ischemia. In addition, FFRCT has higher
AUC versus that of CCTA, which means a superior degree
of diagnostic accuracy. FFRCT was a feasible and safe

alternative to invasive coronary angiography (ICA), which
enables estimation of FFR value without the need of addition-
al invasive procedure, extra administration of medication, ra-
diation exposure, or modification of acquisition protocols. It
can provide information both on the anatomic and functional
significance of a coronary lesion in a relatively safe and eco-
nomical manner and make a cost–benefit balance in terms of
clinical management and patient’s care. The accuracy and
computational time of FFRCT crucially depends on highly
accurate image input data, which in turn depends on CCTA
protocol variations [42]. FFRCT acted as a new noninvasive
method could be an alternative to ICA in helping guide patient

Fig. 3 Forest plots illustrating detailed sensitivity and specificity at per-
vessel level. Diagnostic performance of CCTA for diagnosis of ischemia
at a per-vessel level: pooled sensitivity is 88% (95% CI 81–92%) and

pooled specificity is 46% (95% CI 37–56%); diagnostic performance of
FFRCT for diagnosis of ischemia: pooled sensitivity is 85% (95% CI 82–
88%) and pooled specificity is 82% (95% CI 75–87%)

Fig. 2 Forest plots illustrating detailed sensitivity and specificity at per-
patient level. Diagnostic performance of CCTA for diagnosis of ischemia:
pooled sensitivity is 93% (95% CI 85–97%) and pooled specificity is

32% (95% CI 26–39%); diagnostic performance of FFRCT for diagnosis
of ischemia: pooled sensitivity is 89% (95% CI 85–92%) and pooled
specificity is 71% (95% CI 61–80%)

Eur Radiol (2020) 30:712–725 719



care [43]. In conclusion, our findings suggest that FFRCT may
be a good diagnostic tool for screening of hemodynamic rel-
evance of stenoses in patients with known or suspected CAD.

Recently, five analyses have discussed the potential effec-
tiveness of the utilization of FFRCT to guide clinical decision-
making [44–48]. Their studies demonstrated similar results that
FFRCT significantly improves specificity without noticeably
altering the sensitivity of CCTAwith invasive FFR as a refer-
ence standard for the detection of hemodynamically relevant
stenosis. Cook et al [44] performed a systematic review includ-
ing 908 vessels from 536 patients in 5 studies. They reported
that the overall per-vessel diagnostic accuracy of FFR-CTwas
81.9% (95% CI, 79.4–84.4%) in association of FFRCT with
invasive FFR in different levels. In Baumann et al’s [45] me-
ta-analysis, a total of 765 patients and 1306 vessels were in-
cluded. They found that FFRCT significantly improves speci-
ficity without noticeably altering the sensitivity of CCTA (sen-
sitivity 83.7% vs 84.6%, specificity74.7% vs 49.7% on per-
lesion basis; sensitivity 89.2% vs 70.2%, specificity 90.2 %
vs 35.4% on per-patient basis) with invasive FFR as a reference
standard. And the intermediate stenosis subgroup exhibited the
same result which indicated FFRCT may become particularly
relevant for the difficult evaluation of intermediate stenosis to
guide the indication for revascularization. Celeng et al [46]
included studies that compared the diagnostic performance of
coronary computed tomography angiography (CCTA), CT
myocardial perfusion (CTP), fractional flow reserve CT
(FFRCT), the transluminal attenuation gradient (TAG), and their
combined use with CCTA. After analyzing 1069 patients of 18
articles, they found that FFRCT demonstrated a substantial im-
provement in the identification of hemodynamically significant
CAD compared with CCTA. At vessel and patient level, pooled
specificity of FFRCTwas 0.78 and 0.76 respectively which was
substantially higher than that of CCTA (0.61, 0.48). The
SROCs also showed good diagnostic performance for FFRCT

compared with CCTA. In our meta-analysis, we updated rele-
vant literature published in 2017–2019 and performed a similar
analysis but much higher specificity and diagnosis accuracy of
FFRCT because of the larger sample size (1852 vs 1069) and
the higher quality literatures included in our meta-analysis.
Gonzalez JA and his colleagues [47] compared the pooled
diagnostic performance of FFRCT with conventional CCTA
by using FFR as the gold standard. Eighteen studies with a total
1535 patients were included in the meta-analysis. The sensitiv-
ity and specificity of CCTA at the patient level is 0.92 (0.88–
0.98) and 0.43 (0.38–0.47), respectively. Comparing with
CCTA, their findings suggested that FFRCT had similar sensi-
tivity value (90% vs. 92%), while higher specificity (72% vs.
43%). However, the inclusion criteria of the previous studies
covered relatively wide range including some studies with low
quality were included, which may result in lacking of credible
reliability. The total number of vessels in the analysis of per-
vessel level was not mentioned in their study, thus resulting inTa
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Fig. 4 Summary receiver operating characteristic (ROC) curve, plotting
the true positive rate (sensitivity) against the false-positive rate (1—spec-
ificity) of FFRCTand CCTA at vessel level and patient level. Each symbol
represents an individual study in the meta-analysis, with the size of the
symbol proportional to the sample size of the study. The Q* statistic

represents the point where sensitivity and specificity are equal. AUC
indicates area under the summary receiver operating characteristic curve.
The AUCs (area under the SROC) of FFRCT at the per-patient level and
the per-vessel level were 0.90 and 0.91, which are 0.76 at per-patient level
and 0.73 at per-vessel level of CCTA

Fig. 5 Funnel plots for studies at per-vessel level and at per-patient level. All funnel plots resembled a symmetrical funnel shape, indicating publication
bias was unlikely
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the lack of data integrity. In addition, the summary receiver
operating characteristic curve (sROC) and the area under curve
(AUC) was not performed in previous studies [47]. Regress
analysis was not analyzed even though the results have hetero-
geneity [47], which hinders the conduciveness to find sources
of heterogeneity. In a study with 2216 patients and 2798 ves-
sels, Deng et al [48] reported the pooled sensitivity and speci-
ficity of FFRCT at the per-patient level were 90% and 73%,
respectively, while at the per-vessel level were 82% and 79%,
respectively. Although the inclusion criteria of our study were
not all the same, the pooled specificity and sensitivity were
similar, which aggrandizes more universalism and stringency
to our finding. However, insufficient document feature extrac-
tion of their study may add difficulty to heterogeneity analysis.
We used STARD as quality assessment tool, which is much
more detailed than QUADAS and can assess literatures more
rigorously.

Comparing with FFRCT, all other noninvasive methods
used to detect hemodynamic relevance of stenoses including
computed tomography perfusion (CTP), single-photon emis-
sion computed tomography (SPECT), and perfusion

cardiovascular magnetic resonance (perfusion-CMR) have
disadvantages to some extent. Firstly, CTP, especially dynam-
ic CTP, has the risk of radiation exposure [49], which is po-
tentially a problem in patients with high BMI and fast heart
rates. Secondly, although belonging to noninvasive examina-
tion, SPECT has high ionization radiation but lower spatial
resolution, poor attenuation correction, and limited usage of
tracers [50]. Thirdly, perfusion-CMR imaging does not suffer
from attenuation artifacts compared to nuclear techniques and
provides the highest spatial resolution. But CMR stress perfu-
sion is time consuming and MR compatible monitor is re-
quired which is the shortcoming of this technique [51].

Limitations

Several points regarding limitations of this analysis are worth
mentioning. Firstly, the evidence considered in this review
exhibited methodological limitations. (1) The heterogeneity
existed in our meta-analysis, but we cannot explore the source,
making it harder to transpose the findings to the clinical

Fig. 6 Probability modifying plots at per-vessel level and at per-patient
level. FFRCT could increase the post-test probability of CAD > 64% with
a pre-test probability of > 37%, while CCTA is > 45%, and can decrease
post-test probability of CAD < 30% with a pre-test probability of < 73%,
while CCTA is < 38% at per-patient level. And at per-vessel level, FFRCT

could increase the post-test probability of CAD > 73% with a pre-test
probability of > 37%, while CCTA > 49%, and can decrease post-test
probability of CAD < 33% with a pre-test probability of < 73%, while
CCTA < 41%
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setting and make a definitive conclusion. (2) All of our in-
volved studies used clinically relevant cutoff of 0.80; howev-
er, in some studies [52], a cutoff of 0.75 was used to assess the
prognostic value of FFR for revascularization. Due to lack of
trials, our study could not determine the diagnostic accuracy
of FFRCT < 0.75. Besides, a 50% stenosis threshold by CCTA
is associated with high sensitivity but poor specificity for he-
modynamically significant coronary artery disease [53].
Maybe a 70% threshold performs better in this situation.
These remains future experiments to explore a suitable thresh-
old. Secondly, there are some technological limitations hin-
dering the clinical application of FFRCT. The image quality
may be reduced by various factors including image noise,
motion artifacts, and beam-hardening artifacts from metallic
devices or from coronary calcifications. And the diagnostic
performance of FFRCT may be affected by the adherence of
physiological and protocol-dependent factors such as heart
rate control, blood pressure, contrast enhancement methods,
and the use of pre-scan nitroglycerin [54]. More importantly,
although FFRCT-testing processing times resulting from soft-
ware are expected to be improved, current FFRCT evaluation
also demands a considerable amount of time (2–6 h) and some
discrepancy between modeling FFRCT and directly measured
FFR is expected to be present due to the need for post-
processing and the slow analysis procedure [13]. Recently,
the evaluation of virtual functional assessment index (vFAI)
measured from CCTA-based coronary anatomical models
[55] has been allowed to determine the hemodynamic rele-
vance of a given coronary lesion with a few minutes long
computation time. It can also be used as an adjunct technique
to diagnose hemodynamic abnormalities.

Conclusions

In summary, the present data shows that noninvasive FFRCT

derived from standard CCTA image data exhibited high diag-
nostic performance in patients with known or suspected CAD
for the detection of hemodynamically significant coronary
stenosis. However, it still requires more data to explain how
to bring this new technology into the real clinical practice to
guide the decision-making in the coming years.
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